Stability of index for semi-Fredholm chains

V. Müller*

Abstract. We extend the recent stability results of Ambrozie for Fredholm essential complexes to the semi-Fredholm case.

Let X, Y be Banach spaces. By an operator we always mean a bounded linear operator. The set of all operators from X to Y will be denoted by $\mathcal{L}(X, Y)$. Denote by N(T) and R(T) the kernel and range of an operator $T \in \mathcal{L}(X, Y)$.

Recall that an operator $T: X \to Y$ is called semi-Fredholm if it has closed range and at least one of the defect numbers $\alpha(T) = \dim N(T)$, $\beta(T) = \operatorname{codim} R(T)$ is finite. If both of them are finite then T is called Fredholm.

The index of a semi-Fredholm operator is defined by ind $(T) = \alpha(T) - \beta(T)$.

We list the most important classical stability results for semi-Fredholm operators:

Let $T: X \to Y$ be a semi-Fredholm operator. Then

- (1) There exists $\varepsilon > 0$ such that $\operatorname{ind} T' = \operatorname{ind} T$ for every (semi-Fredholm) operator $T' \in \mathcal{L}(X, Y)$ with $||T' T|| < \varepsilon$.
- (2) There exists $\varepsilon > 0$ such that $\alpha(T') \leq \alpha(T)$ and $\beta(T') \leq \beta(T)$ for every (semi-Fredholm) operator $T' \in \mathcal{L}(X, Y)$ with $||T' - T|| < \varepsilon$.
- (3) $\operatorname{ind}(T') = \operatorname{ind}(T)$ for every (semi-Fredholm) operator $T' \in \mathcal{L}(X,Y)$ such that T T' is compact.

(the condition that T' is semi-Fredholm is satisfied automatically for operators close enough to T; this will not be the case in more general situations).

These results were generalized for Banach space complexes. By a complex it is meant an object of the following type:

$$\mathcal{K}: \qquad 0 \longrightarrow X_0 \xrightarrow{\delta_0} X_1 \xrightarrow{\delta_1} \cdot \cdot \cdot \xrightarrow{\delta_{n-2}} X_{n-1} \xrightarrow{\delta_{n-1}} X_n \longrightarrow 0$$

where X_i are Banach spaces and δ_i operators such that $\delta_{i+i}\delta_i = 0$ for every *i*.

The complex \mathcal{K} is semi-Fredholm if the operators δ_i have closed ranges and the index of \mathcal{K} ,

ind
$$(\mathcal{K}) = \sum_{i=0}^{n} (-1)^{i} \alpha_{i}(\mathcal{K}), \text{ where } \alpha_{i}(\mathcal{K}) = \dim(N(\delta_{i})/R(\delta_{i-1}))$$

is well-defined.

It was shown in [1], [14] that the index and the defect numbers α_i of semi-Fredholm complexes exhibit properties (1) and (2). Property (3) proved to be surprisingly difficult. Some partial results were obtained in [11] and for Fredholm complexes (or better to say for Fredholm essential complexes) it was proved recently by Ambrozie [2], [3].

The aim of this paper is to extend the above mentioned results to semi-Fredholm chains (for the definition see below).

^{*} The research was supported by the grant No. 201/96/0411 of GA CR.

We are going to use frequently the following elementary isomorphism result.

Lemma 1. Let U, V be subspaces of a Banach space X. Then

$$\dim(U+V)/V = \dim U/(U \cap V).$$

Proof. The required isomorphism $U/(U \cap V) \to (U+V)/V$ is induced by the natural embedding $U \to U + V$.

If U and V are subspaces of a Banach space X then we write for short $U \stackrel{e}{\subset} V$ (U is essentially contained in V) if dim $U/(U \cap V) < \infty$. If $U \stackrel{e}{\subset} V$ and $V \stackrel{e}{\subset} U$ then we write $U \stackrel{e}{=} V$.

Let X be a Banach space. For closed subspaces M_1, M_2 of X denote

$$\delta(M_1, M_2) = \sup_{\substack{m \in M_1 \\ \|m\| \le 1}} \operatorname{dist} \{m, M_2\}$$

and the gap between M_1 and M_2 by

$$\hat{\delta}(M_1, M_2) = \max\{\delta(M_1, M_2), \delta(M_2, M_1)\},\$$

see [9]. Clearly $\delta(M_1, M_2) = 0$ if and only if $M_1 \subset M_2$.

For convenience we recall the following result of Fainshtein [7]:

Theorem 2. Let R, R_1, N, N_1 be closed subspaces of a Banach space X and let $R \subset N$. (a) If $\delta(R, R_1) < 1/3$ and $\delta(N_1, N) < 1/3$ then

$$\dim N_1/(R_1 \cap N_1) \le \dim N/R + \dim R_1/(R_1 \cap N_1).$$

(b) If $\hat{\delta}(R, R_1) < 1/9$ and $\hat{\delta}(N_1, N) < 1/9$ then

 $\dim N_1/(R_1 \cap N_1) = \dim N/R + \dim R_1/(R_1 \cap N_1).$

We start with the following generalization of the previous result:

Theorem 3. Let R, N be closed subspaces of a Banach space X, let $R \subset N$. Then there exists $\varepsilon > 0$ such that, for all closed subspaces R_1 and N_1 of X with $\delta(R, R_1) < \varepsilon$ and $\delta(N_1, N) < \varepsilon$, we have

$$\dim R/(R \cap N) + \dim N_1/(R_1 \cap N_1) \le \dim R_1/(R_1 \cap N_1) + \dim N/(R \cap N).$$

Proof. For $R \subset N$ this is the first statement of the previous theorem. We reduce the general situation to this case.

Choose a finite dimensional subspace $F \subset R$ such that $(R \cap N) \oplus F = R$. Let $\dim F = k < \infty$ and let f_1, \ldots, f_k be a basis in F with $||f_1|| = \cdots = ||f_k|| = 1$. Clearly $F \cap N = \{0\}$.

For $f = \sum_{i=1}^{k} \alpha_i f_i \in F$ ($\alpha_i \in \mathbb{C}$) consider three norms: ||f||, dist $\{f, N\}$ and $\sum_{i=1}^{k} |\alpha_i|$. Since these three norms are equivalent, there exists c > 0 such that

$$c \cdot \sum_{i=1}^{k} |\alpha_i| \le \operatorname{dist} \left\{ \sum_{i=1}^{k} \alpha_i f_i, N \right\} \le \left\| \sum_{i=1}^{k} \alpha_i f_i \right\| \le \sum_{i=1}^{k} |\alpha_i|$$

for all $\alpha_1, \ldots, \alpha_k \in \mathbb{C}$. Clearly $c \leq 1$.

Set $\varepsilon = \frac{c}{20}$. Let R_1 and N_1 be closed subspaces of X such that $\delta(R, R_1) < \varepsilon$ and $\delta(N_1, N) < \varepsilon$.

For i = 1, ..., k find elements $g_i \in R_1$ such that $||f_i - g_i|| < \varepsilon$. Then $||g_i|| < 1 + \varepsilon$ (i = 1, ..., k). Denote by G the subspace of R_1 generated by $g_1, ..., g_k$.

We prove that dim G = k. Indeed, if $\sum_{i=1}^{k} \alpha_i g_i = 0$ for some $\alpha_i \in \mathbb{C}$ then

$$0 = \left\|\sum_{i=1}^{k} \alpha_{i} g_{i}\right\| \ge \left\|\sum_{i=1}^{k} \alpha_{i} f_{i}\right\| - \left\|\sum_{i=1}^{k} \alpha_{i} (g_{i} - f_{i})\right\| \ge c \sum_{i=1}^{k} |\alpha_{i}| - \varepsilon \sum_{i=1}^{k} |\alpha_{i}| = \frac{19c}{20} \sum_{i=1}^{k} |\alpha_{i}|$$

so that $\alpha_1 = \cdots = \alpha_k = 0$.

Further $G \cap N_1 = \{0\}$. Indeed, if $\sum_{i=1}^k \alpha_i g_i \in N_1$ for some $\alpha_i \in \mathbb{C}$ then

$$\sum_{i=1}^{k} |\alpha_i| \le c^{-1} \operatorname{dist} \left\{ \sum_{i=1}^{k} \alpha_i f_i, N \right\} \le c^{-1} \left[\sum_{i=1}^{k} \alpha_i \|f_i - g_i\| + \operatorname{dist} \left\{ \sum_{i=1}^{k} \alpha_i g_i, N \right\} \right]$$
$$\le c^{-1} \varepsilon \sum_{i=1}^{k} |\alpha_i| + c^{-1} \left\| \sum_{i=1}^{k} \alpha_i g_i \right\| \cdot \delta(N_1, N) \le \left(\frac{\varepsilon}{c} + \frac{\varepsilon(1+\varepsilon)}{c} \right) \cdot \sum_{i=1}^{k} |\alpha_i| \le \frac{3}{20} \sum_{i=1}^{k} |\alpha_i|$$

so that $\alpha_i = 0$ $(i = 1, \dots, k)$.

Denote N' = N + F and $N'_1 = N_1 + G$. Clearly $N' = N + R \supset R$.

We prove that $\delta(N'_1, N') < 1/3$. Let $n_1 + \sum_{i=1}^k \alpha_i g_i \in N'_1$ where $n_1 \in N_1, \alpha_i \in \mathbb{C}$ $(i = 1, \dots, k)$ and $||n_1 + \sum_{i=1}^k \alpha_i g_i|| = 1$. Then $||n_1|| \le 1 + (1 + \varepsilon) \sum_{i=1}^k |\alpha_i|$. There exists $n \in N$ such that $||n_1 - n|| \le \varepsilon ||n_1|| \le \varepsilon + \varepsilon (1 + \varepsilon) \sum_{i=1}^k |\alpha_i|$. We have

$$c\sum_{i=1}^{k} |\alpha_{i}| \leq \operatorname{dist}\left\{\sum_{i=1}^{k} \alpha_{i}f_{i}, N\right\} \leq \left\|\sum_{i=1}^{k} \alpha_{i}f_{i} + n\right\|$$
$$\leq \left\|\sum_{i=1}^{k} \alpha_{i}(f_{i} - g_{i})\right\| + \left\|\sum_{i=1}^{k} \alpha_{i}g_{i} + n_{1}\right\| + \|n - n_{1}\|$$
$$\leq \varepsilon\sum_{i=1}^{k} |\alpha_{i}| + 1 + \varepsilon + \varepsilon(1 + \varepsilon)\sum_{i=1}^{k} |\alpha_{i}| \leq 1 + \varepsilon + 3\varepsilon\sum_{i=1}^{k} |\alpha_{i}|.$$

Thus

$$\sum_{i=1}^k |\alpha_i| \le \frac{1+\varepsilon}{c-3\varepsilon} \le \frac{4}{3c}$$

and

$$\operatorname{dist}\left\{n_{1} + \sum_{i=1}^{k} \alpha_{i}g_{i}, N'\right\} \leq \|n_{1} - n\| + \left\|\sum_{i=1}^{k} \alpha_{i}(f_{i} - g_{i})\right\|$$
$$\leq \varepsilon + \varepsilon(1 + \varepsilon)\sum_{i=1}^{k} |\alpha_{i}| + \varepsilon\sum_{i=1}^{k} |\alpha_{i}| < 1/3.$$

Hence $\delta(N'_1, N') < 1/3$ and, by Theorem 2,

$$\dim N_1'/(R_1 \cap N_1') \le \dim N'/R + \dim R_1/(R_1 \cap N_1').$$
(1)

We have

$$\dim N_1/(R_1 \cap N_1) = \dim(N_1 + R_1)/R_1$$

=
$$\dim(N_1' + R_1)/R_1 = \dim N_1'/(R_1 \cap N_1')$$
 (2)

and

$$\dim N/(R \cap N) = \dim(N+R)/R = \dim N'/R.$$
(3)

Further

$$\dim R/(R \cap N) = k \tag{4}$$

and

$$\dim R_1/(R_1 \cap N_1) = \dim(N_1 + R_1)/N_1 = \dim(N_1 + R_1)/(N_1 + G) + \dim(N_1 + G)/N_1 = \dim(N_1' + R_1)/N_1' + k = \dim R_1/(R_1 \cap N_1') + k.$$
(5)

Thus, by (1)-(5), we have

$$\dim R/(R \cap N) + \dim N_1/(R_1 \cap N_1) = k + \dim N_1'/(R_1 \cap N_1')$$

$$\leq k + \dim N'/R + \dim R_1/(R_1 \cap N_1') = \dim R_1/(R_1 \cap N_1) + \dim N/(R \cap N).$$

Let X, Y be Banach spaces and let $T \in \mathcal{L}(X, Y)$. Denote by $\gamma(T)$ the Kato reduced minimum modulus [9],

$$\gamma(T) = \inf\{\|Tx\| : \text{dist}\{x, N(T)\} = 1\}$$

(if T = 0 then $\gamma(T) = \infty$). It is well-known that T has closed range if and only if $\gamma(T) > 0$. Further, if $0 < s < \gamma(T)$ and $y \in R(T)$ then there exists $x \in X$ with Tx = y and $||x|| \le s^{-1} ||y||$.

The following lemma is well-known, cf. [7]. For convenience we include the proof.

Lemma 4. Let X, Y be Banach spaces and let $T, T_1 \in \mathcal{L}(X, Y)$ be operators with closed ranges. Then

(a) $\delta(N(T_1), N(T)) \le \gamma(T)^{-1} ||T - T_1||,$

(b)
$$\delta(R(T), R(T_1)) \le \gamma(T)^{-1} ||T - T_1||.$$

Proof. Let $0 < s < \gamma(T)$.

(a) Suppose $x \in N(T_1)$ and $||x|| \le 1$. Then $Tx \in R(T)$ and $||Tx|| = ||(T - T_1)x|| \le ||T - T_1||$ so that there exists $x' \in X$ with Tx' = Tx and $||x'|| \le s^{-1}||T - T_1||$. Since $x - x' \in N(T)$ we have dist $\{x, N(T)\} \le ||x'|| \le s^{-1}||T - T_1||$.

Thus $\delta(N(T_1), N(T)) \leq s^{-1} ||T - T_1||$. Since s was an arbitrary positive number, $s < \gamma(T)$, we have (a).

(b) Let $y \in R(T)$, $||y|| \le 1$. Then there exists $x \in X$ with Tx = y and $||x|| \le s^{-1}$. Thus dist $\{y, R(T_1)\} \le ||y - T_1x|| = ||(T - T_1)x|| \le s^{-1}||T - T_1||$. As in (a) we get the statement.

We are going to use the construction introduced by Sadoskii/Buoni, Harte and Wickstead [12], [5], [8]. For a Banach space X denote by $\ell^{\infty}(X)$ the Banach space of all bounded sequences of elements of X (with the sup-norm). Let m(X) be the set of all sequences $\{x_i\}_{i=1}^{\infty} \in \ell^{\infty}(X)$ such that the closure of the set $\{x_i : i = 1, 2, ...\}$ is compact. Then m(X) is a closed subspace of $\ell^{\infty}(X)$. Denote $\widetilde{X} = \ell^{\infty}(X)/m(X)$.

If $T \in \mathcal{L}(X, Y)$ then T defines pointwise an operator $T^{\infty} : \ell^{\infty}(X) \to \ell^{\infty}(Y)$ by $T^{\infty}(\{x_i\}_{i=1}^{\infty}) = \{Tx_i\}_{i=1}^{\infty}$. Clearly $T^{\infty}m(X) \subset m(Y)$. Denote by $\widetilde{T} : \widetilde{X} \to \widetilde{Y}$ the operator induced by T^{∞} .

We summarize the basic properties of the mappings $X \mapsto \widetilde{X}$ and $T \mapsto \widetilde{T}$, see [5], [6], [8], [10], [12].

Theorem 5. Let X, Y, Z be Banach spaces, let $S, S' \in \mathcal{L}(X, Y), T \in \mathcal{L}(Y, Z)$ and $\alpha \in \mathbb{C}$. Then

- (1) $S = 0 \Leftrightarrow S$ is compact,
- (2) $\widetilde{S+S'} = \widetilde{S} + \widetilde{S'}, \ \widetilde{\alpha S} = \alpha \widetilde{S},$
- (3) $\widetilde{TS} = \widetilde{TS}$,
- (4) $\|\widetilde{S}\| \le \|S\|,$
- (5) if $M \subset X$ is a subspace of a finite codimension, then $\|\widetilde{S}\| \leq 2\|S|M\|$,
- (6) if R(T) is closed then R(T) is closed,
- (7) if S and T have closed ranges then

$$R(S) \stackrel{e}{\subset} N(T) \Leftrightarrow R(\widetilde{S}) \stackrel{e}{\subset} N(\widetilde{T}) \Leftrightarrow R(\widetilde{S}) \subset N(\widetilde{T}),$$
$$N(T) \stackrel{e}{\subset} R(S) \Leftrightarrow N(\widetilde{T}) \stackrel{e}{\subset} R(\widetilde{S}) \Leftrightarrow N(\widetilde{T}) \subset R(\widetilde{S}).$$

Theorem 6. Let X, Y, Z be Banach spaces, let Y_0 be a closed subspace of Y and let $S: X \to Y$ and $T: Y_0 \to Z$ be operators with closed ranges such that $R(S) \stackrel{e}{\subset} Y_0$. Then there exists $\eta > 0$ such that

$$\dim R(S)/(R(S) \cap N(T)) + \dim N(T_1)/(R(S_1) \cap N(T_1)) \\\leq \dim R(S_1)/(R(S_1) \cap N(T_1)) + \dim N(T)/(R(S) \cap N(T))$$
(6)

for all operators $S_1: X \to Y$, $T_1: Y_0 \to Z$ with closed ranges such that $||T_1 - T|| < \eta$ and $||S_1 - S|| < \eta$.

Proof. (a) Suppose dim $R(S)/(R(S) \cap N(T)) < \infty$. Set R = R(T) and N = N(T)and let ε be the number constructed in Theorem 3. Set $\eta = \varepsilon \cdot \min\{\gamma(T), \gamma(S)\}$. If $||T_1 - T|| < \eta$ and $||S_1 - S|| < \eta$ then $\delta(N(T_1), N(T)) < \varepsilon$ and $\delta(R(T), R(T_1)) < \varepsilon$ so that Theorem 3 for $N_1 = N(T_1)$ and $R_1 = R(S_1)$ gives the required inequality. (b) If dim $R(S)/(R(S) \cap N(T)) = \infty$ and dim $N(T)/(R(S) \cap N(T)) = \infty$ then the statement is clearly true.

(c) Suppose dim $R(S)/(R(S) \cap N(T)) = \infty$ and dim $N(T)/(R(S) \cap N(T)) < \infty$, i.e. $N(T) \stackrel{e}{\subset} R(S)$. Denote $Y' = R(S) + Y_0$. Let T' be any extension of T to a bounded operator $T': Y' \to Z$ (since $Y' = Y_0 \oplus M$ for some finite dimensional subspace M, we can define T'|M = 0).

We show first that the range of T'S is closed. We have $N(T') \stackrel{e}{=} N(T) \stackrel{e}{\subset} R(S)$. Let F be a finite dimensional subspace of N(T') such that $N(T') \subset R(S) + F$. It is sufficient to show that R(T'S) + T'F is closed.

Let $x_k \in X$, $f_k \in F$ (k = 1, 2, ...) and let $T'Sx_k + T'f_k \to z$ for some $z \in Z$. Since R(T') is closed we have z = T'y for some $y \in Y_0 + R(S)$. Thus $T'(Sx_k + f_k - y) \to 0$. Consider the operator $\hat{T'} : (Y_0 + R(S))/N(T') \to Z$ induced by T'. Clearly $R(\hat{T'}) = R(T')$ and $\hat{T'}$ is injective, hence bounded below. Thus $Sx_k + f_k - y + N(T') \to 0$ in Y/N(T'). So there are elements $y_k \in N(T')$ such that $Sx_k + f_k + y_k \to y$ (in Y). Thus $y \in R(S) + F$ and $z = T'y \in R(T'S) + T'F$. Consequently R(T'S) is closed.

Further dim $R(T'S) = \infty$ (otherwise $R(S) \subset N(T') = N(T)$ which contradicts to the assumption that dim $R(S)/(R(S) \cap N(T)) = \infty$), so that T'S is not compact. If $\widetilde{S}: \widetilde{X} \to \widetilde{Y'}$ and $\widetilde{T'}: \widetilde{Y'} \to \widetilde{Z}$ are the operators defined above then $\widetilde{T'}\widetilde{S} \neq 0$.

Set $\eta = \min\left\{ \|S\|, \frac{\|\widetilde{T'S}\|}{4\|S\|+2\|T\|} \right\}$. Let $S_1 : X \to Y$ and $T_1 : Y_0 \to Z$ be operators with closed ranges such that $\|S_1 - S\| < \eta$ and $\|T_1 - T\| < \eta$. To prove (6) it is sufficient to show

$$\dim R(S_1)/(R(S_1) \cap N(T_1)) = \infty.$$
(7)

We may assume $R(S_1) \stackrel{e}{\subset} Y_0$; otherwise

$$\dim R(S_1)/(R(S_1) \cap N(T_1)) \ge \dim R(S_1)/(R(S_1) \cap Y_0) = \infty$$

and (7) is satisfied.

Denote $Y_1 = Y' + R(S_1) = Y_0 + R(S) + R(S_1)$. Then Y' is a subspace of Y_1 of a finite codimension. Let $J: Y' \to Y_1$ be the natural embedding and let $P: Y_1 \to Y'$ be a projection onto Y'. Let T'_1 be any extension of T_1 to an operator $T'_1: Y_1 \to Z$. Consider operators $\widetilde{S_1}: \widetilde{X} \to \widetilde{Y_1}, \widetilde{T'_1}: \widetilde{Y_1} \to \widetilde{Z}, \ \widetilde{J}: \widetilde{Y'} \to \widetilde{Y_1} \text{ and } \widetilde{P}: \widetilde{Y_1} \to \widetilde{Y'}$. We have

$$T'_{1}S_{1} = (T'P)(JS) + (T'P)(S_{1} - JS) + (T'_{1} - T'P)S_{1}$$

= T'S + (T'P)(S_{1} - JS) + (T'_{1} - T'P)S_{1},

$$\begin{split} \|\widetilde{S_1} - \widetilde{JS}\| &\leq \eta, \, \|\widetilde{T'_1} - \widetilde{T'P}\| \leq 2\|T_1 - T\| \leq 2\eta \text{ and } \|\widetilde{T'P}\| \leq \|\widetilde{T'}\| \cdot \|\widetilde{P}\| \leq 2\|T\|. \text{ Thus } \\ \|\widetilde{T'_1S_1}\| \geq \|\widetilde{T'S}\| - 2\eta\|\widetilde{T}\| - 2\eta\|\widetilde{S_1}\| \geq \|\widetilde{T'S}\| - 2\eta(\|S\| + \eta) - 2\eta\|T\| > 0 \end{split}$$

so that T'_1S_1 is not compact.

Consequently we have (7) (otherwise $R(S_1) \stackrel{e}{\subset} N(T_1) \stackrel{e}{=} N(T_1')$ and dim $R(T_1'S_1) < \infty$). This finishes the proof of Theorem 6.

Fredholm pairs of operators were defined in [2].

Definition. A Fredholm pair in (X, Y) is a pair (S, T) of operators $S : X_0 \to Y$ and $T : Y_0 \to X$ where X_0 and Y_0 are closed subspaces of X and Y, respectively, such that $R(S) \stackrel{e}{=} N(T)$ and $R(T) \stackrel{e}{=} N(S)$. The index of a Fredholm pair is defined by

$$\inf (S,T) = \dim N(S)/(R(T) \cap N(S)) - \dim R(T)/(R(T) \cap N(S)) - \dim N(T)/(R(S) \cap N(T)) + \dim R(S)/(R(S) \cap N(T)).$$
(8)

Note that if (S, T) is a Fredholm pair then the ranges of S and T are closed.

This suggests the definition of semi-Fredholm pairs.

Definition. By a semi-Fredholm pair we mean a pair (S, T) of operators $S : X_0 \to Y$ and $T : Y_0 \to X$ where X_0 and Y_0 are closed subspaces of X and Y, respectively, such that

(1) $R(S) \subset Y_0$ and $R(T) \subset X_0$,

- (2) S and T have closed ranges,
- (3) either

$$\dim N(S)/(R(T) \cap N(S)) + \dim R(S)/(R(S) \cap N(T)) < \infty$$

or

$$\dim N(T)/(R(S) \cap N(T)) + \dim R(T)/(R(T) \cap N(S)) < \infty.$$

For a semi-Fredholm pair (S, T) we define the index of (S, T) by (8).

Lemma 7. Let X, Y be Banach spaces, let $S : X \to Y$ and $T : Y \to X$ be operators with closed ranges such that R(S) = N(T) and $R(T) \subset N(S)$. Then there exists $\varepsilon > 0$ such that

$$\dim N(S)/R(T) + \dim R(T_1)/(R(T_1) \cap N(S_1)) = \dim N(S_1)/(R(T_1) \cap N(S_1))$$

for all operators $S_1 : X \to Y$ and $T_1 : Y \to X$ with closed ranges such that $||S_1 - S|| < \varepsilon$, $||T_1 - T|| < \varepsilon$ and $R(S_1) \subset N(T_1)$.

Proof. The sequence $X \xrightarrow{S} Y \xrightarrow{T} X$ is exact in the middle. By [14], Lemma 2.1 and [13], Corollary 2.2 there exist positive constants $\varepsilon_1 > 0$ and c such that $R(S_1) = N(T_1)$, $\gamma(S_1) \ge c$ and $\gamma(T_1) \ge c$ for all operators $S_1 : X \to Y$, $T_1 : Y \to X$ with closed ranges satisfying $||S_1 - S|| < \varepsilon_1$, $||T_1 - T|| < \varepsilon_1$ and $R(S_1) \subset N(T_1)$.

Set $\varepsilon = \min\{\varepsilon_1, \frac{c}{9}\}$. Let S_1 and T_1 be operators with closed ranges satisfying $||S_1 - S|| < \varepsilon$, $||T_1 - T|| < \varepsilon$ and $R(S_1) \subset N(T_1)$. Then, by Lemma 4, we have $\hat{\delta}(N(S), N(S_1)) \leq c^{-1} ||S_1 - S|| < 1/9$ and $\hat{\delta}(R(T), R(T_1)) \leq c^{-1} ||T_1 - T|| < 1/9$. By Theorem 2 (b), we have the required equality.

Theorem 8. Let X, Y be Banach spaces, $X_0 \subset X, Y_0 \subset Y$ closed subspaces, let $S: X_0 \to Y$ and $T: Y_0 \to X$ be operators and let (S,T) be a semi-Fredholm pair. Then there exists $\varepsilon > 0$ such that $\operatorname{ind}(S_1, T_1) = \operatorname{ind}(S, T)$ for every semi-Fredholm pair (S_1, T_1) of operators $S_1: X_0 \to Y$ and $T_1: Y_0 \to X$ satisfying $||S_1 - S|| < \varepsilon$ and $||T_1 - T|| < \varepsilon$.

Proof. Denote

$$\alpha(S,T) = \dim N(S)/(R(T) \cap N(S)) - \dim R(T)/(R(T) \cap N(S))$$

and

$$\beta(S,T) = \dim N(T)/(R(S) \cap N(T)) - \dim R(S)/(R(S) \cap N(T))$$

Then ind $(S,T) = \alpha(S,T) - \beta(S,T)$.

By Theorem 6, $\alpha(S_1, T_1) \leq \alpha(S, T)$ and $\beta(S_1, T_1) \leq \beta(S, T)$ if (S_1, T_1) is close enough to (S, T).

We distinguish three cases:

(a) Let $\alpha(S,T) = -\infty$. Then $\alpha(S_1,T_1) = -\infty$ for every semi-Fredholm pair (S_1,T_1) close enough to (S,T). In particular ind $(S_1,T_1) = \text{ind}(S,T) = -\infty$. Similar considerations can be done if $\beta(S,T) = -\infty$.

In the rest of the proof we assume $\alpha(S,T) \neq -\infty$ and $\beta(S,T) \neq -\infty$ so that $R(S) \stackrel{e}{\subset} N(T)$ and $R(T) \stackrel{e}{\subset} N(S)$.

Denote $X' = X_0 + R(T)$ and $Y' = Y_0 + R(S)$ and fix any projections $P: X' \xrightarrow{\text{onto}} X_0$ and $Q: Y' \xrightarrow{\text{onto}} Y_0$. Consider operators $\widetilde{S}: \widetilde{X_0} \to \widetilde{Y'}$ and $\widetilde{T}: \widetilde{Y_0} \to \widetilde{X'}$ and denote $\hat{S} = \widetilde{Q}\widetilde{S}: \widetilde{X_0} \to \widetilde{Y_0}$ and $\hat{T} = \widetilde{P}\widetilde{T}: \widetilde{Y_0} \to \widetilde{X_0}$. Since $R(QS) \stackrel{e}{=} R(S) \stackrel{e}{\subset} N(T) \stackrel{e}{=} N(PT)$, we have $R(\hat{S}) \subset N(\hat{T})$ and similarly $R(\hat{T}) \subset N(\hat{S})$.

Analogously, for a semi-Fredholm pair of operators $S_1 : X_0 \to Y_0 + R(S_1)$ and $T_1 : Y_0 \to X_0 + R(T_1)$ denote $\hat{S}_1 = \widetilde{Q}_1 \widetilde{S}_1 : \widetilde{X}_0 \to \widetilde{Y}_0$ and $\hat{T}_1 = \widetilde{P}_1 \widetilde{T}_1 : \widetilde{Y}_0 \to \widetilde{X}_0$ where $P_1 : X_0 + R(T_1) \xrightarrow{\text{onto}} X_0$ and $Q_1 : Y_0 + R(S_1) \xrightarrow{\text{onto}} Y_0$ are any (fixed) projections. Since $S^{-1}(Y_0) \cap S_1^{-1}(Y_0)$ is a subspace of a finite codimension in X_0 , by Theorem 5 (7) we have $\|\hat{S} - \hat{S}_1\| \leq 2\|S - S_1\|$. Similarly $\|\hat{T} - \hat{T}_1\| \leq 2\|T - T_1\|$.

(b) Let $\alpha(S,T) = \infty$. Since the pair (S,T) is semi-Fredholm and $\beta(S,T) \neq -\infty$, $\beta(S,T)$ is finite, so that $R(S) \stackrel{e}{=} N(T)$ and $R(\hat{S}) = N(\hat{T})$.

The equality ind $(S_1, T_1) = \operatorname{ind}(S, T) = \infty$ is true for every semi-Fredholm pair (S_1, T_1) with $\beta(S_1, T_1) = -\infty$. If $\beta(S_1, T_1) \neq -\infty$ then $R(S_1) \stackrel{e}{\subset} N(T_1)$ so that $R(\hat{S}_1) \subset N(\hat{T}_1)$. If (S_1, T_1) is close enough to (S, T) then, by the previous lemma,

$$\infty = \dim N(\hat{S})/R(\hat{T}) = \dim N(\hat{S}_1)/(R(\hat{T}_1) \cap N(\hat{S}_1)) - \dim R(\hat{T}_1)/(R(\hat{T}_1) \cap N(\hat{S}_1)).$$

Hence dim $N(\hat{S}_1)/(R(\hat{T}_1) \cap N(\hat{S}_1)) = \infty$ so that dim $N(S_1)/(R(T_1) \cap N(S_1)) = \infty$ and ind $(S_1, T_1) = \text{ind}(S, T) = \infty$.

Similar considerations can be done in case of $\beta(S,T) = \infty$.

(c) It remains the case $|\alpha(S,T)| < \infty$ and $|\beta(S,T)| < \infty$. Then (S,T) is a Fredholm pair, i.e. $R(\hat{S}) = N(\hat{T})$ and $R(\hat{T}) = N(\hat{S})$. Since (S_1,T_1) is semi-Fredholm, either $\alpha(S_1,T_1) \neq -\infty$ or $\beta(S_1,T_1) \neq -\infty$. Without loss of generality we can assume $\beta(S_1,T_1) \neq -\infty$ so that $R(\hat{S}_1) \subset N(\hat{T}_1)$. By [13] or [14], for (S_1,T_1) close enough to (S,T), we have $R(\hat{S}_1) = N(\hat{T}_1)$. Further $\alpha(S_1,T_1) \neq \infty$ so that $N(S_1) \stackrel{e}{\subset} R(T_1)$, i.e. $N(\hat{S}_1) \subset R(\hat{T}_1)$. By Lemma 7 we have

$$0 = \dim N(\hat{S}_1) / (R(\hat{T}_1) \cap N(\hat{S}_1)) = \dim N(\hat{T}_1) / (R(\hat{S}_1) \cap N(\hat{T}_1)).$$

Consequently $N(\hat{S}_1) = R(\hat{T}_1)$, i.e. $N(S_1) \stackrel{e}{=} R(T_1)$ and (S_1, T_1) is also a Fredholm pair.

The equality ind $(S_1, T_1) = \text{ind}(S, T)$ for Fredholm pairs (S_1, T_1) close enough to (S, T) was proved in [2] and [3].

The next result — the stability of index under finite dimensional perturbations — is an easy consequence of the corresponding result for Fredholm pairs, see [3], Theorem 3.10. We give a simpler proof.

Theorem 9. Let X, Y be Banach spaces, X_0, Y_0 their subspaces and $S, S_1 : X_0 \to Y$, $T, T_1 : Y_0 \to X$ operators. Suppose that (S, T) is a semi-Fredholm pair and that $S - S_1$ and $T - T_1$ are operators of finite rank. Then (S_1, T_1) is a semi-Fredholm pair and ind $(S_1, T_1) = \operatorname{ind}(S, T)$.

Proof. Clearly $N(S) \stackrel{e}{=} N(S_1)$, $N(T) \stackrel{e}{=} N(T_1)$, $R(S) \stackrel{e}{=} R(S_1)$ and $R(T) \stackrel{e}{=} R(T_1)$. So $\dim N(S)/(R(T) \cap N(S)) = \infty$ if and only if $\dim N(S_1)/(R(T_1 \cap N(S_1))) = \infty$. Similar equivalences are true also for the remaining terms appearing in the definition of the index (8). Thus (S_1, T_1) is a semi-Fredholm pair. Further $\operatorname{ind}(S, T) = \pm \infty$ if and only if $\operatorname{ind}(S_1, T_1) = \pm \infty$.

Thus we can assume that $\operatorname{ind}(S,T)$ is finite, i.e., $N(S) \stackrel{e}{=} R(T)$ and $N(T) \stackrel{e}{=} R(S)$ and both (S,T) and (S_1,T_1) are Fredholm pairs.

It is sufficient to show that $\operatorname{ind}(S,T) = \operatorname{ind}(S_1,T)$. Indeed, from the symmetry we have also $\operatorname{ind}(S_1,T) = \operatorname{ind}(S_1,T_1)$.

Denote

$$M = N(S) \cap N(S_1) \cap R(T), \qquad M' = N(S) + N(S_1) + R(T), L = R(S) \cap R(S_1) \cap N(T), \qquad L' = R(S) + R(S_1) + N(T).$$

Clearly $M \subset X_0$, $L \subset Y_0$, dim $M'/M < \infty$ and dim $L'/L < \infty$. Then

$$ind (S,T) = \dim N(S)/(N(S) \cap R(T)) - \dim R(T)/(N(S) \cap R(T))$$
$$- \dim N(T)/(N(T) \cap R(S)) + \dim R(S)/(N(T) \cap R(S))$$
$$= \dim N(S)/M - \dim R(T)/M - \dim N(T)/L + \dim R(S)/L$$

and similarly

$$ind (S_1, T) = \dim N(S_1)/M - \dim R(T)/M - \dim N(T)/L + \dim R(S_1)/L.$$

Thus

 $ind (S,T) - ind (S_1,T) = \dim N(S)/M - \dim N(S_1)/M + \dim R(S)/L - \dim R(S_1)/L.$

Define operators $\tilde{S}, \tilde{S}_1 : X_0/M \to L'$ by $\tilde{S}(x+M) = Sx, \tilde{S}_1(x+M) = S_1x$ $(x+M \in X_0/M)$. Clearly $R(\tilde{S}) = R(S), R(\tilde{S}_1) = R(S_1), \dim N(\tilde{S}) = \dim N(S)/M < \infty$ and $\dim N(\tilde{S}_1) = \dim N(S_1)/M < \infty$. Thus \tilde{S}, \tilde{S}_1 are upper semi-Fredholm operators and $\tilde{S} - \tilde{S}_1$ has finite rank.

Further

$$\dim L'/L = \dim L'/R(S) + \dim R(S)/L = \dim L'/R(S_1) + \dim R(S_1)/L.$$

Hence

$$\operatorname{ind} (S,T) - \operatorname{ind} (S_1,T)$$

= dim $N(S)/M$ - dim $N(S_1)/M$ - dim $L'/R(S)$ + dim $L'/R(S_1)$
= dim $N(\tilde{S})$ - codim $R(\tilde{S})$ - dim $N(\tilde{S}_1)$ + codim $R(\tilde{S}_1)$
= ind (\tilde{S}) - ind (\tilde{S}_1) = 0.

Theorem 10. Let X, Y be Banach spaces, let $S, K : X \to Y$ and $T, L : Y \to X$ be operators, let K and L be compact and let (S, T) and (S + K, T + L) be semi-Fredholm pairs. Then ind (S + K, T + L) = ind (S, T).

Proof. We use the approach of Ambrozie, see [3] or [4]. Set $C = C\langle 0, 1 \rangle$. Since R(K)and $\overline{R(L)}$ are separable Banach spaces, there exist isometric embeddings $i: \overline{R(K)} \to C$ and $j: \overline{R(L)} \to C$. Consider the spaces $X \oplus C$ and $Y \oplus C$ with ℓ^1 -norms and let $G(-i) = \{y \oplus (-iy), y \in \overline{R(K)}\}$ and $G(-j) = \{x \oplus (-jx), x \in \overline{R(L)}\}$ be the graphs of -i and -j, respectively. Let $E = (X \oplus C)/G(-j)$ and $F = (Y \oplus C)/G(-i)$. Let $\alpha: X \to E$ and $\beta: Y \to F$ be defined by $\alpha x = (x \oplus 0) + G(-j)$ and $\beta y = (y \oplus 0) + G(-i)$. Since i and j are isometries, it is easy to check that α and β are isometries. Denote $X' = R(\alpha) \subset E$ and $Y' = R(\beta) \subset F$. Thus X' and Y' are "copies" of X and Y. Denote by S', T', K', L' copies of S, T, K, L. More precisely, let $S', K' : X' \to Y'$ and $T', L' : Y' \to X'$ be defined by $S' = \beta S \alpha^{-1}, K' = \beta K \alpha^{-1}, T' = \alpha T \beta^{-1}$ and $L' = \alpha L \beta^{-1}$.

Clearly ind (S', T') = ind (S, T) and ind (S' + K', T' + L') = ind (S + K, T + L). Since operators $iK : X \to C$ and $jL : Y \to C$ are compact and C has the approximation property, there exist finite dimensional operators $U_n : X \to C$ and $V_n : Y \to C$ (n = 1, 2, ...) such that $||U_n - iK|| \to 0$ and $||V_n - jL|| \to 0$.

Define operators $\gamma : C \to F$ and $\delta : C \to E$ by $\gamma c = (0 \oplus c) + G(-i)$ and $\delta c = (0 \oplus c) + G(-j)$ $(c \in C)$. It is easy to check that γ and δ are isometries. Define $U'_n : X' \to F$ and $V'_n : Y' \to E$ by $U'_n = \gamma U_n \alpha^{-1}$ and $V'_n = \delta V_n \beta^{-1}$ (n = 1, 2, ...).

 $\begin{array}{l} U'_n: X' \to F \text{ and } V'_n: Y' \to E \text{ by } U'_n = \gamma U_n \alpha^{-1} \text{ and } V'_n = \delta V_n \beta^{-1} \quad (n = 1, 2, \ldots). \\ \text{Since ind } (S', T') = \text{ind } (S' + U'_n, T' + V'_n) \text{ for every } n, \text{ by Theorem 8 it is sufficient} \\ \text{to show that } \|K' - U'_n\| = \|(S' + K') - (S' + U'_n)\| \to 0 \text{ and } \|L' - V'_n\| \to 0. \text{ Let } x' \\ \text{be an element of } X' \text{ with } \|x'\| = 1. \text{ Let } x' = \alpha x = (x \oplus 0) + G(-j) \text{ for some } x \in X, \\ \|x\| = 1. \text{ Then} \end{array}$

$$\begin{aligned} \|(K' - U'_n)x'\| &= \|(\beta K - \gamma U_n)x\| = \|[(Kx \oplus 0) + G(-i)] - [(0 \oplus U_nx) + G(-i)]\| \\ &= \|(Kx \oplus (-U_nx)) + G(-i)\| = \|0 \oplus (iK - U_n)x + G(-i)\| = \|\gamma((iK - U_n)x)\| \\ &= \|((iK - U_n)x\| \le \|iK - U_n\|. \end{aligned}$$

Thus $||K' - U'_n|| \to 0$ and similarly $||L' - V'_n|| \to 0$. This finishes the proof.

Definition. A chain is a sequence $\mathcal{K} = \{X_i, \delta_i\}_{i=0}^n$ where X_0, X_1, \ldots, X_n are Banach spaces and $\delta_i : X_i \to X_{i+1}$ operators. Formally we set $X_i = 0$ for i < 0 or i > n and $\delta_i = 0$ $(i < 0 \text{ or } i \ge n)$.

Thus a chain is an object of the following type:

$$\mathcal{K}: \qquad 0 \longrightarrow X_0 \xrightarrow{\delta_0} X_1 \xrightarrow{\delta_1} \cdot \cdot \cdot \cdot \xrightarrow{\delta_{n-1}} X_n \longrightarrow 0.$$

We say that \mathcal{K} is a semi-Fredholm chain if

(1) the operators $\delta_0, \ldots, \delta_{n-1}$ have closed ranges,

(2) either

$$\sum_{i \text{ even}} \dim N(\delta_i) / (R(\delta_{i-1}) \cap N(\delta_i)) + \sum_{i \text{ odd}} \dim R(\delta_{i-1}) / (R(\delta_{i-1}) \cap N(\delta_i))$$

or

$$\sum_{i \text{ odd}} \dim N(\delta_i) / (R(\delta_{i-1}) \cap N(\delta_i)) + \sum_{i \text{ even}} \dim R(\delta_{i-1}) / (R(\delta_{i-1}) \cap N(\delta_i))$$

For a semi-Fredholm chain and for $0 \le i \le n$ define

$$\alpha_i(\mathcal{K}) = \dim N(\delta_i) / (R(\delta_{i-1}) \cap N(\delta_i)) - \dim R(\delta_{i-1}) / (R(\delta_{i-1}) \cap N(\delta_i))$$

and the index of \mathcal{K} ,

ind
$$(\mathcal{K}) = \sum_{i=0}^{n} (-1)^{i} \alpha_{i}(\mathcal{K}).$$

(Simply, a chain \mathcal{K} is semi-Fredholm if the operators δ_i have closed ranges and the index is well-defined.)

Remark. A semi-Fredholm chain \mathcal{K} with $|ind(\mathcal{K})| < \infty$ was called a Fredholm essential complex in [4] and [11]. In the present notation it would be logical to call it a Fredholm chain.

For a chain $\mathcal{K} = \{X_i, \delta_i\}_{i=0}^n$ denote

$$X = \bigoplus_{i \text{ even}} X_i, \quad Y = \bigoplus_{i \text{ odd}} X_i, \quad S = \bigoplus_{i \text{ even}} \delta_i, \quad \text{and} \quad T = \bigoplus_{i \text{ even}} \delta_i.$$

It is easy to see that the chain \mathcal{K} is semi-Fredholm if and only if the corresponding pair (S,T) is semi-Fredholm and $\operatorname{ind}(\mathcal{K}) = \operatorname{ind}(S,T)$. Thus we get the following perturbation properties of semi-Fredholm chains:

Theorem 11. Let $\mathcal{K} = \{X_i, \delta_i\}_{i=0}^n$ be a semi-Fredholm chain. Then there exists $\varepsilon > 0$ such that, for every semi-Fredholm chain $\mathcal{K}' = \{X_i, \delta'_i\}_{i=0}^n$ with $\|\delta'_i - \delta_i\| < \varepsilon$ $(i = 0, \ldots, n-1)$ we have (1) $\alpha_i(\mathcal{K}') \leq \alpha_i(\mathcal{K})$ $(i = 0, \ldots, n)$, (2) ind $(\mathcal{K}') = ind(\mathcal{K})$.

Theorem 12. Let $\mathcal{K} = \{X_i, \delta_i\}_{i=0}^n$ and $\mathcal{K}' = \{X'_i, \delta'_i\}_{i=0}^n$ be semi-Fredholm complexes such that $\delta'_i - \delta_i$ are compact for $i = 0, \ldots, n-1$. Then $\operatorname{ind}(\mathcal{K}') = \operatorname{ind}(\mathcal{K})$.

Remark. It is necessary to assume that \mathcal{K}' is semi-Fredholm.

Let H be a separable infinite dimensional Hilbert space and consider the following complex:

$$\mathcal{K}: \qquad 0 {\longrightarrow} H \stackrel{\delta_0}{\longrightarrow} H \oplus H \stackrel{\delta_1}{\longrightarrow} H \oplus H \stackrel{\delta_2}{\longrightarrow} H {\longrightarrow} 0$$

where the mappings δ_i are defined by $\delta_0 h = h \oplus 0$, $\delta_1(h \oplus g) = 0 \oplus g$, $\delta_2(h \oplus g) = h$. It is easy to check that \mathcal{K} is exact.

- (a) Let $A : H \to H$ be an operator with a small norm and non-closed range. Then $\delta'_1 : H \oplus H \to H \oplus H$ defined by $\delta'_1(h \oplus g) = Ah \oplus g$ has not closed range.
- (b) Let ε be a small positive number. Define $\delta_1'': H \oplus H \to H \oplus H$ by $\delta_1'(h \oplus g) = \varepsilon h \oplus g$. Then δ_1'' has closed range but the chain

$$\mathcal{K}': \qquad 0 \longrightarrow H \xrightarrow{\delta_0} H \oplus H \xrightarrow{\delta_1'} H \oplus H \xrightarrow{\delta_2} H \longrightarrow 0$$

is not semi-Fredholm.

References

- E. Albrecht, F.-H. Vasilescu, Stability of the index of a semi-Fredholm complex of Banach spaces, J. Functional Analysis 66(1986), 141–172.
- [2] C.-G. Ambrozie, Stability of the index of a Fredholm symmetrical pair, J. Operator Theory 25 (1991), 61-69.
- [3] C.-G. Ambrozie, The solution of a problem on Fredholm complexes, preprint No. 30/94, Institutul de Matematici al Academici Roman, Bucuresti.
- [4] C.-G. Ambrozie, F.-H. Vasilescu, Banach space complexes, to appear.
- [5] J.J. Buoni, R. Harte, T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc. 66 (1977), 309–314.
- [6] A.S. Fainshtein, Stability of Fredholm complexes of Banach spaces with respect to perturbations which are small in *q*-norm (Russian), SSR Ser. Fiz.-Tehn. Mat. Nauk 1 (1980), 3–8, Izv. Akad. Nauk Azerbaidžan.
- [7] A.S. Fainshtein, On the gap between subspaces of a Banach space (Russian), Inst. Mat. Mech. Akad. Azerb. SSR, Baku, 1983.
- [8] R. Harte, T. Wickstead, Upper and lower Fredholm spectra II., Math, Zeit. 154 (1977), 253–256.
- [9] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin 1966.
- [10] A. Lebow, M. Schechter, Semigroups of operators and measures of non-compactness, J. Funct. Anal. 7 (1971), 1–26.
- [11] M. Putinar, Some invariants for semi-Fredholm systems of essentially commuting operators, J. Operator Theory 8 (1982), 65–90.
- [12] B.N. Sadoskii, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 85–155.
- [13] J.L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172–191.
- [14] F.-H. Vasilescu, Stability of the index of a complex of Banach spaces, J. Operator Theory 2 (1979), 247–275.

Mathematical Institute AV CR Žitná 25, 115 67 Praha 1 Czech Republic