On smooth local resolvents

Vladimír Müller

Abstract

We exhibit an example of a bounded linear operator on a Banach space which admits an everywhere defined local resolvent with continuous derivatives of all orders.

Let T be a bounded linear operator acting on a complex Banach space X. It is well known that the resolvent $z \mapsto(T-z)^{-1}$ defined on the complement of the spectrum $\sigma(T)$ is unbounded. More precisely, $\left\|(T-z)^{-1}\right\| \rightarrow \infty$ whenever z approaches the spectrum $\sigma(T)$.

Let $x \in X$ be a nonzero vector. By a local resolvent of T at x we mean a function $f: U \rightarrow X$ defined on a set $U \supset \mathbb{C} \backslash \sigma(T)$ such that $(T-z) f(z)=x \quad(z \in U)$. Clearly the local resolvent is uniquely determined for all $z \in \mathbb{C} \backslash \sigma(T)$ and $f(z)=(T-z)^{-1} x$. Thus any local resolvent is analytic on the complement of the spectrum.

It was observed in [G] that a local resolvent can be bounded. Bounded local resolvents were further studied in $[\mathrm{BG}],[\mathrm{N}],[\mathrm{BM}]$ and it was shown that they are rather frequent. In $[\mathrm{BM}]$, an example of a continuous everywhere defined local resolvent was given (such a local resolvent is necessarily bounded since each local resolvent vanishes for $z \rightarrow \infty)$.

The aim of this note is to exhibit an example of an everywhere defined C^{∞} local resolvent. Note that by a basic result of local spectral theory there are no analytic everywhere defined local resolvents.

Denote by \mathbb{C}, \mathbb{R} and \mathbb{Z}_{+}the sets of all complex numbers, real numbers and nonnegative integers, respectively.

Let X be a complex Banach space and $f: \mathbb{C} \rightarrow X$ a function. As usually we identify \mathbb{C} with \mathbb{R}^{2} and consider f to be a function of two real variables x and y. We say that f is a C^{∞}-function if it has continuous derivatives $\frac{\partial^{k+l} f}{\partial x^{k} \partial y^{l}}$ of all orders.

Theorem 1. There exist a Banach space X, an operator $T \in B(X)$, a nonzero vector $x \in X$ and a C^{∞}-function $f: \mathbb{C} \rightarrow X$ such that

$$
(T-z) f(z)=x \quad(z \in \mathbb{C})
$$

Proof. Let $\varphi: \mathbb{C} \rightarrow\langle 0,1\rangle$ be a C^{∞}-function such that

$$
\varphi(z)= \begin{cases}1 & (|z|<1 / 3) \\ 0 & (|z|>2 / 3)\end{cases}
$$

Mathematics Subject Classification: 47A10, 47A11.
Keywords and phrases: local resolvent, $C^{\infty}{ }_{\text {-function. }}$
The research was supported by the grant No. 201/06/0128 of GA ČR.

Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be defined by $g(z)=\frac{\varphi(z)-1}{z} \quad(z \neq 0), g(0)=0$. Clearly g is a C^{∞}-function and $g(z)=-\frac{1}{z}$ for $|z|>2 / 3$.

Write $z=x+i y$ and let $g_{k l}=\frac{\partial^{k+l} g}{\partial x^{k} \partial y^{l}}$; formally we write $g_{00}=g$. It is easy to show by induction that

$$
g_{k l}(z)=\left(\frac{-1}{z}\right)^{k+l+1}(k+l)!i^{l}
$$

for all $z,|z|>2 / 3$ and $k, l \in \mathbb{Z}_{+}$. In particular, all derivatives $g_{k l}$ are bounded functions. For $n=0,1, \ldots$ choose positive constants K_{n} such that $K_{n} \geq n K_{n-1} \quad(n \geq 1)$ and $\max \left\{\left|g_{k l}(z)\right|: z \in \mathbb{C}\right\} \leq K_{k+l}$ for all $k, l \geq 0$. Clearly $K_{0} \geq 1$ and $K_{n} \geq n!$ for all n.

Denote by $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ the open unit disc in the complex plane.
Let X_{0} be the vector space with a Hamel basis formed by the vectors u and $u_{\alpha}^{k l} \quad\left(k, l \in \mathbb{Z}_{+}, \alpha \in \mathbb{D}\right)$.

For $|\eta|=1$ write for short $u_{\eta}^{k l}=\left(-\frac{1}{\eta}\right)^{k+l+1}(k+l)!i^{l} u$. Note that $u_{\eta}^{k l}=g_{k l}(\eta) u$.
Let $M \subset X_{0}$ be the subset formed by the following elements:

$$
\begin{aligned}
& u, \\
& \frac{1}{K_{k+l}} u_{\alpha}^{k l} \quad\left(\alpha \in \mathbb{D}, k, l \in \mathbb{Z}_{+}\right), \\
& \frac{1}{K_{2}(1-|\alpha|)^{2}}\left(\alpha u_{\alpha}^{00}+u\right) \quad(\alpha \in \mathbb{D}, 2 / 3<|\alpha|), \\
& \frac{1}{t^{2} K_{k+l+2}}\left(u_{\alpha+t}^{k l}-u_{\alpha}^{k l}-t u_{\alpha}^{k+1, l}\right) \quad\left(\alpha \in \overline{\mathbb{D}}, k, l \in \mathbb{Z}_{+}, t \in \mathbb{R},|t|<1 / 3, \alpha+t \in \mathbb{D}\right), \\
& \frac{1}{s^{2} K_{k+l+2}}\left(u_{\alpha+i s}^{k l}-u_{\alpha}^{k l}-s u_{\alpha}^{k, l+1}\right) \quad\left(\alpha \in \overline{\mathbb{D}}, k, l \in \mathbb{Z}_{+}, s \in \mathbb{R},|s|<1 / 3, \alpha+i s \in \mathbb{D}\right) .
\end{aligned}
$$

Let U be the absolutely convex hull of M. Clearly U is absorbing. Let $\|\cdot\|$ be the Minkowski seminorm determined by U, i.e., for $v \in X_{0}$ we have

$$
\|v\|=\inf \left\{\sum_{m \in M}\left|\gamma_{m}\right|: v=\sum_{m \in M} \gamma_{m} m\right\},
$$

where the coefficients γ_{m} are complex and only a finite number of them are nonzero.
We show first that $\|u\|=1$. Clearly $\|u\| \leq 1$. Define the linear functional h : $X_{0} \rightarrow \mathbb{C}$ by $h(u)=1$ and $h\left(u_{\alpha}^{k l}\right)=g_{k l}(\alpha) \quad\left(\alpha \in \mathbb{D}, k, l \in \mathbb{Z}_{+}\right)$.

We show that $|h(v)| \leq\|v\|$ for all $v \in X_{0}$. To this end, it is sufficient to show that $|h(m)| \leq 1$ for all $m \in M$.

For $k, l \in \mathbb{Z}_{+}, \alpha \in \mathbb{D}$ we have $\left|h\left(u_{\alpha}^{k l}\right)\right|=\left|g_{k l}(\alpha)\right| \leq K_{k+l}$, and for $\alpha \in \mathbb{D},|\alpha|>2 / 3$,

$$
\left|h\left(\alpha u_{\alpha}^{00}+u\right)\right|=\alpha g(\alpha)+1=0 .
$$

Further, for $k, l \in \mathbb{Z}_{+}, \alpha \in \overline{\mathbb{D}}, t, s \in \mathbb{R},|t|,|s|<1 / 3, \alpha+t, \alpha+i s \in \mathbb{D}$ we have

$$
\begin{aligned}
\left|h\left(u_{\alpha+t}^{k l}-u_{\alpha}^{k l}-t u_{\alpha}^{k+1, l}\right)\right| & =\left|g_{k l}(\alpha+t)-g_{k l}(\alpha)-t g_{k+1, l}(\alpha)\right| \\
& \leq t^{2} \max \left\{\left|g_{k+2, l}(z)\right|: z \in \mathbb{C}\right\} \leq t^{2} K_{k+l+2}
\end{aligned}
$$

and similarly,

$$
\left|h\left(u_{\alpha+i s}^{k l}-u_{\alpha}^{k l}-s u_{\alpha}^{k, l+1}\right)\right|=\left|g_{k l}(\alpha+i s)-g_{k l}(\alpha)-s g_{k, l+1}(\alpha)\right| \leq s^{2} K_{k+l+2} .
$$

Thus $|h(m)| \leq 1$ for all $m \in M$ and consequently, $|h(v)| \leq\|v\|$ for all $v \in X_{0}$. In particular, $\|u\| \geq|h(u)|=1$, and so $\|u\|=1$.

Define now the linear mapping $T_{0}: X_{0} \rightarrow X_{0}$ by

$$
\begin{aligned}
T_{0} u & =0 \\
T_{0} u_{\alpha}^{00} & =\alpha u_{\alpha}^{00}+u \quad(\alpha \in \mathbb{D}), \\
T_{0} u_{\alpha}^{k l} & =\alpha u_{\alpha}^{k l}+k u_{\alpha}^{k-1, l}+i l u_{\alpha}^{k, l-1} \quad\left(\alpha \in \mathbb{D}, k, l \in \mathbb{Z}_{+}, k+l \geq 1\right)
\end{aligned}
$$

(here we set formally $u_{\alpha}^{k l}=0$ if either $k<0$ or $l<0$).
We show that $\left\|T_{0} v\right\| \leq 4\|v\|$ for all $v \in X_{0}$. To this end, it is again sufficient to show that $\left\|T_{0} m\right\| \leq 4$ for all $m \in M$.

We have

$$
\left\|T_{0} u_{\alpha}^{00}\right\|=\left\|\alpha u_{\alpha}^{00}+u\right\| \leq|\alpha| K_{0}+1 \leq 2 K_{0}
$$

and, for $k+l \geq 1$,

$$
\left\|T_{0} u_{\alpha}^{k l}\right\|=\left\|\alpha u_{\alpha}^{k l}+k u_{\alpha}^{k-1, l}+i l u_{\alpha}^{k, l-1}\right\| \leq|\alpha| K_{k+l}+k K_{k+l-1}+l K_{k+l-1} \leq 2 K_{k+l} .
$$

For $2 / 3<|\alpha|<1$ we have

$$
\left\|T_{0}\left(\alpha u_{\alpha}^{00}+u\right)\right\|=|\alpha| \cdot\left\|T_{0} u_{\alpha}^{00}\right\| \leq\left\|\alpha u_{\alpha}^{00}+u\right\| .
$$

Let $k, l \in \mathbb{Z}_{+}, \alpha \in \overline{\mathbb{D}}, t, s \in \mathbb{R},|t|,|s|<1 / 3, \alpha+t \in \mathbb{D}, \alpha+i s \in \mathbb{D}$. Then

$$
\begin{equation*}
\left\|u_{\alpha+t}^{k l}-u_{\alpha}^{k l}\right\| \leq\left\|u_{\alpha+t}^{k l}-u_{\alpha}^{k l}-t u_{\alpha}^{k+1, l}\right\|+|t| \cdot\left\|u_{\alpha}^{k+1, l}\right\| \leq t^{2} K_{k+l+2}+|t| \cdot K_{k+l+1} \tag{1}
\end{equation*}
$$

and similarly,

$$
\begin{equation*}
\left\|u_{\alpha+i s}^{k l}-u_{\alpha}^{k l}\right\| \leq s^{2} K_{k+l+2}+|s| K_{k+l+1} . \tag{2}
\end{equation*}
$$

For $\alpha \in \mathbb{D}, \alpha+t \in \mathbb{D}$ and $\alpha+i s \in \mathbb{D}$ we have

$$
\begin{aligned}
&\left\|T_{0}\left(u_{\alpha+t}^{00}-u_{\alpha}^{00}-t u_{\alpha}^{1,0}\right)\right\| \\
& \leq|\alpha| \cdot\left\|(\alpha+t) u_{\alpha+t}^{00}-\alpha u_{\alpha}^{00}-\alpha t u_{\alpha}^{1,0}-t u_{\alpha}^{00}\right\| \\
& \leq u_{\alpha}^{00}-t u_{\alpha}^{1,0} \|+|t| \cdot\left\|u_{\alpha+t}^{00}-u_{\alpha}^{00}\right\| \leq t^{2} K_{2}+|t|^{3} K_{2}+t^{2} K_{1} \leq 3 t^{2} K_{2} .
\end{aligned}
$$

Similarly,

$$
\left\|T_{0}\left(u_{\alpha+i s}^{00}-u_{\alpha}^{00}-s u_{\alpha}^{0,1}\right)\right\| \leq 3 s^{2} K_{2} .
$$

For $|\eta|=1,|t|<1 / 3,|\eta+t|<1$ we have

$$
\left\|T_{0}\left(u_{\eta+t}^{00}-u_{\eta}^{00}-t u_{\eta}^{1,0}\right)\right\|=\left\|T_{0} u_{\eta+t}^{00}\right\|=\left\|(\eta+t) u_{\eta+t}^{00}+u\right\| \leq(1-|\eta+t|)^{2} K_{2} \leq t^{2} K_{2}
$$

and analogous estimate holds for $\left\|T_{0}\left(u_{\eta+i s}^{00}-u_{\alpha}^{00}-s u_{\alpha}^{0,1}\right)\right\|$.

Let $k+l \geq 1, \alpha, \alpha+t, \alpha+i s \in \mathbb{D}$. We have

$$
\begin{aligned}
& \quad\left\|T_{0}\left(u_{\alpha+t}^{k l}-u_{\alpha}^{k l}-t u_{\alpha}^{k+1, l}\right)\right\| \\
& =\|(\alpha+t) u_{\alpha+t}^{k l}+k u_{\alpha+t}^{k-1, l}+i l u_{\alpha+t}^{k, l-1}-\alpha u_{\alpha}^{k l}-k u_{\alpha}^{k-1, l}-i l u_{\alpha}^{k, l-1} \\
& \quad \quad-t \alpha u_{\alpha}^{k+1, l}-(k+1) t u_{\alpha}^{k, l}-i t l u_{\alpha}^{k+1, l-1} \| \\
& \leq|\alpha| \cdot\left\|u_{\alpha+t}^{k l}-u_{\alpha}^{k l}-t u_{\alpha}^{k+1, l}\right\|+k\left\|u_{\alpha+t}^{k-1, l}-u_{\alpha}^{k-1, l}-t u_{\alpha}^{k, l}\right\| \\
& \quad \quad+l\left\|u_{\alpha+t}^{k, l-1}-u_{\alpha}^{k, l-1}-t u_{\alpha}^{k+1, l-1}\right\|+|t| \cdot\left\|u_{\alpha+t}^{k l}-u_{\alpha}^{k l}\right\| \\
& \leq \\
& \leq t^{2} K_{k+l+2}+(k+l) t^{2} K_{k+l+1}+|t|^{3} K_{k+l+2}+t^{2} K_{k+l+1} \leq 4 t^{2} K_{k+l+2} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \left\|T_{0}\left(u_{\alpha+i s}^{k l}-u_{\alpha}^{k l}-s u_{\alpha}^{k, l+1}\right)\right\| \\
& \leq|\alpha| \cdot\left\|u_{\alpha+i s}^{k l}-u_{\alpha}^{k l}-s u_{\alpha}^{k, l+1}\right\|+k\left\|u_{\alpha+i s}^{k-1, l}-u_{\alpha}^{k-1, l}-s u_{\alpha}^{k-1, l+1}\right\| \\
& \quad+l\left\|u_{\alpha+i s}^{k, l-1}-u_{\alpha}^{k, l-1}-s u_{\alpha}^{k, l}\right\|+|s| \cdot\left\|u_{\alpha+i s}^{k l}-u_{\alpha}^{k l}\right\| \leq 4 s^{2} K_{k+l+2} .
\end{aligned}
$$

Let $k+l \geq 1,|\eta|=1, t \in \mathbb{R},|t|<1 / 3$ and $\eta+t \in \mathbb{D}$. We have

$$
\left\|u_{\eta+t}^{k l}-\left(u_{\eta}^{k l}+t u_{\eta}^{k+1, l}\right)\right\| \leq t^{2} K_{k+l+2} .
$$

Recall that $u_{\eta}=\left(-\frac{1}{\eta}\right)^{k+l+1}(k+l)!i^{l} u$. Hence

$$
\begin{aligned}
& \left\|T_{0}\left(u_{\eta+t}^{k l}-u_{\eta}^{k l}-t u_{\eta}^{k+1, l}\right)\right\|=\left\|T_{0} u_{\eta+t}^{k l}\right\| \\
= & \left\|(\eta+t) u_{\eta+t}^{k l}+k u_{\eta+t}^{k-1, l}+i l u_{\eta+t}^{k, l-1}\right\| \\
\leq & \left\|(\eta+t) u_{\eta}^{k l}+(\eta+t) t u_{\eta}^{k+1, l}+k u_{\eta}^{k-1, l}+k t u_{\eta}^{k l}+i l u_{\eta}^{k, l-1}+i l t u_{\eta}^{k+1, l-1}\right\|+3 t^{2} K_{k+l+2} \\
\leq & 3 t^{2} K_{k+l+2}+\left\|\left(\frac{-1}{\eta}\right)^{k+l}(k+l-1)!i^{l-1} u\right\| \\
& \cdot\left|(\eta+t) \frac{-i}{\eta}(k+l)+\frac{(\eta+t) t i}{\eta^{2}}(k+l)(k+l+1)+k i-\frac{k t i}{\eta}(k+l)+i l-\frac{l t i}{\eta}(k+l)\right| \\
= & 3 t^{2} K_{k+l+2}+\left\|\left(\frac{-1}{\eta}\right)^{k+l+1}(k+l)!i^{l} u\right\| \cdot\left|\eta+t-\frac{(\eta+t) t}{\eta}(k+l+1)-\eta+k t+l t\right| \\
= & 3 t^{2} K_{k+l+2}+(k+l)!|t| \cdot\left|1-(k+l+1)-\frac{t}{\eta}(k+l+1)+k+l\right| \\
= & 3^{2} K_{k+l+2}+(k+l+1)!t^{2} \leq 4 t^{2} K_{k+l+2} .
\end{aligned}
$$

Similarly, for $|\eta|=1, s \in \mathbb{R},|s|<1 / 3$ and $\eta+i s \in \mathbb{D}$ we have

$$
\left\|T_{0}\left(u_{\eta+i s}^{k l}-u_{\eta}^{k l}-s u_{\eta}^{k, l+1}\right)\right\| \leq 4 K_{k+l+2} .
$$

Hence $\left\|T_{0} m\right\| \leq 4$ for all $m \in M$ and consequently, $\left\|T_{0} v\right\| \leq 4\|v\|$ for all $v \in X_{0}$.
Let $X_{1}=\left\{v \in X_{0}:\|v\|=0\right\}$. Then $T_{0} X_{1} \subset X_{1}$. Let X be the completion of X_{0} / X_{1}. Then T_{0} induces the operator $T: X \rightarrow X$ and $\|T\| \leq 4$.

Define the function $f: \mathbb{C} \rightarrow X$ by

$$
f(z)= \begin{cases}u_{z}^{00}+X_{1} & (|z|<1) \\ -\frac{u}{z}+X_{1} & (|z| \geq 1)\end{cases}
$$

Clearly $(T-z) f(z)=u+X_{1}$ for all $z \in \mathbb{C}$ and $u+X_{1} \neq 0$.
It remains to show that f is infinitely differentiable.
Clearly f is even analytic for $|z|>1$. For $|z|<1$ we can show by induction that $\frac{\partial^{k+l} f}{\partial x^{k} \partial y^{l}}(z)=u_{z}^{k l}+X_{1}$. Indeed, this follows from the estimates

$$
\lim _{t \rightarrow 0}\left\|\frac{u_{z+t}^{k, l}-u_{z}^{k, l}}{t}-u_{z}^{k+1, l}\right\| \leq \lim _{t \rightarrow 0}|t| K_{k+l+2}=0
$$

and similarly,

$$
\lim _{s \rightarrow 0}\left\|\frac{u_{z+i s}^{k, l}-u_{z}^{k, l}}{s}-u_{z}^{k, l+1}\right\|=0
$$

Finally, for $|z|=1$ we show by induction that $\frac{\partial^{k+l} f}{\partial x^{k} \partial y^{l}}(z)=u_{z}^{k l}+X_{1}$. Clearly

$$
\lim _{\substack{t \rightarrow z \\|z+t|>1}} \frac{u_{z+t}^{k l}-u_{z}^{k l}}{t}=\lim _{\substack{t \rightarrow z \\|z+t|>1}} \frac{g_{k l}(z+t)-g_{k l}(z)}{t} u=g_{k+1, l}(z) u=u_{z}^{k+1, l}
$$

and

$$
\lim _{\substack{t \rightarrow z \\|z+t|<1}}\left\|\frac{u_{z+t}^{k l}-u_{z}^{k l}}{t}-u_{z}^{k+1, l}\right\|=0
$$

Similar statements hold for derivatives in the imaginary direction y. Thus for all $k, l \in$ \mathbb{Z}_{+}and $|z|=1$ we have $\frac{\partial^{k+l} f}{\partial x^{k} \partial y^{l}}(z)=u_{z}^{k l}+X_{1}$.

By (1) and (2), all the derivatives $z \mapsto u_{z}^{k l}$ are continuous.
Remark 2. In $[\mathrm{BM}]$, there was constructed an example of an operator $T \in B(X)$ and $x \neq 0$ such that $\operatorname{int} \sigma(T)=\emptyset$ and there is a continuous local resolvent $f: \mathbb{C} \rightarrow X$ satisfying $(T-z) f(z)=x \quad(z \in \mathbb{C})$. It was raised a question whether there is a similar example with smooth local resolvent.

As it was observed by J. Kolář, such an example with C_{1} - local resolvent cannot exist. Indeed, each local resolvent is analytic on the complement of the spectrum. Therefore it satisfies the Cauchy-Riemann conditions on $\mathbb{C} \backslash \sigma(T)$. If the local resolvent is C_{1} and $\operatorname{int} \sigma(T)=\emptyset$, then the local resolvent satisfies the Cauchy-Riemann conditions everywhere, and so it is an entire function. It is well known (and an easy consequence of the Liouville theorem) that such a local resolvent cannot exist.

References

[BG] T. Bemúdez, M. González, On the boundedness of the local resolvent function, Int. Eq. Operator Theory 34 (1999), 1-8.
[BM] J. Bračič, V. Müller, On bounded local resolvents, Int. Eq. Operator theory, to appear.
[G] M. González, An example of a bounded local resolvent, Operator Theory, Operator algebras and related topics, Proc. 16th Int. Conf. on Operator Theory at Timisoira. The Theta Foundation (1997), 159-162.
[N] M.M. Neumann, On local spectral properties of operators on Banach spaces, Rend. Circ. Mat. Palermo (2) Suppl. 56 (1998), 15-25.

Mathematical Institute
Czech Academy of Sciences
Zitna 25, 11567 Prague 1
Czech Republic
e-mail: muller@math.cas.cz

