The splitting spectrum differs from the Taylor spectrum

V. Müller*

Abstract

We construct a pair of commuting Banach space operators for which the splitting spectrum is different from the Taylor spectrum.

Let A_{1}, \ldots, A_{n} be mutually commuting operators in a Banach space X. The Koszul complex of the n-tuple $\left(A_{1}, \ldots, A_{n}\right)$ is the complex

$$
0 \longrightarrow \Lambda^{0}(X, e) \xrightarrow{\delta_{0}} \Lambda^{1}(X, e) \xrightarrow{\delta_{1}} \cdots \xrightarrow{\delta_{n-1}} \Lambda^{n}(X, e) \longrightarrow 0
$$

where $\Lambda^{p}(X, e)$ denotes the vector space of all forms of degree p in indeterminates e_{1}, \ldots, e_{n} with coefficients in X and the linear mappings $\delta_{p}: \Lambda^{p}(X, e) \rightarrow \Lambda^{p+1}(X, e)$ are defined by

$$
\delta^{p}\left(x e_{i_{1}} \wedge \cdots \wedge e_{i_{p}}\right)=\sum_{j=1}^{n} A_{j} x e_{j} \wedge e_{i_{1}} \wedge \cdots \wedge e_{i_{p}}
$$

It is well-known that $\delta_{p+1} \delta_{p}=0$ for every p. The Taylor spectrum $\sigma_{T}\left(A_{1}, \ldots, A_{n}\right)$ is the set of all n-tuples ($\lambda_{1}, \ldots \lambda_{n}$) of complex numbers for which the Koszul complex of $\left(A_{1}-\lambda_{1}, \ldots, A_{n}-\lambda_{n}\right)$ is not exact [5].

Instead of the Taylor spectrum it is sometimes useful to use the following variation of the Taylor spectrum, see e.g. [1], [3], [4]. We say that the n-tuple $\left(A_{1}, \ldots, A_{n}\right)$ is splitting-regular if its Koszul complex is exact and the ranges of the operators δ_{p} are complemented in $\Lambda^{p+1}(X, e)$. Equivalently, there exists operators $\varepsilon_{p}: \Lambda^{p+1}(X, e) \rightarrow$ $\Lambda^{p}(X, e) \quad(p=0, \ldots, n-1)$ such that $\varepsilon_{p} \delta_{p}+\delta_{p-1} \varepsilon_{p-1}$ is the identity operator on $\Lambda^{p}(X, e)$ for $p=0, \ldots, n$ (formally we set $\delta_{-1}=\delta_{n}=0$). The splitting spectrum $\sigma_{S}\left(A_{1}, \ldots, A_{n}\right)$ is the set of all $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbf{C}^{n}$ such that the n-tuple $\left(A_{1}-\right.$ $\left.\lambda_{1}, \ldots, A_{n}-\lambda_{n}\right)$ is not splitting-regular.

The splitting spectrum has similar properties as the Taylor spectrum. Clearly $\sigma_{T}\left(A_{1}, \ldots, A_{n}\right) \subset \sigma_{S}\left(A_{1}, \ldots, A_{n}\right)$. For Hilbert space operators these two spectra coincide and the same is true for n-tuples of operators in ℓ_{1} or in $\ell_{\infty},[2]$. Also for a single operator A_{1} in an arbitrary Banach space $\sigma_{T}\left(A_{1}\right)=\sigma_{S}\left(A_{1}\right)$. Consequently the polynomially convex hulls of $\sigma_{T}\left(A_{1}, \ldots, A_{n}\right)$ and of $\sigma_{S}\left(A_{1}, \ldots, A_{n}\right)$ are equal.

It was generally expected that these two spectra are different for n-tuple of operators on a Banach space but no example was known and it was believed that such an example would be complicated [2]. The aim of this note is to fill this gap in the theory. Surprisingly, the constructed example is rather simple.

We denote by $R(T)$ and $N(T)$ the range and the kernel of an operator T. If X and Y are Banach spaces then $X \oplus Y$ denotes the direct sum endowed with the ℓ_{1}-norm, $\|(x, y)\|_{X \oplus Y}=\|x\|_{X}+\|y\|_{Y} \quad(x \in X, y \in Y)$. Similar convention we use for direct sums of more than two Banach spaces.

[^0]* The research was supported by the GA ČR grant 201/96/0411.

Lemma 1. There exists a Banach space Z and closed subspaces $Y_{1}, Y_{2} \subset Z$ such that $Y_{1}+Y_{2}=Z$ and the subspace $\left\{(x, x): x \in Y_{1} \cap Y_{2}\right\}$ is not complemented in $Y_{1} \oplus Y_{2}$.
Proof. Fix a Banach space Y and a closed subspace $X \subset Y$ which is not complemented in Y.

Clearly $M=\{(x,-x): x \in X\}$ is a closed subspace of $Y \oplus Y$. Denote $Z=$ $(Y \oplus Y) / M$ and let $\pi: Y \oplus Y \rightarrow Z$ be the canonical projection. Clearly $\pi(x, 0)=\pi(0, x)$ for every $x \in X$. Consider operators $J_{1}, J_{2}: Y \rightarrow Z$ defined by $J_{1} y=\pi(y, 0)$ and $J_{2} y=$ $\pi(0, y) \quad(y \in Y)$. It is easy to check that J_{1} and J_{2} are isometries. Denote $Y_{1}=J_{1} Y$ and $Y_{2}=J_{2} Y$. Clearly $Z=Y_{1}+Y_{2}$ and $Y_{1} \cap Y_{2}=\{\pi(x, 0): x \in X\}=\{\pi(0, x): x \in X\}$.

Suppose on the contrary that the space $D=\{(\pi(x, 0), \pi(0, x)): x \in X\}$ is complemented in $Y_{1} \oplus Y_{2}=\left\{\left(\pi\left(y_{1}, 0\right), \pi\left(0, y_{2}\right)\right): y_{1}, y_{2} \in Y\right\}$. Then D is complemented also in the closed subspace

$$
W=\{(\pi(y, 0), \pi(0, y)): y \in Y\}=\left\{\left(J_{1} y, J_{2} y\right): y \in Y\right\} \subset Y_{1} \oplus Y_{2}
$$

Let $J: Y \rightarrow W$ be defined by $J y=\left(\pi\left(\frac{y}{2}, 0\right), \pi\left(0, \frac{y}{2}\right)\right)$. Clearly J is an isometry onto W and $J X=D$ so that X is complemented in Y, a contradiction.

Theorem 2. There exist a Banach space W and commuting operators $A_{1}, A_{2} \in \mathcal{L}(W)$ such that $\sigma_{T}\left(A_{1}, A_{2}\right) \neq \sigma_{S}\left(A_{1}, A_{2}\right)$.
Proof. Let Z, Y_{1} and Y_{2} be the Banach spaces from the previous lemma. For $i, j \in \mathbf{Z}$ set

$$
W_{i j}= \begin{cases}Z & (i, j \geq 1) \\ Y_{1} & (i \geq 1, j \leq 0) \\ Y_{2} & (i \leq 0, j \geq 1) \\ Y_{1} \cap Y_{2} & (i, j \leq 0)\end{cases}
$$

Clearly $W_{i j} \subset W_{i+1, j}$ and $W_{i j} \subset W_{i, j+1}$. Set $W=\bigoplus_{i, j \in \mathbf{Z}} W_{i j}$ and let $A_{1}, A_{2} \in \mathcal{L}(W)$ be the shift operators to the right and up,

$$
A_{1}\left(\bigoplus_{i, j} w_{i j}\right)=\bigoplus_{i, j} w_{i-1, j}, \quad A_{2}\left(\bigoplus_{i, j} w_{i j}\right)=\bigoplus_{i, j} w_{i, j-1}
$$

Clearly A_{1} and A_{2} are commuting isometries. Further $W_{i j}=W_{i+1, j} \cap W i, j+1$ and $W_{i j}=W_{i-1, j}+W i, j-1$ for all $i, j \in \mathbf{Z}$. So $R\left(A_{1}\right)+R\left(A_{2}\right)=W$.

The Koszul complex of the pair $\left(A_{1}, A_{2}\right)$ is of the form

$$
\begin{equation*}
0 \longrightarrow W \xrightarrow{\delta_{0}} W \oplus W \xrightarrow{\delta_{1}} W \longrightarrow 0 \tag{1}
\end{equation*}
$$

where $\delta_{0} w=\left(A_{1} w, A_{2} w\right)$ and $\delta(w, z)=-A_{2} w+A_{1} z \quad(w, z \in W)$. Clearly δ_{0} is bounded below and $R\left(\delta_{1}\right)=R\left(A_{1}\right)+R\left(A_{2}\right)=W$.

To show the exactness of the Koszul complex (1) it is sufficient to prove $N\left(\delta_{1}\right) \subset$ $R\left(\delta_{0}\right)$. Let $\left(\bigoplus w_{i j}, \bigoplus z_{i j}\right) \in N\left(\delta_{1}\right)$ for some $w_{i j}, z_{i j} \in W_{i j}$. Then, for all $i, j \in \mathbf{Z}$, $w_{i, j-1}=z_{i-1, j}$ so that

$$
w_{i j}=z_{i-1, j+1} \in W_{i j} \cap W_{i-1, j+1}=W_{i-1, j}
$$

and

$$
z_{i j}=w_{i+1, j-1} \in W_{i j} \cap W_{i+1, j-1}=W_{i, j-1}
$$

Set $u=\bigoplus w_{i+1, j}=\bigoplus z_{i, j+1}$. Then $\delta_{1} u=\left(A_{1} u, A_{2} u\right)=\left(\bigoplus w_{i j}, \bigoplus z_{i j}\right)$. Hence $N\left(\delta_{1}\right)=R\left(\delta_{0}\right)$, the Koszul complex (1) is exact and $(0,0) \notin \sigma_{T}\left(A_{1}, A_{2}\right)$.

We show that $R\left(\delta_{0}\right)$ is not complemented in $W \oplus W$. Suppose on the contrary that there exists a projection $P \in \mathcal{L}(W \oplus W)$ with range $R\left(\delta_{0}\right)$. Let $Q \in \mathcal{L}(W \oplus W)$ be defined by $Q\left(\bigoplus w_{i j}, \bigoplus z_{i j}\right)=\left(w_{1,0}, z_{0,1}\right) \in W_{1,0} \oplus W_{0,1}$. Clearly $Q^{2}=Q$ and $P Q P=Q P$ so that $(Q P)^{2}=Q(P Q P)=Q P$ is also a projection with

$$
R(Q P)=\left\{\left(w_{1,0}, z_{0,1}\right): w_{1,0}=z_{0,1} \in W_{0,0}\right\}=\left\{(x, x): x \in Y_{1} \cap Y_{2}\right\} .
$$

Clearly $R(Q P)$ is complemented also in $W_{1,0} \oplus W_{0,1}=Y_{1} \oplus Y_{2}$ which is a contradiction with Lemma 1.

Hence $(0,0) \in \sigma_{S}\left(A_{1}, A_{2}\right)$ and $\sigma_{S}\left(A_{1}, A_{2}\right) \neq \sigma_{T}\left(A_{1}, A_{2}\right)$.

References

[1] J. Eschmeier, Analytic spectral mapping theorems for joint spectra, in: H. Helson, B. Sz.-Nagy, F.H. Vasilescu, D. Voiculescu (eds.), Operator theory: advances and applications, vol. 24, 167-181, Basel-Boston-Stuttgart, Birkhäuser.
[2] R. Harte, Invertibility, singularity and Joseph L. Taylor, Proc. Roy. Irish Acad. 81A (1981), 71-79.
[3] V. Kordula, V. Müller, Vasilescu-Martinelli formula for operators in Banach spaces, Studia Math. 113 (1995), 127-139.
[4] M. Putinar, Some invariants for semi-Fredholm systems of essentially commuting operators, J. Operator Theory 8 (1982), 65-90.
[5] J.L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191.

Mathematical Institute
Academy of Sciences of the Czech Republic
Žitná 25, 11567 Prague 1
Czech Republic
e-mail: vmuller@mbox.cesnet.cz

[^0]: 1991 Mathematics Subject Classification: 47A13

