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Abstract. We construct a pair of commuting Banach space operators for which the
splitting spectrum is different from the Taylor spectrum.

Let A1, . . . , An be mutually commuting operators in a Banach space X. The Koszul
complex of the n-tuple (A1, . . . , An) is the complex

0 −→ Λ0(X, e)
δ0−→Λ1(X, e)

δ1−→· · · δn−1−→Λn(X, e) −→ 0

where Λp(X, e) denotes the vector space of all forms of degree p in indeterminates
e1, . . . , en with coefficients in X and the linear mappings δp : Λp(X, e) → Λp+1(X, e)
are defined by

δp(xei1 ∧ · · · ∧ eip
) =

n∑

j=1

Ajxej ∧ ei1 ∧ · · · ∧ eip .

It is well-known that δp+1δp = 0 for every p. The Taylor spectrum σT (A1, . . . , An) is
the set of all n-tuples (λ1, . . . λn) of complex numbers for which the Koszul complex of
(A1 − λ1, . . . , An − λn) is not exact [5].

Instead of the Taylor spectrum it is sometimes useful to use the following variation
of the Taylor spectrum, see e.g. [1], [3], [4]. We say that the n-tuple (A1, . . . , An) is
splitting-regular if its Koszul complex is exact and the ranges of the operators δp are
complemented in Λp+1(X, e). Equivalently, there exists operators εp : Λp+1(X, e) →
Λp(X, e) (p = 0, . . . , n − 1) such that εpδp + δp−1εp−1 is the identity operator on
Λp(X, e) for p = 0, . . . , n (formally we set δ−1 = δn = 0). The splitting spec-
trum σS(A1, . . . , An) is the set of all (λ1, . . . , λn) ∈ Cn such that the n-tuple (A1 −
λ1, . . . , An − λn) is not splitting-regular.

The splitting spectrum has similar properties as the Taylor spectrum. Clearly
σT (A1, . . . , An) ⊂ σS(A1, . . . , An). For Hilbert space operators these two spectra co-
incide and the same is true for n-tuples of operators in `1 or in `∞, [2]. Also for a
single operator A1 in an arbitrary Banach space σT (A1) = σS(A1). Consequently the
polynomially convex hulls of σT (A1, . . . , An) and of σS(A1, . . . , An) are equal.

It was generally expected that these two spectra are different for n-tuple of oper-
ators on a Banach space but no example was known and it was believed that such an
example would be complicated [2]. The aim of this note is to fill this gap in the theory.
Surprisingly, the constructed example is rather simple.

We denote by R(T ) and N(T ) the range and the kernel of an operator T . If X and
Y are Banach spaces then X ⊕ Y denotes the direct sum endowed with the `1-norm,
‖(x, y)‖X⊕Y = ‖x‖X + ‖y‖Y (x ∈ X, y ∈ Y ). Similar convention we use for direct
sums of more than two Banach spaces.
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Lemma 1. There exists a Banach space Z and closed subspaces Y1, Y2 ⊂ Z such that
Y1 + Y2 = Z and the subspace {(x, x) : x ∈ Y1 ∩ Y2} is not complemented in Y1 ⊕ Y2.

Proof. Fix a Banach space Y and a closed subspace X ⊂ Y which is not complemented
in Y .

Clearly M = {(x,−x) : x ∈ X} is a closed subspace of Y ⊕ Y . Denote Z =
(Y ⊕Y )/M and let π : Y ⊕Y → Z be the canonical projection. Clearly π(x, 0) = π(0, x)
for every x ∈ X. Consider operators J1, J2 : Y → Z defined by J1y = π(y, 0) and J2y =
π(0, y) (y ∈ Y ). It is easy to check that J1 and J2 are isometries. Denote Y1 = J1Y
and Y2 = J2Y . Clearly Z = Y1+Y2 and Y1∩Y2 = {π(x, 0) : x ∈ X} = {π(0, x) : x ∈ X}.

Suppose on the contrary that the space D = {(π(x, 0), π(0, x)
)

: x ∈ X} is com-
plemented in Y1 ⊕ Y2 = {(π(y1, 0), π(0, y2)

)
: y1, y2 ∈ Y }. Then D is complemented

also in the closed subspace

W = {(π(y, 0), π(0, y)
)

: y ∈ Y } = {(J1y, J2y) : y ∈ Y } ⊂ Y1 ⊕ Y2.

Let J : Y → W be defined by Jy = (π(y
2 , 0), π(0, y

2 )). Clearly J is an isometry onto W
and JX = D so that X is complemented in Y , a contradiction.

Theorem 2. There exist a Banach space W and commuting operators A1, A2 ∈ L(W )
such that σT (A1, A2) 6= σS(A1, A2).

Proof. Let Z, Y1 and Y2 be the Banach spaces from the previous lemma. For i, j ∈ Z
set

Wij =





Z (i, j ≥ 1),
Y1 (i ≥ 1, j ≤ 0),
Y2 (i ≤ 0, j ≥ 1),
Y1 ∩ Y2 (i, j ≤ 0).

Clearly Wij ⊂ Wi+1,j and Wij ⊂ Wi,j+1. Set W =
⊕

i,j∈Z Wij and let A1, A2 ∈ L(W )
be the shift operators to the right and up,

A1

(⊕

i,j

wij

)
=

⊕

i,j

wi−1,j , A2

(⊕

i,j

wij

)
=

⊕

i,j

wi,j−1.

Clearly A1 and A2 are commuting isometries. Further Wij = Wi+1,j ∩Wi, j + 1 and
Wij = Wi−1,j + Wi, j − 1 for all i, j ∈ Z. So R(A1) + R(A2) = W .

The Koszul complex of the pair (A1, A2) is of the form

0 −→ W
δ0−→W ⊕W

δ1−→W −→ 0 (1)

where δ0w = (A1w, A2w) and δ(w, z) = −A2w + A1z (w, z ∈ W ). Clearly δ0 is
bounded below and R(δ1) = R(A1) + R(A2) = W .

To show the exactness of the Koszul complex (1) it is sufficient to prove N(δ1) ⊂
R(δ0). Let

(⊕
wij ,

⊕
zij

) ∈ N(δ1) for some wij , zij ∈ Wij . Then, for all i, j ∈ Z,
wi,j−1 = zi−1,j so that

wij = zi−1,j+1 ∈ Wij ∩Wi−1,j+1 = Wi−1,j

and
zij = wi+1,j−1 ∈ Wij ∩Wi+1,j−1 = Wi,j−1.
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Set u =
⊕

wi+1,j =
⊕

zi,j+1. Then δ1u = (A1u, A2u) = (
⊕

wij ,
⊕

zij). Hence
N(δ1) = R(δ0), the Koszul complex (1) is exact and (0, 0) /∈ σT (A1, A2).

We show that R(δ0) is not complemented in W ⊕ W . Suppose on the contrary
that there exists a projection P ∈ L(W ⊕W ) with range R(δ0). Let Q ∈ L(W ⊕W )
be defined by Q(

⊕
wij ,

⊕
zij) = (w1,0, z0,1) ∈ W1,0 ⊕ W0,1. Clearly Q2 = Q and

PQP = QP so that (QP )2 = Q(PQP ) = QP is also a projection with

R(QP ) = {(w1,0, z0,1) : w1,0 = z0,1 ∈ W0,0} = {(x, x) : x ∈ Y1 ∩ Y2}.

Clearly R(QP ) is complemented also in W1,0⊕W0,1 = Y1⊕Y2 which is a contradiction
with Lemma 1.

Hence (0, 0) ∈ σS(A1, A2) and σS(A1, A2) 6= σT (A1, A2).
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