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Abstract. We extend the recent stability results of Ambrozie for Fredholm essential
complexes to the semi-Fredholm case.

Let X,Y be Banach spaces. By an operator we always mean a bounded linear
operator. The set of all operators from X to Y will be denoted by L(X,Y ). Denote by
N(T ) and R(T ) the kernel and range of an operator T ∈ L(X, Y ).

Recall that an operator T : X → Y is called semi-Fredholm if it has closed range
and at least one of the defect numbers α(T ) = dim N(T ), β(T ) = codim R(T ) is finite.
If both of them are finite then T is called Fredholm.

The index of a semi-Fredholm operator is defined by ind (T ) = α(T )− β(T ).
We list the most important classical stability results for semi-Fredholm operators:

Let T : X → Y be a semi-Fredholm operator. Then
(1) There exists ε > 0 such that ind T ′ = ind T for every (semi-Fredholm) operator

T ′ ∈ L(X,Y ) with ‖T ′ − T‖ < ε.
(2) There exists ε > 0 such that α(T ′) ≤ α(T ) and β(T ′) ≤ β(T ) for every (semi-

Fredholm) operator T ′ ∈ L(X, Y ) with ‖T ′ − T‖ < ε.
(3) ind (T ′) = ind (T ) for every (semi-Fredholm) operator T ′ ∈ L(X, Y ) such that

T − T ′ is compact.
(the condition that T ′ is semi-Fredholm is satisfied automatically for operators close
enough to T ; this will not be the case in more general situations).

These results were generalized for Banach space complexes. By a complex it is
meant an object of the following type:

K : 0−→X0
δ0−→X1

δ1−→ · · · δn−2−→Xn−1
δn−1−→Xn−→0

where Xi are Banach spaces and δi operators such that δi+iδi = 0 for every i.
The complex K is semi-Fredholm if the operators δi have closed ranges and the

index of K,

ind (K) =
n∑

i=0

(−1)iαi(K), where αi(K) = dim(N(δi)/R(δi−1))

is well-defined.
It was shown in [1], [14] that the index and the defect numbers αi of semi-Fredholm

complexes exhibit properties (1) and (2). Property (3) proved to be surprisingly diffi-
cult. Some partial results were obtained in [11] and for Fredholm complexes (or better
to say for Fredholm essential complexes) it was proved recently by Ambrozie [2], [3].

The aim of this paper is to extend the above mentioned results to semi-Fredholm
chains (for the definition see below).

* The research was supported by the grant No. 201/96/0411 of GA ČR.
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We are going to use frequently the following elementary isomorphism result.

Lemma 1. Let U, V be subspaces of a Banach space X. Then

dim(U + V )/V = dim U/(U ∩ V ).

Proof. The required isomorphism U/(U ∩ V ) → (U + V )/V is induced by the natural
embedding U → U + V .

If U and V are subspaces of a Banach space X then we write for short U
e⊂V

(U is essentially contained in V ) if dim U/(U ∩ V ) < ∞. If U
e⊂V and V

e⊂U then we
write U

e
=V .

Let X be a Banach space. For closed subspaces M1,M2 of X denote

δ(M1,M2) = sup
m∈M1
‖m‖≤1

dist {m,M2}

and the gap between M1 and M2 by

δ̂(M1,M2) = max
{
δ(M1,M2), δ(M2, M1)

}
,

see [9]. Clearly δ(M1,M2) = 0 if and only if M1 ⊂ M2.

For convenience we recall the following result of Fainshtein [7]:

Theorem 2. Let R, R1, N, N1 be closed subspaces of a Banach space X and let R ⊂ N .
(a) If δ(R, R1) < 1/3 and δ(N1, N) < 1/3 then

dim N1/(R1 ∩N1) ≤ dim N/R + dim R1/(R1 ∩N1).

(b) If δ̂(R, R1) < 1/9 and δ̂(N1, N) < 1/9 then

dim N1/(R1 ∩N1) = dim N/R + dim R1/(R1 ∩N1).

We start with the following generalization of the previous result:

Theorem 3. Let R,N be closed subspaces of a Banach space X, let R
e⊂N . Then there

exists ε > 0 such that, for all closed subspaces R1 and N1 of X with δ(R, R1) < ε and
δ(N1, N) < ε, we have

dim R/(R ∩N) + dim N1/(R1 ∩N1) ≤ dim R1/(R1 ∩N1) + dim N/(R ∩N).

Proof. For R ⊂ N this is the first statement of the previous theorem. We reduce the
general situation to this case.

2



Choose a finite dimensional subspace F ⊂ R such that (R ∩ N) ⊕ F = R. Let
dim F = k < ∞ and let f1, . . . , fk be a basis in F with ‖f1‖ = · · · = ‖fk‖ = 1. Clearly
F ∩N = {0}.

For f =
∑k

i=1 αifi ∈ F (αi ∈ C) consider three norms: ‖f‖, dist {f, N} and∑k
i=1 |αi|. Since these three norms are equivalent, there exists c > 0 such that

c ·
k∑

i=1

|αi| ≤ dist
{ k∑

i=1

αifi, N
}
≤

∥∥∥
k∑

i=1

αifi

∥∥∥ ≤
k∑

i=1

|αi|

for all α1, . . . , αk ∈ C. Clearly c ≤ 1.
Set ε = c

20 . Let R1 and N1 be closed subspaces of X such that δ(R,R1) < ε and
δ(N1, N) < ε.

For i = 1, . . . , k find elements gi ∈ R1 such that ‖fi − gi‖ < ε. Then ‖gi‖ <
1 + ε (i = 1, . . . , k). Denote by G the subspace of R1 generated by g1, . . . , gk.

We prove that dim G = k. Indeed, if
∑k

i=1 αigi = 0 for some αi ∈ C then

0 =
∥∥∥

k∑

i=1

αigi

∥∥∥ ≥
∥∥∥

k∑

i=1

αifi

∥∥∥−
∥∥∥

k∑

i=1

αi(gi − fi)
∥∥∥ ≥ c

k∑

i=1

|αi| − ε

k∑

i=1

|αi| =
19c

20

k∑

i=1

|αi|

so that α1 = · · · = αk = 0.
Further G ∩N1 = {0}. Indeed, if

∑k
i=1 αigi ∈ N1 for some αi ∈ C then

k∑

i=1

|αi| ≤ c−1dist
{ k∑

i=1

αifi, N
}
≤ c−1

[ k∑

i=1

αi‖fi − gi‖+ dist
{ k∑

i=1

αigi, N
}]

≤c−1ε

k∑

i=1

|αi|+ c−1
∥∥∥

k∑

i=1

αigi

∥∥∥ · δ(N1, N) ≤
(ε

c
+

ε(1 + ε)
c

)
·

k∑

i=1

|αi| ≤ 3
20

k∑

i=1

|αi|

so that αi = 0 (i = 1, . . . , k).
Denote N ′ = N + F and N ′

1 = N1 + G. Clearly N ′ = N + R ⊃ R.
We prove that δ(N ′

1, N
′) < 1/3. Let n1 +

∑k
i=1 αigi ∈ N ′

1 where n1 ∈ N1, αi ∈
C (i = 1, . . . , k) and ‖n1 +

∑k
i=1 αigi‖ = 1. Then ‖n1‖ ≤ 1 + (1 + ε)

∑k
i=1 |αi|. There

exists n ∈ N such that ‖n1 − n‖ ≤ ε‖n1‖ ≤ ε + ε(1 + ε)
∑k

i=1 |αi|. We have

c

k∑

i=1

|αi| ≤ dist
{ k∑

i=1

αifi, N
}
≤

∥∥∥
k∑

i=1

αifi + n
∥∥∥

≤
∥∥∥

k∑

i=1

αi(fi − gi)
∥∥∥ +

∥∥∥
k∑

i=1

αigi + n1

∥∥∥ + ‖n− n1‖

≤ε

k∑

i=1

|αi|+ 1 + ε + ε(1 + ε)
k∑

i=1

|αi| ≤ 1 + ε + 3ε

k∑

i=1

|αi|.

Thus
k∑

i=1

|αi| ≤ 1 + ε

c− 3ε
≤ 4

3c
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and

dist
{

n1 +
k∑

i=1

αigi, N
′
}
≤ ‖n1 − n‖+

∥∥∥
k∑

i=1

αi(fi − gi)
∥∥∥

≤ε + ε(1 + ε)
k∑

i=1

|αi|+ ε

k∑

i=1

|αi| < 1/3.

Hence δ(N ′
1, N

′) < 1/3 and, by Theorem 2,

dim N ′
1/(R1 ∩N ′

1) ≤ dim N ′/R + dim R1/(R1 ∩N ′
1). (1)

We have
dim N1/(R1 ∩N1) = dim(N1 + R1)/R1

= dim(N ′
1 + R1)/R1 = dim N ′

1/(R1 ∩N ′
1)

(2)

and
dim N/(R ∩N) = dim(N + R)/R = dim N ′/R. (3)

Further
dim R/(R ∩N) = k (4)

and

dim R1/(R1 ∩N1) = dim(N1 + R1)/N1 = dim(N1 + R1)/(N1 + G)

+ dim(N1 + G)/N1 = dim(N ′
1 + R1)/N ′

1 + k = dim R1/(R1 ∩N ′
1) + k.

(5)

Thus, by (1)–(5), we have

dim R/(R ∩N) + dim N1/(R1 ∩N1) = k + dim N ′
1/(R1 ∩N ′

1)

≤k + dim N ′/R + dim R1/(R1 ∩N ′
1) = dim R1/(R1 ∩N1) + dim N/(R ∩N).

Let X, Y be Banach spaces and let T ∈ L(X,Y ). Denote by γ(T ) the Kato reduced
minimum modulus [9],

γ(T ) = inf
{‖Tx‖ : dist {x,N(T )} = 1

}

(if T = 0 then γ(T ) = ∞). It is well-known that T has closed range if and only if
γ(T ) > 0. Further, if 0 < s < γ(T ) and y ∈ R(T ) then there exists x ∈ X with Tx = y
and ‖x‖ ≤ s−1‖y‖.

The following lemma is well-known, cf. [7]. For convenience we include the proof.

Lemma 4. Let X,Y be Banach spaces and let T, T1 ∈ L(X, Y ) be operators with
closed ranges. Then
(a) δ(N(T1), N(T )) ≤ γ(T )−1‖T − T1‖,
(b) δ(R(T ), R(T1)) ≤ γ(T )−1‖T − T1‖.
Proof. Let 0 < s < γ(T ).

(a) Suppose x ∈ N(T1) and ‖x‖ ≤ 1. Then Tx ∈ R(T ) and ‖Tx‖ = ‖(T −T1)x‖ ≤
‖T − T1‖ so that there exists x′ ∈ X with Tx′ = Tx and ‖x′‖ ≤ s−1‖T − T1‖. Since
x− x′ ∈ N(T ) we have dist {x,N(T )} ≤ ‖x′‖ ≤ s−1‖T − T1‖.
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Thus δ(N(T1), N(T )) ≤ s−1‖T − T1‖. Since s was an arbitrary positive number,
s < γ(T ), we have (a).

(b) Let y ∈ R(T ), ‖y‖ ≤ 1. Then there exists x ∈ X with Tx = y and ‖x‖ ≤ s−1.
Thus dist {y, R(T1)} ≤ ‖y − T1x‖ = ‖(T − T1)x‖ ≤ s−1‖T − T1‖. As in (a) we get the
statement.

We are going to use the construction introduced by Sadoskii/Buoni, Harte and
Wickstead [12], [5], [8]. For a Banach space X denote by `∞(X) the Banach space of
all bounded sequences of elements of X (with the sup-norm). Let m(X) be the set of
all sequences {xi}∞i=1 ∈ `∞(X) such that the closure of the set {xi : i = 1, 2, . . .} is
compact. Then m(X) is a closed subspace of `∞(X). Denote X̃ = `∞(X)/m(X).

If T ∈ L(X, Y ) then T defines pointwise an operator T∞ : `∞(X) → `∞(Y ) by
T∞({xi}∞i=1) = {Txi}∞i=1. Clearly T∞m(X) ⊂ m(Y ). Denote by T̃ : X̃ → Ỹ the
operator induced by T∞.

We summarize the basic properties of the mappings X 7→ X̃ and T 7→ T̃ , see [5],
[6], [8], [10], [12].

Theorem 5. Let X, Y, Z be Banach spaces, let S, S′ ∈ L(X, Y ), T ∈ L(Y, Z) and
α ∈ C. Then
(1) S̃ = 0 ⇔ S is compact,
(2) ˜S + S′ = S̃ + S̃′, α̃S = αS̃,
(3) T̃ S = T̃ S̃,
(4) ‖S̃‖ ≤ ‖S‖,
(5) if M ⊂ X is a subspace of a finite codimension, then ‖S̃‖ ≤ 2‖S|M‖,
(6) if R(T ) is closed then R(T̃ ) is closed,
(7) if S and T have closed ranges then

R(S)
e⊂N(T ) ⇔ R(S̃)

e⊂N(T̃ ) ⇔ R(S̃) ⊂ N(T̃ ),

N(T )
e⊂R(S) ⇔ N(T̃ )

e⊂R(S̃) ⇔ N(T̃ ) ⊂ R(S̃).

Theorem 6. Let X, Y, Z be Banach spaces, let Y0 be a closed subspace of Y and let

S : X → Y and T : Y0 → Z be operators with closed ranges such that R(S)
e⊂Y0. Then

there exists η > 0 such that

dim R(S)/(R(S) ∩N(T )) + dim N(T1)/(R(S1) ∩N(T1))

≤ dim R(S1)/(R(S1) ∩N(T1)) + dim N(T )/(R(S) ∩N(T ))
(6)

for all operators S1 : X → Y , T1 : Y0 → Z with closed ranges such that ‖T1 − T‖ < η
and ‖S1 − S‖ < η.

Proof. (a) Suppose dim R(S)/(R(S) ∩ N(T )) < ∞. Set R = R(T ) and N = N(T )
and let ε be the number constructed in Theorem 3. Set η = ε · min{γ(T ), γ(S)}. If
‖T1 − T‖ < η and ‖S1 − S‖ < η then δ(N(T1), N(T )) < ε and δ(R(T ), R(T1)) < ε so
that Theorem 3 for N1 = N(T1) and R1 = R(S1) gives the required inequality.
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(b) If dim R(S)/(R(S)∩N(T )) = ∞ and dim N(T )/(R(S)∩N(T )) = ∞ then the
statement is clearly true.

(c) Suppose dim R(S)/(R(S) ∩ N(T )) = ∞ and dim N(T )/(R(S) ∩ N(T )) < ∞,

i.e. N(T )
e⊂R(S). Denote Y ′ = R(S) + Y0. Let T ′ be any extension of T to a bounded

operator T ′ : Y ′ → Z (since Y ′ = Y0 ⊕M for some finite dimensional subspace M , we
can define T ′|M = 0).

We show first that the range of T ′S is closed. We have N(T ′) e
=N(T )

e⊂R(S). Let F
be a finite dimensional subspace of N(T ′) such that N(T ′) ⊂ R(S) + F . It is sufficient
to show that R(T ′S) + T ′F is closed.

Let xk ∈ X, fk ∈ F (k = 1, 2, . . .) and let T ′Sxk +T ′fk → z for some z ∈ Z. Since
R(T ′) is closed we have z = T ′y for some y ∈ Y0 + R(S). Thus T ′(Sxk + fk − y) → 0.
Consider the operator T̂ ′ : (Y0 + R(S))/N(T ′) → Z induced by T ′. Clearly R(T̂ ′) =
R(T ′) and T̂ ′ is injective, hence bounded below. Thus Sxk + fk − y + N(T ′) → 0 in
Y/N(T ′). So there are elements yk ∈ N(T ′) such that Sxk + fk + yk → y (in Y ).
Thus y ∈ R(S) + F and z = T ′y ∈ R(T ′S) + T ′F . Consequently R(T ′S) is closed.

Further dim R(T ′S) = ∞ (otherwise R(S)
e⊂N(T ′) e

=N(T ) which contradicts to
the assumption that dim R(S)/(R(S) ∩ N(T )) = ∞), so that T ′S is not compact. If
S̃ : X̃ → Ỹ ′ and T̃ ′ : Ỹ ′ → Z̃ are the operators defined above then T̃ ′S̃ 6= 0.

Set η = min
{
‖S‖, ‖T̃ ′S‖

4‖S‖+2‖T‖
}

. Let S1 : X → Y and T1 : Y0 → Z be operators

with closed ranges such that ‖S1−S‖ < η and ‖T1−T‖ < η. To prove (6) it is sufficient
to show

dim R(S1)/(R(S1) ∩N(T1)) = ∞. (7)

We may assume R(S1)
e⊂Y0; otherwise

dim R(S1)/(R(S1) ∩N(T1)) ≥ dim R(S1)/(R(S1) ∩ Y0) = ∞

and (7) is satisfied.
Denote Y1 = Y ′ + R(S1) = Y0 + R(S) + R(S1). Then Y ′ is a subspace of Y1 of a

finite codimension. Let J : Y ′ → Y1 be the natural embedding and let P : Y1 → Y ′

be a projection onto Y ′. Let T ′1 be any extension of T1 to an operator T ′1 : Y1 → Z.

Consider operators S̃1 : X̃ → Ỹ1, T̃ ′1 : Ỹ1 → Z̃, J̃ : Ỹ ′ → Ỹ1 and P̃ : Ỹ1 → Ỹ ′. We have

T ′1S1 =(T ′P )(JS) + (T ′P )(S1 − JS) + (T ′1 − T ′P )S1

=T ′S + (T ′P )(S1 − JS) + (T ′1 − T ′P )S1,

‖S̃1 − J̃S‖ ≤ η, ‖T̃ ′1 − T̃ ′P‖ ≤ 2‖T1 − T‖ ≤ 2η and ‖T̃ ′P‖ ≤ ‖T̃ ′‖ · ‖P̃‖ ≤ 2‖T‖. Thus

‖T̃ ′1S1‖ ≥ ‖T̃ ′S‖ − 2η‖T̃‖ − 2η‖S̃1‖ ≥ ‖T̃ ′S‖ − 2η(‖S‖+ η)− 2η‖T‖ > 0

so that T ′1S1 is not compact.

Consequently we have (7) (otherwise R(S1)
e⊂N(T1)

e
=N(T ′1) and dim R(T ′1S1) <

∞). This finishes the proof of Theorem 6.

Fredholm pairs of operators were defined in [2].
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Definition. A Fredholm pair in (X,Y ) is a pair (S, T ) of operators S : X0 → Y and
T : Y0 → X where X0 and Y0 are closed subspaces of X and Y , respectively, such that
R(S)

e
=N(T ) and R(T )

e
=N(S). The index of a Fredholm pair is defined by

ind (S, T ) = dim N(S)/(R(T ) ∩N(S))− dim R(T )/(R(T ) ∩N(S))

−dim N(T )/(R(S) ∩N(T )) + dim R(S)/(R(S) ∩N(T )).
(8)

Note that if (S, T ) is a Fredholm pair then the ranges of S and T are closed.

This suggests the definition of semi-Fredholm pairs.

Definition. By a semi-Fredholm pair we mean a pair (S, T ) of operators S : X0 → Y
and T : Y0 → X where X0 and Y0 are closed subspaces of X and Y , respectively, such
that
(1) R(S)

e⊂Y0 and R(T )
e⊂X0,

(2) S and T have closed ranges,
(3) either

dim N(S)/(R(T ) ∩N(S)) + dim R(S)/(R(S) ∩N(T )) < ∞
or

dim N(T )/(R(S) ∩N(T )) + dim R(T )/(R(T ) ∩N(S)) < ∞.

For a semi-Fredholm pair (S, T ) we define the index of (S, T ) by (8).

Lemma 7. Let X,Y be Banach spaces, let S : X → Y and T : Y → X be operators
with closed ranges such that R(S) = N(T ) and R(T ) ⊂ N(S). Then there exists ε > 0
such that

dim N(S)/R(T ) + dim R(T1)/(R(T1) ∩N(S1)) = dim N(S1)/(R(T1) ∩N(S1))

for all operators S1 : X → Y and T1 : Y → X with closed ranges such that ‖S1−S‖ < ε,
‖T1 − T‖ < ε and R(S1) ⊂ N(T1).

Proof. The sequence X
S−→Y

T−→X is exact in the middle. By [14], Lemma 2.1 and
[13], Corollary 2.2 there exist positive constants ε1 > 0 and c such that R(S1) = N(T1),
γ(S1) ≥ c and γ(T1) ≥ c for all operators S1 : X → Y , T1 : Y → X with closed ranges
satisfying ‖S1 − S‖ < ε1, ‖T1 − T‖ < ε1 and R(S1) ⊂ N(T1).

Set ε = min{ε1,
c
9}. Let S1 and T1 be operators with closed ranges satisfying

‖S1 − S‖ < ε, ‖T1 − T‖ < ε and R(S1) ⊂ N(T1). Then, by Lemma 4, we have
δ̂(N(S), N(S1)) ≤ c−1‖S1 − S‖ < 1/9 and δ̂(R(T ), R(T1)) ≤ c−1‖T1 − T‖ < 1/9. By
Theorem 2 (b), we have the required equality.

Theorem 8. Let X,Y be Banach spaces, X0 ⊂ X, Y0 ⊂ Y closed subspaces, let
S : X0 → Y and T : Y0 → X be operators and let (S, T ) be a semi-Fredholm pair.
Then there exists ε > 0 such that ind (S1, T1) = ind (S, T ) for every semi-Fredholm
pair (S1, T1) of operators S1 : X0 → Y and T1 : Y0 → X satisfying ‖S1 − S‖ < ε and
‖T1 − T‖ < ε.
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Proof. Denote

α(S, T ) = dim N(S)/(R(T ) ∩N(S))− dim R(T )/(R(T ) ∩N(S))

and
β(S, T ) = dim N(T )/(R(S) ∩N(T ))− dim R(S)/(R(S) ∩N(T )).

Then ind (S, T ) = α(S, T )− β(S, T ).
By Theorem 6, α(S1, T1) ≤ α(S, T ) and β(S1, T1) ≤ β(S, T ) if (S1, T1) is close

enough to (S, T ).
We distinguish three cases:

(a) Let α(S, T ) = −∞. Then α(S1, T1) = −∞ for every semi-Fredholm pair
(S1, T1) close enough to (S, T ). In particular ind (S1, T1) = ind (S, T ) = −∞.

Similar considerations can be done if β(S, T ) = −∞.

In the rest of the proof we assume α(S, T ) 6= −∞ and β(S, T ) 6= −∞ so that

R(S)
e⊂N(T ) and R(T )

e⊂N(S).
Denote X ′ = X0 + R(T ) and Y ′ = Y0 + R(S) and fix any projections P : X ′onto−→X0

and Q : Y ′onto−→Y0. Consider operators S̃ : X̃0 → Ỹ ′ and T̃ : Ỹ0 → X̃ ′ and denote

Ŝ = Q̃S̃ : X̃0 → Ỹ0 and T̂ = P̃ T̃ : Ỹ0 → X̃0. Since R(QS)
e
=R(S)

e⊂N(T )
e
=N(PT ), we

have R(Ŝ) ⊂ N(T̂ ) and similarly R(T̂ ) ⊂ N(Ŝ).
Analogously, for a semi-Fredholm pair of operators S1 : X0 → Y0 + R(S1) and

T1 : Y0 → X0 + R(T1) denote Ŝ1 = Q̃1S̃1 : X̃0 → Ỹ0 and T̂1 = P̃1T̃1 : Ỹ0 → X̃0 where
P1 : X0 + R(T1)

onto−→X0 and Q1 : Y0 + R(S1)
onto−→Y0 are any (fixed) projections. Since

S−1(Y0) ∩ S−1
1 (Y0) is a subspace of a finite codimension in X0, by Theorem 5 (7) we

have ‖Ŝ − Ŝ1‖ ≤ 2‖S − S1‖. Similarly ‖T̂ − T̂1‖ ≤ 2‖T − T1‖.
(b) Let α(S, T ) = ∞. Since the pair (S, T ) is semi-Fredholm and β(S, T ) 6= −∞,

β(S, T ) is finite, so that R(S)
e
=N(T ) and R(Ŝ) = N(T̂ ).

The equality ind (S1, T1) = ind (S, T ) = ∞ is true for every semi-Fredholm pair

(S1, T1) with β(S1, T1) = −∞. If β(S1, T1) 6= −∞ then R(S1)
e⊂N(T1) so that R(Ŝ1) ⊂

N(T̂1). If (S1, T1) is close enough to (S, T ) then, by the previous lemma,

∞ = dim N(Ŝ)/R(T̂ ) = dim N(Ŝ1)/(R(T̂1) ∩N(Ŝ1))− dim R(T̂1)/(R(T̂1) ∩N(Ŝ1)).

Hence dim N(Ŝ1)/(R(T̂1)∩N(Ŝ1)) = ∞ so that dim N(S1)/(R(T1)∩N(S1)) = ∞ and
ind (S1, T1) = ind (S, T ) = ∞.

Similar considerations can be done in case of β(S, T ) = ∞.

(c) It remains the case |α(S, T )| < ∞ and |β(S, T )| < ∞. Then (S, T ) is a Fred-
holm pair, i.e. R(Ŝ) = N(T̂ ) and R(T̂ ) = N(Ŝ). Since (S1, T1) is semi-Fredholm,
either α(S1, T1) 6= −∞ or β(S1, T1) 6= −∞. Without loss of generality we can assume
β(S1, T1) 6= −∞ so that R(Ŝ1) ⊂ N(T̂1). By [13] or [14], for (S1, T1) close enough to

(S, T ), we have R(Ŝ1) = N(T̂1). Further α(S1, T1) 6= ∞ so that N(S1)
e⊂R(T1), i.e.

N(Ŝ1) ⊂ R(T̂1). By Lemma 7 we have

0 = dim N(Ŝ1)/(R(T̂1) ∩N(Ŝ1)) = dim N(T̂1)/(R(Ŝ1) ∩N(T̂1)).
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Consequently N(Ŝ1) = R(T̂1), i.e. N(S1)
e
=R(T1) and (S1, T1) is also a Fredholm

pair.
The equality ind (S1, T1) = ind (S, T ) for Fredholm pairs (S1, T1) close enough to

(S, T ) was proved in [2] and [3].

The next result — the stability of index under finite dimensional perturbations —
is an easy consequence of the corresponding result for Fredholm pairs, see [3], Theorem
3.10. We give a simpler proof.

Theorem 9. Let X,Y be Banach spaces, X0, Y0 their subspaces and S, S1 : X0 → Y ,
T, T1 : Y0 → X operators. Suppose that (S, T ) is a semi-Fredholm pair and that S−S1

and T − T1 are operators of finite rank. Then (S1, T1) is a semi-Fredholm pair and
ind (S1, T1) = ind (S, T ).

Proof. Clearly N(S)
e
=N(S1), N(T )

e
=N(T1), R(S)

e
=R(S1) and R(T )

e
=R(T1). So

dim N(S)/(R(T )∩N(S)) = ∞ if and only if dim N(S1)/(R(T1 ∩N(S1)) = ∞. Similar
equivalences are true also for the remaining terms appearing in the definition of the
index (8). Thus (S1, T1) is a semi-Fredholm pair. Further ind (S, T ) = ±∞ if and only
if ind (S1, T1) = ±∞.

Thus we can assume that ind (S, T ) is finite, i.e., N(S)
e
=R(T ) and N(T )

e
=R(S)

and both (S, T ) and (S1, T1) are Fredholm pairs.
It is sufficient to show that ind (S, T ) = ind (S1, T ). Indeed, from the symmetry

we have also ind (S1, T ) = ind (S1, T1).
Denote

M = N(S) ∩N(S1) ∩R(T ), M ′ = N(S) + N(S1) + R(T ),
L = R(S) ∩R(S1) ∩N(T ), L′ = R(S) + R(S1) + N(T ).

Clearly M ⊂ X0, L ⊂ Y0, dim M ′/M < ∞ and dim L′/L < ∞. Then

ind (S, T ) = dim N(S)/(N(S) ∩R(T ))− dim R(T )/(N(S) ∩R(T ))

− dim N(T )/(N(T ) ∩R(S)) + dim R(S)/(N(T ) ∩R(S))

= dim N(S)/M − dim R(T )/M − dim N(T )/L + dim R(S)/L

and similarly

ind (S1, T ) = dim N(S1)/M − dim R(T )/M − dim N(T )/L + dim R(S1)/L.

Thus

ind (S, T )− ind (S1, T ) = dim N(S)/M − dim N(S1)/M + dim R(S)/L− dim R(S1)/L.

Define operators S̃, S̃1 : X0/M → L′ by S̃(x + M) = Sx, S̃1(x + M) = S1x (x + M ∈
X0/M). Clearly R(S̃) = R(S), R(S̃1) = R(S1), dim N(S̃) = dim N(S)/M < ∞ and
dim N(S̃1) = dim N(S1)/M < ∞. Thus S̃, S̃1 are upper semi-Fredholm operators and
S̃ − S̃1 has finite rank.

Further

dim L′/L = dim L′/R(S) + dim R(S)/L = dim L′/R(S1) + dim R(S1)/L.
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Hence
ind (S, T )− ind (S1, T )

= dim N(S)/M − dim N(S1)/M − dim L′/R(S) + dim L′/R(S1)

= dim N(S̃)− codim R(S̃)− dim N(S̃1) + codim R(S̃1)

=ind (S̃)− ind (S̃1) = 0.

Theorem 10. Let X, Y be Banach spaces, let S, K : X → Y and T, L : Y → X be
operators, let K and L be compact and let (S, T ) and (S +K, T +L) be semi-Fredholm
pairs. Then ind (S + K, T + L) = ind (S, T ).

Proof. We use the approach of Ambrozie, see [3] or [4]. Set C = C〈0, 1〉. Since R(K)
and R(L) are separable Banach spaces, there exist isometric embeddings i : R(K) → C
and j : R(L) → C. Consider the spaces X ⊕ C and Y ⊕ C with `1-norms and let
G(−i) = {y ⊕ (−iy), y ∈ R(K)} and G(−j) = {x ⊕ (−jx), x ∈ R(L)} be the graphs
of −i and −j, respectively. Let E = (X ⊕ C)/G(−j) and F = (Y ⊕ C)/G(−i). Let
α : X → E and β : Y → F be defined by αx = (x⊕0)+G(−j) and βy = (y⊕0)+G(−i).
Since i and j are isometries, it is easy to check that α and β are isometries. Denote
X ′ = R(α) ⊂ E and Y ′ = R(β) ⊂ F . Thus X ′ and Y ′ are ”copies” of X and Y .
Denote by S′, T ′,K ′, L′ copies of S, T, K,L. More precisely, let S′, K ′ : X ′ → Y ′

and T ′, L′ : Y ′ → X ′ be defined by S′ = βSα−1, K ′ = βKα−1, T ′ = αTβ−1 and
L′ = αLβ−1.

Clearly ind (S′, T ′) = ind (S, T ) and ind (S′ + K ′, T ′ + L′) = ind (S + K,T + L).
Since operators iK : X → C and jL : Y → C are compact and C has the approximation
property, there exist finite dimensional operators Un : X → C and Vn : Y → C (n =
1, 2, . . .) such that ‖Un − iK‖ → 0 and ‖Vn − jL‖ → 0.

Define operators γ : C → F and δ : C → E by γc = (0 ⊕ c) + G(−i) and
δc = (0⊕ c) + G(−j) (c ∈ C). It is easy to check that γ and δ are isometries. Define
U ′

n : X ′ → F and V ′
n : Y ′ → E by U ′

n = γUnα−1 and V ′
n = δVnβ−1 (n = 1, 2, . . .).

Since ind (S′, T ′) = ind (S′ + U ′
n, T ′ + V ′

n) for every n, by Theorem 8 it is sufficient
to show that ‖K ′ − U ′

n‖ = ‖(S′ + K ′) − (S′ + U ′
n)‖ → 0 and ‖L′ − V ′

n‖ → 0. Let x′

be an element of X ′ with ‖x′‖ = 1. Let x′ = αx = (x ⊕ 0) + G(−j) for some x ∈ X,
‖x‖ = 1. Then

‖(K ′ − U ′
n)x′‖ = ‖(βK − γUn)x‖ = ‖[(Kx⊕ 0) + G(−i)]− [(0⊕ Unx) + G(−i)]‖

=‖(Kx⊕ (−Unx)) + G(−i)‖ = ‖0⊕ (iK − Un)x + G(−i)‖ = ‖γ((iK − Un)x)‖
=‖((iK − Un)x‖ ≤ ‖iK − Un‖.

Thus ‖K ′ − U ′
n‖ → 0 and similarly ‖L′ − V ′

n‖ → 0. This finishes the proof.

Definition. A chain is a sequence K = {Xi, δi}n
i=0 where X0, X1, . . . , Xn are Banach

spaces and δi : Xi → Xi+1 operators. Formally we set Xi = 0 for i < 0 or i > n and
δi = 0 (i < 0 or i ≥ n).

Thus a chain is an object of the following type:

K : 0−→X0
δ0−→X1

δ1−→ · · · δn−1−→Xn−→0.

We say that K is a semi-Fredholm chain if
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(1) the operators δ0, . . . , δn−1 have closed ranges,
(2) either

∑

i even
dim N(δi)/(R(δi−1) ∩N(δi)) +

∑

i odd

dim R(δi−1)/(R(δi−1) ∩N(δi))

or

∑

i odd

dim N(δi)/(R(δi−1) ∩N(δi)) +
∑

i even
dim R(δi−1)/(R(δi−1) ∩N(δi))

For a semi-Fredholm chain and for 0 ≤ i ≤ n define

αi(K) = dim N(δi)/(R(δi−1) ∩N(δi))− dim R(δi−1)/(R(δi−1) ∩N(δi))

and the index of K,

ind (K) =
n∑

i=0

(−1)iαi(K).

(Simply, a chain K is semi-Fredholm if the operators δi have closed ranges and the
index is well-defined.)

Remark. A semi-Fredholm chain K with |ind (K)| < ∞ was called a Fredholm essential
complex in [4] and [11]. In the present notation it would be logical to call it a Fredholm
chain.

For a chain K = {Xi, δi}n
i=0 denote

X =
⊕

i even
Xi, Y =

⊕

i odd

Xi, S =
⊕

i even
δi, and T =

⊕

i even
δi.

It is easy to see that the chain K is semi-Fredholm if and only if the corresponding
pair (S, T ) is semi-Fredholm and ind (K) = ind (S, T ). Thus we get the following
perturbation properties of semi-Fredholm chains:

Theorem 11. Let K = {Xi, δi}n
i=0 be a semi-Fredholm chain. Then there exists

ε > 0 such that, for every semi-Fredholm chain K′ = {Xi, δ
′
i}n

i=0 with ‖δ′i − δi‖ <
ε (i = 0, . . . , n− 1) we have
(1) αi(K′) ≤ αi(K) (i = 0, . . . , n),
(2) ind (K′) = ind (K).

Theorem 12. Let K = {Xi, δi}n
i=0 and K′ = {X ′

i, δ
′
i}n

i=0 be semi-Fredholm complexes
such that δ′i − δi are compact for i = 0, . . . , n− 1. Then ind (K′) = ind (K).

Remark. It is necessary to assume that K′ is semi-Fredholm.
Let H be a separable infinite dimensional Hilbert space and consider the following

complex:
K : 0−→H

δ0−→H ⊕H
δ1−→H ⊕H

δ2−→H−→0

11



where the mappings δi are defined by δ0h = h⊕ 0, δ1(h⊕ g) = 0⊕ g, δ2(h⊕ g) = h. It
is easy to check that K is exact.
(a) Let A : H → H be an operator with a small norm and non-closed range. Then

δ′1 : H ⊕H → H ⊕H defined by δ′1(h⊕ g) = Ah⊕ g has not closed range.
(b) Let ε be a small positive number. Define δ′′1 : H⊕H → H⊕H by δ′1(h⊕g) = εh⊕g.

Then δ′′1 has closed range but the chain

K′ : 0−→H
δ0−→H ⊕H

δ′′1−→H ⊕H
δ2−→H−→0

is not semi-Fredholm.
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