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Abstract. We exhibit an example of a bounded linear operator on
a Banach space which admits an everywhere defined local resolvent
with continuous derivatives of all orders.

Let T be a bounded linear operator acting on a complex Banach space X. It is well
known that the resolvent z 7→ (T − z)−1 defined on the complement of the spectrum
σ(T ) is unbounded. More precisely, ‖(T − z)−1‖ → ∞ whenever z approaches the
spectrum σ(T ).

Let x ∈ X be a nonzero vector. By a local resolvent of T at x we mean a function
f : U → X defined on a set U ⊃ C \ σ(T ) such that (T − z)f(z) = x (z ∈ U). Clearly
the local resolvent is uniquely determined for all z ∈ C \ σ(T ) and f(z) = (T − z)−1x.
Thus any local resolvent is analytic on the complement of the spectrum.

It was observed in [G] that a local resolvent can be bounded. Bounded local
resolvents were further studied in [BG], [N], [BM] and it was shown that they are rather
frequent. In [BM], an example of a continuous everywhere defined local resolvent was
given (such a local resolvent is necessarily bounded since each local resolvent vanishes
for z →∞).

The aim of this note is to exhibit an example of an everywhere defined C∞ local
resolvent. Note that by a basic result of local spectral theory there are no analytic
everywhere defined local resolvents.

Denote by C,R and Z+ the sets of all complex numbers, real numbers and non-
negative integers, respectively.

Let X be a complex Banach space and f : C → X a function. As usually we
identify C with R2 and consider f to be a function of two real variables x and y. We
say that f is a C∞-function if it has continuous derivatives ∂k+lf

∂xk∂yl of all orders.

Theorem 1. There exist a Banach space X, an operator T ∈ B(X), a nonzero vector
x ∈ X and a C∞-function f : C→ X such that

(T − z)f(z) = x (z ∈ C).

Proof. Let ϕ : C→ 〈0, 1〉 be a C∞-function such that

ϕ(z) =

{
1 (|z| < 1/3),
0 (|z| > 2/3).
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Let g : C → C be defined by g(z) = ϕ(z)−1
z (z 6= 0), g(0) = 0. Clearly g is a

C∞-function and g(z) = − 1
z for |z| > 2/3.

Write z = x + iy and let gkl = ∂k+lg
∂xk∂yl ; formally we write g00 = g. It is easy to

show by induction that

gkl(z) =
(−1

z

)k+l+1
(k + l)! il

for all z, |z| > 2/3 and k, l ∈ Z+. In particular, all derivatives gkl are bounded functions.
For n = 0, 1, . . . choose positive constants Kn such that Kn ≥ nKn−1 (n ≥ 1) and
max{|gkl(z)| : z ∈ C} ≤ Kk+l for all k, l ≥ 0. Clearly K0 ≥ 1 and Kn ≥ n! for all n.

Denote by D = {z ∈ C : |z| < 1} the open unit disc in the complex plane.

Let X0 be the vector space with a Hamel basis formed by the vectors u and
ukl

α (k, l ∈ Z+, α ∈ D).

For |η| = 1 write for short ukl
η =

(
− 1

η

)k+l+1
(k + l)!ilu. Note that ukl

η = gkl(η)u.

Let M ⊂ X0 be the subset formed by the following elements:

u,

1
Kk+l

ukl
α (α ∈ D, k, l ∈ Z+),

1
K2(1− |α|)2

(αu00
α + u) (α ∈ D, 2/3 < |α|),

1
t2Kk+l+2

(
ukl

α+t − ukl
α − tuk+1,l

α

)
(α ∈ D, k, l ∈ Z+, t ∈ R, |t| < 1/3, α + t ∈ D),

1
s2Kk+l+2

(
ukl

α+is − ukl
α − suk,l+1

α

)
(α ∈ D, k, l ∈ Z+, s ∈ R, |s| < 1/3, α + is ∈ D).

Let U be the absolutely convex hull of M . Clearly U is absorbing. Let ‖ · ‖ be the
Minkowski seminorm determined by U , i.e., for v ∈ X0 we have

‖v‖ = inf
{ ∑

m∈M

|γm| : v =
∑

m∈M

γmm
}

,

where the coefficients γm are complex and only a finite number of them are nonzero.

We show first that ‖u‖ = 1. Clearly ‖u‖ ≤ 1. Define the linear functional h :
X0 → C by h(u) = 1 and h(ukl

α ) = gkl(α) (α ∈ D, k, l ∈ Z+).
We show that |h(v)| ≤ ‖v‖ for all v ∈ X0. To this end, it is sufficient to show that

|h(m)| ≤ 1 for all m ∈ M .
For k, l ∈ Z+, α ∈ D we have |h(ukl

α )| = |gkl(α)| ≤ Kk+l, and for α ∈ D, |α| > 2/3,

|h(αu00
α + u)| = αg(α) + 1 = 0.

Further, for k, l ∈ Z+, α ∈ D, t, s ∈ R, |t|, |s| < 1/3, α + t, α + is ∈ D we have

∣∣h(ukl
α+t − ukl

α − tuk+1,l
α )

∣∣ =
∣∣gkl(α + t)− gkl(α)− tgk+1,l(α)

∣∣
≤ t2 max{|gk+2,l(z)| : z ∈ C} ≤ t2Kk+l+2
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and similarly,

∣∣h(ukl
α+is − ukl

α − suk,l+1
α )

∣∣ =
∣∣gkl(α + is)− gkl(α)− sgk,l+1(α)

∣∣ ≤ s2Kk+l+2.

Thus |h(m)| ≤ 1 for all m ∈ M and consequently, |h(v)| ≤ ‖v‖ for all v ∈ X0. In
particular, ‖u‖ ≥ |h(u)| = 1, and so ‖u‖ = 1.

Define now the linear mapping T0 : X0 → X0 by

T0u = 0,

T0u
00
α = αu00

α + u (α ∈ D),

T0u
kl
α = αukl

α + kuk−1,l
α + iluk,l−1

α (α ∈ D, k, l ∈ Z+, k + l ≥ 1)

(here we set formally ukl
α = 0 if either k < 0 or l < 0).

We show that ‖T0v‖ ≤ 4‖v‖ for all v ∈ X0. To this end, it is again sufficient to
show that ‖T0m‖ ≤ 4 for all m ∈ M .

We have
‖T0u

00
α ‖ = ‖αu00

α + u‖ ≤ |α|K0 + 1 ≤ 2K0

and, for k + l ≥ 1,

‖T0u
kl
α ‖ = ‖αukl

α + kuk−1,l
α + iluk,l−1

α ‖ ≤ |α|Kk+l + kKk+l−1 + lKk+l−1 ≤ 2Kk+l.

For 2/3 < |α| < 1 we have

‖T0(αu00
α + u)‖ = |α| · ‖T0u

00
α ‖ ≤ ‖αu00

α + u‖.

Let k, l ∈ Z+, α ∈ D, t, s ∈ R, |t|, |s| < 1/3, α + t ∈ D, α + is ∈ D. Then

‖ukl
α+t − ukl

α ‖ ≤
∥∥ukl

α+t − ukl
α − tuk+1,l

α

∥∥ + |t| · ‖uk+1,l
α ‖ ≤ t2Kk+l+2 + |t| ·Kk+l+1 (1)

and similarly,
‖ukl

α+is − ukl
α ‖ ≤ s2Kk+l+2 + |s|Kk+l+1. (2)

For α ∈ D, α + t ∈ D and α + is ∈ D we have

∥∥T0(u00
α+t − u00

α − tu1,0
α )

∥∥ =
∥∥(α + t)u00

α+t − αu00
α − αtu1,0

α − tu00
α

∥∥
≤|α| ·

∥∥u00
α+t − u00

α − tu1,0
α

∥∥ + |t| ·
∥∥u00

α+t − u00
α

∥∥ ≤ t2K2 + |t|3K2 + t2K1 ≤ 3t2K2.

Similarly, ∥∥T0(u00
α+is − u00

α − su0,1
α )

∥∥ ≤ 3s2K2.

For |η| = 1, |t| < 1/3, |η + t| < 1 we have

∥∥T0(u00
η+t − u00

η − tu1,0
η )

∥∥ = ‖T0u
00
η+t‖ =

∥∥(η + t)u00
η+t + u

∥∥ ≤ (1− |η + t|)2K2 ≤ t2K2

and analogous estimate holds for
∥∥T0(u00

η+is − u00
α − su0,1

α )
∥∥.
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Let k + l ≥ 1, α, α + t, α + is ∈ D. We have

∥∥T0(ukl
α+t − ukl

α − tuk+1,l
α )

∥∥
=

∥∥(α + t)ukl
α+t + kuk−1,l

α+t + iluk,l−1
α+t − αukl

α − kuk−1,l
α − iluk,l−1

α

− tαuk+1,l
α − (k + 1)tuk,l

α − itluk+1,l−1
α

∥∥
≤|α| ·

∥∥ukl
α+t − ukl

α − tuk+1,l
α

∥∥ + k
∥∥uk−1,l

α+t − uk−1,l
α − tuk,l

α

∥∥
+ l

∥∥uk,l−1
α+t − uk,l−1

α − tuk+1,l−1
α

∥∥ + |t| · ∥∥ukl
α+t − ukl

α

∥∥
≤t2Kk+l+2 + (k + l)t2Kk+l+1 + |t|3Kk+l+2 + t2Kk+l+1 ≤ 4t2Kk+l+2.

Similarly,

∥∥T0(ukl
α+is − ukl

α − suk,l+1
α )

∥∥
≤|α| · ∥∥ukl

α+is − ukl
α − suk,l+1

α

∥∥ + k
∥∥uk−1,l

α+is − uk−1,l
α − suk−1,l+1

α

∥∥
+ l

∥∥uk,l−1
α+is − uk,l−1

α − suk,l
α

∥∥ + |s| · ∥∥ukl
α+is − ukl

α

∥∥ ≤ 4s2Kk+l+2.

Let k + l ≥ 1, |η| = 1, t ∈ R, |t| < 1/3 and η + t ∈ D. We have

∥∥ukl
η+t − (ukl

η + tuk+1,l
η )

∥∥ ≤ t2Kk+l+2.

Recall that uη =
(
− 1

η

)k+l+1
(k + l)!ilu. Hence

∥∥T0(ukl
η+t − ukl

η − tuk+1,l
η )

∥∥ = ‖T0u
kl
η+t‖

=
∥∥(η + t)ukl

η+t + kuk−1,l
η+t + iluk,l−1

η+t

∥∥
≤

∥∥(η + t)ukl
η + (η + t)tuk+1,l

η + kuk−1,l
η + ktukl

η + iluk,l−1
η + iltuk+1,l−1

η

∥∥ + 3t2Kk+l+2

≤3t2Kk+l+2 +
∥∥∥
(−1

η

)k+l

(k + l − 1)!il−1u
∥∥∥

·
∣∣∣(η + t)

−i

η
(k + l) +

(η + t)ti
η2

(k + l)(k + l + 1) + ki− kti

η
(k + l) + il − lti

η
(k + l)

∣∣∣

=3t2Kk+l+2 +
∥∥∥
(−1

η

)k+l+1
(k + l)!ilu

∥∥∥ ·
∣∣∣η + t− (η + t)t

η
(k + l + 1)− η + kt + lt

∣∣∣

=3t2Kk+l+2 + (k + l)!|t| ·
∣∣∣1− (k + l + 1)− t

η
(k + l + 1) + k + l

∣∣∣
=32Kk+l+2 + (k + l + 1)!t2 ≤ 4t2Kk+l+2.

Similarly, for |η| = 1, s ∈ R, |s| < 1/3 and η + is ∈ D we have

∥∥T0(ukl
η+is − ukl

η − suk,l+1
η )

∥∥ ≤ 4Kk+l+2.

Hence ‖T0m‖ ≤ 4 for all m ∈ M and consequently, ‖T0v‖ ≤ 4‖v‖ for all v ∈ X0.

Let X1 = {v ∈ X0 : ‖v‖ = 0}. Then T0X1 ⊂ X1. Let X be the completion of
X0/X1. Then T0 induces the operator T : X → X and ‖T‖ ≤ 4.
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Define the function f : C→ X by

f(z) =

{
u00

z + X1 (|z| < 1),
−u

z + X1 (|z| ≥ 1).

Clearly (T − z)f(z) = u + X1 for all z ∈ C and u + X1 6= 0.
It remains to show that f is infinitely differentiable.
Clearly f is even analytic for |z| > 1. For |z| < 1 we can show by induction that

∂k+lf
∂xk∂yl (z) = ukl

z + X1. Indeed, this follows from the estimates

lim
t→0

∥∥∥uk,l
z+t − uk,l

z

t
− uk+1,l

z

∥∥∥ ≤ lim
t→0

|t|Kk+l+2 = 0

and similarly,

lim
s→0

∥∥∥uk,l
z+is − uk,l

z

s
− uk,l+1

z

∥∥∥ = 0

Finally, for |z| = 1 we show by induction that ∂k+lf
∂xk∂yl (z) = ukl

z + X1. Clearly

lim
t→z

|z+t|>1

ukl
z+t − ukl

z

t
= lim

t→z
|z+t|>1

gkl(z + t)− gkl(z)
t

u = gk+1,l(z)u = uk+1,l
z

and

lim
t→z

|z+t|<1

∥∥∥ukl
z+t − ukl

z

t
− uk+1,l

z

∥∥∥ = 0.

Similar statements hold for derivatives in the imaginary direction y. Thus for all k, l ∈
Z+ and |z| = 1 we have ∂k+lf

∂xk∂yl (z) = ukl
z + X1.

By (1) and (2), all the derivatives z 7→ ukl
z are continuous.

Remark 2. In [BM], there was constructed an example of an operator T ∈ B(X) and
x 6= 0 such that int σ(T ) = ∅ and there is a continuous local resolvent f : C → X
satisfying (T − z)f(z) = x (z ∈ C). It was raised a question whether there is a similar
example with smooth local resolvent.

As it was observed by J. Kolář, such an example with C1- local resolvent cannot
exist. Indeed, each local resolvent is analytic on the complement of the spectrum.
Therefore it satisfies the Cauchy-Riemann conditions on C\σ(T ). If the local resolvent
is C1 and int σ(T ) = ∅, then the local resolvent satisfies the Cauchy-Riemann conditions
everywhere, and so it is an entire function. It is well known (and an easy consequence
of the Liouville theorem) that such a local resolvent cannot exist.
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