# Stability of index for semi-Fredholm chains 

V. Müller*


#### Abstract

We extend the recent stability results of Ambrozie for Fredholm essential complexes to the semi-Fredholm case.


Let $X, Y$ be Banach spaces. By an operator we always mean a bounded linear operator. The set of all operators from $X$ to $Y$ will be denoted by $\mathcal{L}(X, Y)$. Denote by $N(T)$ and $R(T)$ the kernel and range of an operator $T \in \mathcal{L}(X, Y)$.

Recall that an operator $T: X \rightarrow Y$ is called semi-Fredholm if it has closed range and at least one of the defect numbers $\alpha(T)=\operatorname{dim} N(T), \beta(T)=\operatorname{codim} R(T)$ is finite. If both of them are finite then $T$ is called Fredholm.

The index of a semi-Fredholm operator is defined by ind $(T)=\alpha(T)-\beta(T)$.
We list the most important classical stability results for semi-Fredholm operators:
Let $T: X \rightarrow Y$ be a semi-Fredholm operator. Then
(1) There exists $\varepsilon>0$ such that ind $T^{\prime}=\operatorname{ind} T$ for every (semi-Fredholm) operator $T^{\prime} \in \mathcal{L}(X, Y)$ with $\left\|T^{\prime}-T\right\|<\varepsilon$.
(2) There exists $\varepsilon>0$ such that $\alpha\left(T^{\prime}\right) \leq \alpha(T)$ and $\beta\left(T^{\prime}\right) \leq \beta(T)$ for every (semiFredholm) operator $T^{\prime} \in \mathcal{L}(X, Y)$ with $\left\|T^{\prime}-T\right\|<\varepsilon$.
(3) ind $\left(T^{\prime}\right)=\operatorname{ind}(T)$ for every (semi-Fredholm) operator $T^{\prime} \in \mathcal{L}(X, Y)$ such that $T-T^{\prime}$ is compact.
(the condition that $T^{\prime}$ is semi-Fredholm is satisfied automatically for operators close enough to $T$; this will not be the case in more general situations).

These results were generalized for Banach space complexes. By a complex it is meant an object of the following type:

$$
\mathcal{K}: \quad 0 \longrightarrow X_{0} \xrightarrow{\delta_{0}} X_{1} \xrightarrow{\delta_{1}} \cdots \xrightarrow{\delta_{n-2}} X_{n-1} \xrightarrow{\delta_{n-1}} X_{n} \longrightarrow 0
$$

where $X_{i}$ are Banach spaces and $\delta_{i}$ operators such that $\delta_{i+i} \delta_{i}=0$ for every $i$.
The complex $\mathcal{K}$ is semi-Fredholm if the operators $\delta_{i}$ have closed ranges and the index of $\mathcal{K}$,

$$
\operatorname{ind}(\mathcal{K})=\sum_{i=0}^{n}(-1)^{i} \alpha_{i}(\mathcal{K}), \quad \text { where } \quad \alpha_{i}(\mathcal{K})=\operatorname{dim}\left(N\left(\delta_{i}\right) / R\left(\delta_{i-1}\right)\right)
$$

is well-defined.
It was shown in [1], [14] that the index and the defect numbers $\alpha_{i}$ of semi-Fredholm complexes exhibit properties (1) and (2). Property (3) proved to be surprisingly difficult. Some partial results were obtained in [11] and for Fredholm complexes (or better to say for Fredholm essential complexes) it was proved recently by Ambrozie [2], [3].

The aim of this paper is to extend the above mentioned results to semi-Fredholm chains (for the definition see below).

[^0]We are going to use frequently the following elementary isomorphism result.
Lemma 1. Let $U, V$ be subspaces of a Banach space $X$. Then

$$
\operatorname{dim}(U+V) / V=\operatorname{dim} U /(U \cap V)
$$

Proof. The required isomorphism $U /(U \cap V) \rightarrow(U+V) / V$ is induced by the natural embedding $U \rightarrow U+V$.

If $U$ and $V$ are subspaces of a Banach space $X$ then we write for short $U \stackrel{e}{\subset} V$ ( $U$ is essentially contained in $V$ ) if $\operatorname{dim} U /(U \cap V)<\infty$. If $U{ }^{e} \subset V$ and $V \stackrel{e}{\subset} U$ then we write $U \stackrel{e}{=} V$.

Let $X$ be a Banach space. For closed subspaces $M_{1}, M_{2}$ of $X$ denote

$$
\delta\left(M_{1}, M_{2}\right)=\sup _{\substack{m \in M_{1} \\\|m\| \leq 1}} \operatorname{dist}\left\{m, M_{2}\right\}
$$

and the gap between $M_{1}$ and $M_{2}$ by

$$
\hat{\delta}\left(M_{1}, M_{2}\right)=\max \left\{\delta\left(M_{1}, M_{2}\right), \delta\left(M_{2}, M_{1}\right)\right\},
$$

see [9]. Clearly $\delta\left(M_{1}, M_{2}\right)=0$ if and only if $M_{1} \subset M_{2}$.
For convenience we recall the following result of Fainshtein [7]:
Theorem 2. Let $R, R_{1}, N, N_{1}$ be closed subspaces of a Banach space $X$ and let $R \subset N$.
(a) If $\delta\left(R, R_{1}\right)<1 / 3$ and $\delta\left(N_{1}, N\right)<1 / 3$ then

$$
\operatorname{dim} N_{1} /\left(R_{1} \cap N_{1}\right) \leq \operatorname{dim} N / R+\operatorname{dim} R_{1} /\left(R_{1} \cap N_{1}\right)
$$

(b) If $\hat{\delta}\left(R, R_{1}\right)<1 / 9$ and $\hat{\delta}\left(N_{1}, N\right)<1 / 9$ then

$$
\operatorname{dim} N_{1} /\left(R_{1} \cap N_{1}\right)=\operatorname{dim} N / R+\operatorname{dim} R_{1} /\left(R_{1} \cap N_{1}\right)
$$

We start with the following generalization of the previous result:
Theorem 3. Let $R, N$ be closed subspaces of a Banach space $X$, let $R \stackrel{e}{\subset} N$. Then there exists $\varepsilon>0$ such that, for all closed subspaces $R_{1}$ and $N_{1}$ of $X$ with $\delta\left(R, R_{1}\right)<\varepsilon$ and $\delta\left(N_{1}, N\right)<\varepsilon$, we have

$$
\operatorname{dim} R /(R \cap N)+\operatorname{dim} N_{1} /\left(R_{1} \cap N_{1}\right) \leq \operatorname{dim} R_{1} /\left(R_{1} \cap N_{1}\right)+\operatorname{dim} N /(R \cap N)
$$

Proof. For $R \subset N$ this is the first statement of the previous theorem. We reduce the general situation to this case.

Choose a finite dimensional subspace $F \subset R$ such that $(R \cap N) \oplus F=R$. Let $\operatorname{dim} F=k<\infty$ and let $f_{1}, \ldots, f_{k}$ be a basis in $F$ with $\left\|f_{1}\right\|=\cdots=\left\|f_{k}\right\|=1$. Clearly $F \cap N=\{0\}$.

For $f=\sum_{i=1}^{k} \alpha_{i} f_{i} \in F \quad\left(\alpha_{i} \in \mathbb{C}\right)$ consider three norms: $\|f\|$, dist $\{f, N\}$ and $\sum_{i=1}^{k}\left|\alpha_{i}\right|$. Since these three norms are equivalent, there exists $c>0$ such that

$$
c \cdot \sum_{i=1}^{k}\left|\alpha_{i}\right| \leq \operatorname{dist}\left\{\sum_{i=1}^{k} \alpha_{i} f_{i}, N\right\} \leq\left\|\sum_{i=1}^{k} \alpha_{i} f_{i}\right\| \leq \sum_{i=1}^{k}\left|\alpha_{i}\right|
$$

for all $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{C}$. Clearly $c \leq 1$.
Set $\varepsilon=\frac{c}{20}$. Let $R_{1}$ and $N_{1}$ be closed subspaces of $X$ such that $\delta\left(R, R_{1}\right)<\varepsilon$ and $\delta\left(N_{1}, N\right)<\varepsilon$.

For $i=1, \ldots, k$ find elements $g_{i} \in R_{1}$ such that $\left\|f_{i}-g_{i}\right\|<\varepsilon$. Then $\left\|g_{i}\right\|<$ $1+\varepsilon \quad(i=1, \ldots, k)$. Denote by $G$ the subspace of $R_{1}$ generated by $g_{1}, \ldots, g_{k}$.

We prove that $\operatorname{dim} G=k$. Indeed, if $\sum_{i=1}^{k} \alpha_{i} g_{i}=0$ for some $\alpha_{i} \in \mathbb{C}$ then

$$
0=\left\|\sum_{i=1}^{k} \alpha_{i} g_{i}\right\| \geq\left\|\sum_{i=1}^{k} \alpha_{i} f_{i}\right\|-\left\|\sum_{i=1}^{k} \alpha_{i}\left(g_{i}-f_{i}\right)\right\| \geq c \sum_{i=1}^{k}\left|\alpha_{i}\right|-\varepsilon \sum_{i=1}^{k}\left|\alpha_{i}\right|=\frac{19 c}{20} \sum_{i=1}^{k}\left|\alpha_{i}\right|
$$

so that $\alpha_{1}=\cdots=\alpha_{k}=0$.
Further $G \cap N_{1}=\{0\}$. Indeed, if $\sum_{i=1}^{k} \alpha_{i} g_{i} \in N_{1}$ for some $\alpha_{i} \in \mathbb{C}$ then

$$
\begin{aligned}
& \sum_{i=1}^{k}\left|\alpha_{i}\right| \leq c^{-1} \operatorname{dist}\left\{\sum_{i=1}^{k} \alpha_{i} f_{i}, N\right\} \leq c^{-1}\left[\sum_{i=1}^{k} \alpha_{i}\left\|f_{i}-g_{i}\right\|+\operatorname{dist}\left\{\sum_{i=1}^{k} \alpha_{i} g_{i}, N\right\}\right] \\
\leq & c^{-1} \varepsilon \sum_{i=1}^{k}\left|\alpha_{i}\right|+c^{-1}\left\|\sum_{i=1}^{k} \alpha_{i} g_{i}\right\| \cdot \delta\left(N_{1}, N\right) \leq\left(\frac{\varepsilon}{c}+\frac{\varepsilon(1+\varepsilon)}{c}\right) \cdot \sum_{i=1}^{k}\left|\alpha_{i}\right| \leq \frac{3}{20} \sum_{i=1}^{k}\left|\alpha_{i}\right|
\end{aligned}
$$

so that $\alpha_{i}=0 \quad(i=1, \ldots, k)$.
Denote $N^{\prime}=N+F$ and $N_{1}^{\prime}=N_{1}+G$. Clearly $N^{\prime}=N+R \supset R$.
We prove that $\delta\left(N_{1}^{\prime}, N^{\prime}\right)<1 / 3$. Let $n_{1}+\sum_{i=1}^{k} \alpha_{i} g_{i} \in N_{1}^{\prime}$ where $n_{1} \in N_{1}, \alpha_{i} \in$ $\mathbb{C}(i=1, \ldots, k)$ and $\left\|n_{1}+\sum_{i=1}^{k} \alpha_{i} g_{i}\right\|=1$. Then $\left\|n_{1}\right\| \leq 1+(1+\varepsilon) \sum_{i=1}^{k}\left|\alpha_{i}\right|$. There exists $n \in N$ such that $\left\|n_{1}-n\right\| \leq \varepsilon\left\|n_{1}\right\| \leq \varepsilon+\varepsilon(1+\varepsilon) \sum_{i=1}^{k}\left|\alpha_{i}\right|$. We have

$$
\begin{aligned}
& c \sum_{i=1}^{k}\left|\alpha_{i}\right| \leq \operatorname{dist}\left\{\sum_{i=1}^{k} \alpha_{i} f_{i}, N\right\} \leq\left\|\sum_{i=1}^{k} \alpha_{i} f_{i}+n\right\| \\
\leq & \left\|\sum_{i=1}^{k} \alpha_{i}\left(f_{i}-g_{i}\right)\right\|+\left\|\sum_{i=1}^{k} \alpha_{i} g_{i}+n_{1}\right\|+\left\|n-n_{1}\right\| \\
\leq & \varepsilon \sum_{i=1}^{k}\left|\alpha_{i}\right|+1+\varepsilon+\varepsilon(1+\varepsilon) \sum_{i=1}^{k}\left|\alpha_{i}\right| \leq 1+\varepsilon+3 \varepsilon \sum_{i=1}^{k}\left|\alpha_{i}\right| .
\end{aligned}
$$

Thus

$$
\sum_{i=1}^{k}\left|\alpha_{i}\right| \leq \frac{1+\varepsilon}{c-3 \varepsilon} \leq \frac{4}{3 c}
$$

and

$$
\begin{aligned}
& \quad \operatorname{dist}\left\{n_{1}+\sum_{i=1}^{k} \alpha_{i} g_{i}, N^{\prime}\right\} \leq\left\|n_{1}-n\right\|+\left\|\sum_{i=1}^{k} \alpha_{i}\left(f_{i}-g_{i}\right)\right\| \\
& \leq \varepsilon+\varepsilon(1+\varepsilon) \sum_{i=1}^{k}\left|\alpha_{i}\right|+\varepsilon \sum_{i=1}^{k}\left|\alpha_{i}\right|<1 / 3 .
\end{aligned}
$$

Hence $\delta\left(N_{1}^{\prime}, N^{\prime}\right)<1 / 3$ and, by Theorem 2 ,

$$
\begin{equation*}
\operatorname{dim} N_{1}^{\prime} /\left(R_{1} \cap N_{1}^{\prime}\right) \leq \operatorname{dim} N^{\prime} / R+\operatorname{dim} R_{1} /\left(R_{1} \cap N_{1}^{\prime}\right) \tag{1}
\end{equation*}
$$

We have

$$
\begin{align*}
\operatorname{dim} N_{1} /\left(R_{1} \cap N_{1}\right) & =\operatorname{dim}\left(N_{1}+R_{1}\right) / R_{1} \\
=\operatorname{dim}\left(N_{1}^{\prime}+R_{1}\right) / R_{1} & =\operatorname{dim} N_{1}^{\prime} /\left(R_{1} \cap N_{1}^{\prime}\right) \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{dim} N /(R \cap N)=\operatorname{dim}(N+R) / R=\operatorname{dim} N^{\prime} / R \tag{3}
\end{equation*}
$$

Further

$$
\begin{equation*}
\operatorname{dim} R /(R \cap N)=k \tag{4}
\end{equation*}
$$

and

$$
\begin{gather*}
\operatorname{dim} R_{1} /\left(R_{1} \cap N_{1}\right)=\operatorname{dim}\left(N_{1}+R_{1}\right) / N_{1}=\operatorname{dim}\left(N_{1}+R_{1}\right) /\left(N_{1}+G\right) \\
+\operatorname{dim}\left(N_{1}+G\right) / N_{1}=\operatorname{dim}\left(N_{1}^{\prime}+R_{1}\right) / N_{1}^{\prime}+k=\operatorname{dim} R_{1} /\left(R_{1} \cap N_{1}^{\prime}\right)+k . \tag{5}
\end{gather*}
$$

Thus, by (1)-(5), we have

$$
\begin{aligned}
& \quad \operatorname{dim} R /(R \cap N)+\operatorname{dim} N_{1} /\left(R_{1} \cap N_{1}\right)=k+\operatorname{dim} N_{1}^{\prime} /\left(R_{1} \cap N_{1}^{\prime}\right) \\
& \leq k+\operatorname{dim} N^{\prime} / R+\operatorname{dim} R_{1} /\left(R_{1} \cap N_{1}^{\prime}\right)=\operatorname{dim} R_{1} /\left(R_{1} \cap N_{1}\right)+\operatorname{dim} N /(R \cap N)
\end{aligned}
$$

Let $X, Y$ be Banach spaces and let $T \in \mathcal{L}(X, Y)$. Denote by $\gamma(T)$ the Kato reduced minimum modulus [9],

$$
\gamma(T)=\inf \{\|T x\|: \operatorname{dist}\{x, N(T)\}=1\}
$$

(if $T=0$ then $\gamma(T)=\infty$ ). It is well-known that $T$ has closed range if and only if $\gamma(T)>0$. Further, if $0<s<\gamma(T)$ and $y \in R(T)$ then there exists $x \in X$ with $T x=y$ and $\|x\| \leq s^{-1}\|y\|$.

The following lemma is well-known, cf. [7]. For convenience we include the proof.
Lemma 4. Let $X, Y$ be Banach spaces and let $T, T_{1} \in \mathcal{L}(X, Y)$ be operators with closed ranges. Then
(a) $\delta\left(N\left(T_{1}\right), N(T)\right) \leq \gamma(T)^{-1}\left\|T-T_{1}\right\|$,
(b) $\delta\left(R(T), R\left(T_{1}\right)\right) \leq \gamma(T)^{-1}\left\|T-T_{1}\right\|$.

Proof. Let $0<s<\gamma(T)$.
(a) Suppose $x \in N\left(T_{1}\right)$ and $\|x\| \leq 1$. Then $T x \in R(T)$ and $\|T x\|=\left\|\left(T-T_{1}\right) x\right\| \leq$ $\left\|T-T_{1}\right\|$ so that there exists $x^{\prime} \in X$ with $T x^{\prime}=T x$ and $\left\|x^{\prime}\right\| \leq s^{-1}\left\|T-T_{1}\right\|$. Since $x-x^{\prime} \in N(T)$ we have dist $\{x, N(T)\} \leq\left\|x^{\prime}\right\| \leq s^{-1}\left\|T-T_{1}\right\|$.

Thus $\delta\left(N\left(T_{1}\right), N(T)\right) \leq s^{-1}\left\|T-T_{1}\right\|$. Since $s$ was an arbitrary positive number, $s<\gamma(T)$, we have (a).
(b) Let $y \in R(T),\|y\| \leq 1$. Then there exists $x \in X$ with $T x=y$ and $\|x\| \leq s^{-1}$. Thus dist $\left\{y, R\left(T_{1}\right)\right\} \leq\left\|y-T_{1} x\right\|=\left\|\left(T-T_{1}\right) x\right\| \leq s^{-1}\left\|T-T_{1}\right\|$. As in (a) we get the statement.

We are going to use the construction introduced by Sadoskii/Buoni, Harte and Wickstead [12], [5], [8]. For a Banach space $X$ denote by $\ell^{\infty}(X)$ the Banach space of all bounded sequences of elements of $X$ (with the sup-norm). Let $m(X)$ be the set of all sequences $\left\{x_{i}\right\}_{i=1}^{\infty} \in \ell^{\infty}(X)$ such that the closure of the set $\left\{x_{i}: i=1,2, \ldots\right\}$ is compact. Then $m(X)$ is a closed subspace of $\ell^{\infty}(X)$. Denote $\widetilde{X}=\ell^{\infty}(X) / m(X)$.

If $T \in \mathcal{L}(X, Y)$ then $T$ defines pointwise an operator $T^{\infty}: \ell^{\infty}(X) \rightarrow \ell^{\infty}(Y)$ by $T^{\infty}\left(\left\{x_{i}\right\}_{i=1}^{\infty}\right)=\left\{T x_{i}\right\}_{i=1}^{\infty}$. Clearly $T^{\infty} m(X) \subset m(Y)$. Denote by $\widetilde{T}: \widetilde{X} \rightarrow \widetilde{Y}$ the operator induced by $T^{\infty}$.

We summarize the basic properties of the mappings $X \mapsto \widetilde{X}$ and $T \mapsto \widetilde{T}$, see [5], [6], [8], [10], [12].

Theorem 5. Let $X, Y, Z$ be Banach spaces, let $S, S^{\prime} \in \mathcal{L}(X, Y), T \in \mathcal{L}(Y, Z)$ and $\alpha \in \mathbb{C}$. Then
(1) $\widetilde{S}=0 \Leftrightarrow S$ is compact,
(2) $\widetilde{S+S^{\prime}}=\widetilde{S}+\widetilde{S}^{\prime}, \widetilde{\alpha S}=\alpha \widetilde{S}$,
(3) $\widetilde{T S}=\widetilde{T} \widetilde{S}$,
(4) $\|\widetilde{S}\| \leq\|S\|$,
(5) if $M \subset X$ is a subspace of a finite codimension, then $\|\widetilde{S}\| \leq 2\|S \mid M\|$,
(6) if $R(T)$ is closed then $R(\widetilde{T})$ is closed,
(7) if $S$ and $T$ have closed ranges then

$$
\begin{aligned}
& R(S) \stackrel{e}{\subset} N(T) \Leftrightarrow R(\widetilde{S}) \stackrel{e}{\subset} N(\widetilde{T}) \Leftrightarrow R(\widetilde{S}) \subset N(\widetilde{T}), \\
& N(T) \stackrel{e}{\subset} R(S) \Leftrightarrow N(\widetilde{T}) \stackrel{e}{\subset} R(\widetilde{S}) \Leftrightarrow N(\widetilde{T}) \subset R(\widetilde{S}) .
\end{aligned}
$$

Theorem 6. Let $X, Y, Z$ be Banach spaces, let $Y_{0}$ be a closed subspace of $Y$ and let $S: X \rightarrow Y$ and $T: Y_{0} \rightarrow Z$ be operators with closed ranges such that $R(S) \stackrel{e}{\complement} Y_{0}$. Then there exists $\eta>0$ such that

$$
\begin{array}{r}
\quad \operatorname{dim} R(S) /(R(S) \cap N(T))+\operatorname{dim} N\left(T_{1}\right) /\left(R\left(S_{1}\right) \cap N\left(T_{1}\right)\right) \\
\leq \operatorname{dim} R\left(S_{1}\right) /\left(R\left(S_{1}\right) \cap N\left(T_{1}\right)\right)+\operatorname{dim} N(T) /(R(S) \cap N(T)) \tag{6}
\end{array}
$$

for all operators $S_{1}: X \rightarrow Y, T_{1}: Y_{0} \rightarrow Z$ with closed ranges such that $\left\|T_{1}-T\right\|<\eta$ and $\left\|S_{1}-S\right\|<\eta$.

Proof. (a) Suppose $\operatorname{dim} R(S) /(R(S) \cap N(T))<\infty$. Set $R=R(T)$ and $N=N(T)$ and let $\varepsilon$ be the number constructed in Theorem 3. Set $\eta=\varepsilon \cdot \min \{\gamma(T), \gamma(S)\}$. If $\left\|T_{1}-T\right\|<\eta$ and $\left\|S_{1}-S\right\|<\eta$ then $\delta\left(N\left(T_{1}\right), N(T)\right)<\varepsilon$ and $\delta\left(R(T), R\left(T_{1}\right)\right)<\varepsilon$ so that Theorem 3 for $N_{1}=N\left(T_{1}\right)$ and $R_{1}=R\left(S_{1}\right)$ gives the required inequality.
(b) If $\operatorname{dim} R(S) /(R(S) \cap N(T))=\infty$ and $\operatorname{dim} N(T) /(R(S) \cap N(T))=\infty$ then the statement is clearly true.
(c) Suppose $\operatorname{dim} R(S) /(R(S) \cap N(T))=\infty$ and $\operatorname{dim} N(T) /(R(S) \cap N(T))<\infty$, i.e. $N(T) \stackrel{e}{\curvearrowleft} R(S)$. Denote $Y^{\prime}=R(S)+Y_{0}$. Let $T^{\prime}$ be any extension of $T$ to a bounded operator $T^{\prime}: Y^{\prime} \rightarrow Z$ (since $Y^{\prime}=Y_{0} \oplus M$ for some finite dimensional subspace $M$, we can define $T^{\prime} \mid M=0$ ).

We show first that the range of $T^{\prime} S$ is closed. We have $N\left(T^{\prime}\right) \stackrel{e}{=} N(T) \stackrel{e}{\subset} R(S)$. Let $F$ be a finite dimensional subspace of $N\left(T^{\prime}\right)$ such that $N\left(T^{\prime}\right) \subset R(S)+F$. It is sufficient to show that $R\left(T^{\prime} S\right)+T^{\prime} F$ is closed.

Let $x_{k} \in X, f_{k} \in F(k=1,2, \ldots)$ and let $T^{\prime} S x_{k}+T^{\prime} f_{k} \rightarrow z$ for some $z \in Z$. Since $R\left(T^{\prime}\right)$ is closed we have $z=T^{\prime} y$ for some $y \in Y_{0}+R(S)$. Thus $T^{\prime}\left(S x_{k}+f_{k}-y\right) \rightarrow 0$. Consider the operator $\hat{T}^{\prime}:\left(Y_{0}+R(S)\right) / N\left(T^{\prime}\right) \rightarrow Z$ induced by $T^{\prime}$. Clearly $R\left(\hat{T}^{\prime}\right)=$ $R\left(T^{\prime}\right)$ and $\hat{T}^{\prime}$ is injective, hence bounded below. Thus $S x_{k}+f_{k}-y+N\left(T^{\prime}\right) \rightarrow 0$ in $Y / N\left(T^{\prime}\right)$. So there are elements $y_{k} \in N\left(T^{\prime}\right)$ such that $S x_{k}+f_{k}+y_{k} \rightarrow y$ (in $Y$ ). Thus $y \in R(S)+F$ and $z=T^{\prime} y \in R\left(T^{\prime} S\right)+T^{\prime} F$. Consequently $R\left(T^{\prime} S\right)$ is closed.

Further $\operatorname{dim} R\left(T^{\prime} S\right)=\infty \quad$ (otherwise $R(S) \stackrel{e}{\subset} N\left(T^{\prime}\right) \stackrel{e}{=} N(T)$ which contradicts to the assumption that $\operatorname{dim} R(S) /(R(S) \cap N(T))=\infty)$, so that $T^{\prime} S$ is not compact. If $\widetilde{S}: \widetilde{X} \rightarrow \widetilde{Y^{\prime}}$ and $\widetilde{T^{\prime}}: \widetilde{Y^{\prime}} \rightarrow \widetilde{Z}$ are the operators defined above then $\widetilde{T^{\prime}} \widetilde{S} \neq 0$.

Set $\eta=\min \left\{\|S\|, \frac{\| \widetilde{T^{\prime} S \|}}{4\|S\|+2\|T\|}\right\}$. Let $S_{1}: X \rightarrow Y$ and $T_{1}: Y_{0} \rightarrow Z$ be operators with closed ranges such that $\left\|S_{1}-S\right\|<\eta$ and $\left\|T_{1}-T\right\|<\eta$. To prove (6) it is sufficient to show

$$
\begin{equation*}
\operatorname{dim} R\left(S_{1}\right) /\left(R\left(S_{1}\right) \cap N\left(T_{1}\right)\right)=\infty \tag{7}
\end{equation*}
$$

We may assume $R\left(S_{1}\right) \stackrel{e}{\subset} Y_{0}$; otherwise

$$
\operatorname{dim} R\left(S_{1}\right) /\left(R\left(S_{1}\right) \cap N\left(T_{1}\right)\right) \geq \operatorname{dim} R\left(S_{1}\right) /\left(R\left(S_{1}\right) \cap Y_{0}\right)=\infty
$$

and (7) is satisfied.
Denote $Y_{1}=Y^{\prime}+R\left(S_{1}\right)=Y_{0}+R(S)+R\left(S_{1}\right)$. Then $Y^{\prime}$ is a subspace of $Y_{1}$ of a finite codimension. Let $J: Y^{\prime} \rightarrow Y_{1}$ be the natural embedding and let $P: Y_{1} \rightarrow Y^{\prime}$ be a projection onto $Y^{\prime}$. Let $T_{1}^{\prime}$ be any extension of $T_{1}$ to an operator $T_{1}^{\prime}: Y_{1} \rightarrow Z$. Consider operators $\widetilde{S_{1}}: \widetilde{X} \rightarrow \widetilde{Y_{1}}, \widetilde{T_{1}^{\prime}}: \widetilde{Y_{1}} \rightarrow \widetilde{Z}, \widetilde{J}: \widetilde{Y^{\prime}} \rightarrow \widetilde{Y_{1}}$ and $\widetilde{P}: \widetilde{Y_{1}} \rightarrow \widetilde{Y^{\prime}}$. We have

$$
\begin{aligned}
T_{1}^{\prime} S_{1} & =\left(T^{\prime} P\right)(J S)+\left(T^{\prime} P\right)\left(S_{1}-J S\right)+\left(T_{1}^{\prime}-T^{\prime} P\right) S_{1} \\
& =T^{\prime} S+\left(T^{\prime} P\right)\left(S_{1}-J S\right)+\left(T_{1}^{\prime}-T^{\prime} P\right) S_{1}
\end{aligned}
$$

$\left\|\widetilde{S_{1}}-\widetilde{J S}\right\| \leq \eta,\left\|\widetilde{T_{1}^{\prime}}-\widetilde{T^{\prime} P}\right\| \leq 2\left\|T_{1}-T\right\| \leq 2 \eta$ and $\left\|\widetilde{T^{\prime} P}\right\| \leq\left\|\widetilde{T^{\prime}}\right\| \cdot\|\widetilde{P}\| \leq 2\|T\|$. Thus

$$
\left\|\widetilde{T_{1}^{\prime} S_{1}}\right\| \geq\left\|\widetilde{T^{\prime} S}\right\|-2 \eta\|\widetilde{T}\|-2 \eta\left\|\widetilde{S_{1}}\right\| \geq\left\|\widetilde{T^{\prime} S}\right\|-2 \eta(\|S\|+\eta)-2 \eta\|T\|>0
$$

so that $T_{1}^{\prime} S_{1}$ is not compact.
Consequently we have (7) (otherwise $R\left(S_{1}\right) \stackrel{e}{\subset} N\left(T_{1}\right) \stackrel{e}{=} N\left(T_{1}^{\prime}\right)$ and $\operatorname{dim} R\left(T_{1}^{\prime} S_{1}\right)<$ $\infty)$. This finishes the proof of Theorem 6.

Fredholm pairs of operators were defined in [2].

Definition. A Fredholm pair in $(X, Y)$ is a pair $(S, T)$ of operators $S: X_{0} \rightarrow Y$ and $T: Y_{0} \rightarrow X$ where $X_{0}$ and $Y_{0}$ are closed subspaces of $X$ and $Y$, respectively, such that $R(S) \stackrel{e}{=} N(T)$ and $R(T) \stackrel{e}{=} N(S)$. The index of a Fredholm pair is defined by

$$
\begin{align*}
\operatorname{ind}(S, T) & =\operatorname{dim} N(S) /(R(T) \cap N(S))-\operatorname{dim} R(T) /(R(T) \cap N(S))  \tag{8}\\
& -\operatorname{dim} N(T) /(R(S) \cap N(T))+\operatorname{dim} R(S) /(R(S) \cap N(T)) .
\end{align*}
$$

Note that if $(S, T)$ is a Fredholm pair then the ranges of $S$ and $T$ are closed.
This suggests the definition of semi-Fredholm pairs.

Definition. By a semi-Fredholm pair we mean a pair $(S, T)$ of operators $S: X_{0} \rightarrow Y$ and $T: Y_{0} \rightarrow X$ where $X_{0}$ and $Y_{0}$ are closed subspaces of $X$ and $Y$, respectively, such that
(1) $R(S) \stackrel{e}{\subset} Y_{0}$ and $R(T) \stackrel{e}{\subset} X_{0}$,
(2) $S$ and $T$ have closed ranges,
(3) either

$$
\operatorname{dim} N(S) /(R(T) \cap N(S))+\operatorname{dim} R(S) /(R(S) \cap N(T))<\infty
$$

or

$$
\operatorname{dim} N(T) /(R(S) \cap N(T))+\operatorname{dim} R(T) /(R(T) \cap N(S))<\infty
$$

For a semi-Fredholm pair $(S, T)$ we define the index of $(S, T)$ by (8).
Lemma 7. Let $X, Y$ be Banach spaces, let $S: X \rightarrow Y$ and $T: Y \rightarrow X$ be operators with closed ranges such that $R(S)=N(T)$ and $R(T) \subset N(S)$. Then there exists $\varepsilon>0$ such that

$$
\operatorname{dim} N(S) / R(T)+\operatorname{dim} R\left(T_{1}\right) /\left(R\left(T_{1}\right) \cap N\left(S_{1}\right)\right)=\operatorname{dim} N\left(S_{1}\right) /\left(R\left(T_{1}\right) \cap N\left(S_{1}\right)\right)
$$

for all operators $S_{1}: X \rightarrow Y$ and $T_{1}: Y \rightarrow X$ with closed ranges such that $\left\|S_{1}-S\right\|<\varepsilon$, $\left\|T_{1}-T\right\|<\varepsilon$ and $R\left(S_{1}\right) \subset N\left(T_{1}\right)$.
Proof. The sequence $X \xrightarrow{S} Y \xrightarrow{T} X$ is exact in the middle. By [14], Lemma 2.1 and [13], Corollary 2.2 there exist positive constants $\varepsilon_{1}>0$ and $c$ such that $R\left(S_{1}\right)=N\left(T_{1}\right)$, $\gamma\left(S_{1}\right) \geq c$ and $\gamma\left(T_{1}\right) \geq c$ for all operators $S_{1}: X \rightarrow Y, T_{1}: Y \rightarrow X$ with closed ranges satisfying $\left\|S_{1}-S\right\|<\varepsilon_{1},\left\|T_{1}-T\right\|<\varepsilon_{1}$ and $R\left(S_{1}\right) \subset N\left(T_{1}\right)$.

Set $\varepsilon=\min \left\{\varepsilon_{1}, \frac{c}{9}\right\}$. Let $S_{1}$ and $T_{1}$ be operators with closed ranges satisfying $\left\|S_{1}-S\right\|<\varepsilon,\left\|T_{1}-T\right\|<\varepsilon$ and $R\left(S_{1}\right) \subset N\left(T_{1}\right)$. Then, by Lemma 4, we have $\hat{\delta}\left(N(S), N\left(S_{1}\right)\right) \leq c^{-1}\left\|S_{1}-S\right\|<1 / 9$ and $\hat{\delta}\left(R(T), R\left(T_{1}\right)\right) \leq c^{-1}\left\|T_{1}-T\right\|<1 / 9$. By Theorem 2 (b), we have the required equality.

Theorem 8. Let $X, Y$ be Banach spaces, $X_{0} \subset X, Y_{0} \subset Y$ closed subspaces, let $S: X_{0} \rightarrow Y$ and $T: Y_{0} \rightarrow X$ be operators and let $(S, T)$ be a semi-Fredholm pair. Then there exists $\varepsilon>0$ such that ind $\left(S_{1}, T_{1}\right)=\operatorname{ind}(S, T)$ for every semi-Fredholm pair $\left(S_{1}, T_{1}\right)$ of operators $S_{1}: X_{0} \rightarrow Y$ and $T_{1}: Y_{0} \rightarrow X$ satisfying $\left\|S_{1}-S\right\|<\varepsilon$ and $\left\|T_{1}-T\right\|<\varepsilon$.

Proof. Denote

$$
\alpha(S, T)=\operatorname{dim} N(S) /(R(T) \cap N(S))-\operatorname{dim} R(T) /(R(T) \cap N(S))
$$

and

$$
\beta(S, T)=\operatorname{dim} N(T) /(R(S) \cap N(T))-\operatorname{dim} R(S) /(R(S) \cap N(T))
$$

Then ind $(S, T)=\alpha(S, T)-\beta(S, T)$.
By Theorem 6, $\alpha\left(S_{1}, T_{1}\right) \leq \alpha(S, T)$ and $\beta\left(S_{1}, T_{1}\right) \leq \beta(S, T)$ if $\left(S_{1}, T_{1}\right)$ is close enough to $(S, T)$.

We distinguish three cases:
(a) Let $\alpha(S, T)=-\infty$. Then $\alpha\left(S_{1}, T_{1}\right)=-\infty$ for every semi-Fredholm pair $\left(S_{1}, T_{1}\right)$ close enough to $(S, T)$. In particular ind $\left(S_{1}, T_{1}\right)=\operatorname{ind}(S, T)=-\infty$.

Similar considerations can be done if $\beta(S, T)=-\infty$.
In the rest of the proof we assume $\alpha(S, T) \neq-\infty$ and $\beta(S, T) \neq-\infty$ so that $R(S) \stackrel{e}{\subset} N(T)$ and $R(T) \stackrel{e}{\subset} N(S)$.

Denote $X^{\prime}=X_{0}+R(T)$ and $Y^{\prime}=Y_{0}+R(S)$ and fix any projections $P: X^{\prime} \xrightarrow{\text { onto }} X_{0}$ and $Q: Y^{\prime \text { onto }} Y_{0}$. Consider operators $\widetilde{S}: \widetilde{X}_{0} \rightarrow \widetilde{Y^{\prime}}$ and $\widetilde{T}: \widetilde{Y_{0}} \rightarrow \widetilde{X^{\prime}}$ and denote $\hat{S}=\widetilde{Q} \widetilde{S}: \widetilde{X_{0}} \rightarrow \widetilde{Y_{0}}$ and $\hat{T}=\widetilde{P} \widetilde{T}: \widetilde{Y_{0}} \rightarrow \widetilde{X_{0}}$. Since $R(Q S) \stackrel{e}{=} R(S) \stackrel{e}{\subset} N(T) \stackrel{e}{=} N(P T)$, we have $R(\hat{S}) \subset N(\hat{T})$ and similarly $R(\hat{T}) \subset N(\hat{S})$.

Analogously, for a semi-Fredholm pair of operators $S_{1}: X_{0} \rightarrow Y_{0}+R\left(S_{1}\right)$ and $T_{1}: Y_{0} \rightarrow X_{0}+R\left(T_{1}\right)$ denote $\hat{S}_{1}=\widetilde{Q_{1}} \widetilde{S_{1}}: \widetilde{X_{0}} \rightarrow \widetilde{Y_{0}}$ and $\hat{T}_{1}=\widetilde{P_{1}} \widetilde{T_{1}}: \widetilde{Y_{0}} \rightarrow \widetilde{X_{0}}$ where $P_{1}: X_{0}+R\left(T_{1}\right) \xrightarrow{\text { onto }} X_{0}$ and $Q_{1}: Y_{0}+R\left(S_{1}\right) \xrightarrow{\text { onto }} Y_{0}$ are any (fixed) projections. Since $S^{-1}\left(Y_{0}\right) \cap S_{1}^{-1}\left(Y_{0}\right)$ is a subspace of a finite codimension in $X_{0}$, by Theorem 5 (7) we have $\left\|\hat{S}-\hat{S}_{1}\right\| \leq 2\left\|S-S_{1}\right\|$. Similarly $\left\|\hat{T}-\hat{T}_{1}\right\| \leq 2\left\|T-T_{1}\right\|$.
(b) Let $\alpha(S, T)=\infty$. Since the pair $(S, T)$ is semi-Fredholm and $\beta(S, T) \neq-\infty$, $\beta(S, T)$ is finite, so that $R(S) \stackrel{e}{=} N(T)$ and $R(\hat{S})=N(\hat{T})$.

The equality ind $\left(S_{1}, T_{1}\right)=\operatorname{ind}(S, T)=\infty$ is true for every semi-Fredholm pair $\left(S_{1}, T_{1}\right)$ with $\beta\left(S_{1}, T_{1}\right)=-\infty$. If $\beta\left(S_{1}, T_{1}\right) \neq-\infty$ then $R\left(S_{1}\right)^{e} N\left(T_{1}\right)$ so that $R\left(\hat{S_{1}}\right) \subset$ $N\left(\hat{T}_{1}\right)$. If $\left(S_{1}, T_{1}\right)$ is close enough to $(S, T)$ then, by the previous lemma,

$$
\infty=\operatorname{dim} N(\hat{S}) / R(\hat{T})=\operatorname{dim} N\left(\hat{S}_{1}\right) /\left(R\left(\hat{T}_{1}\right) \cap N\left(\hat{S}_{1}\right)\right)-\operatorname{dim} R\left(\hat{T}_{1}\right) /\left(R\left(\hat{T}_{1}\right) \cap N\left(\hat{S}_{1}\right)\right)
$$

Hence $\operatorname{dim} N\left(\hat{S}_{1}\right) /\left(R\left(\hat{T}_{1}\right) \cap N\left(\hat{S}_{1}\right)\right)=\infty$ so that $\operatorname{dim} N\left(S_{1}\right) /\left(R\left(T_{1}\right) \cap N\left(S_{1}\right)\right)=\infty$ and $\operatorname{ind}\left(S_{1}, T_{1}\right)=\operatorname{ind}(S, T)=\infty$.

Similar considerations can be done in case of $\beta(S, T)=\infty$.
(c) It remains the case $|\alpha(S, T)|<\infty$ and $|\beta(S, T)|<\infty$. Then $(S, T)$ is a Fredholm pair, i.e. $R(\hat{S})=N(\hat{T})$ and $R(\hat{T})=N(\hat{S})$. Since $\left(S_{1}, T_{1}\right)$ is semi-Fredholm, either $\alpha\left(S_{1}, T_{1}\right) \neq-\infty$ or $\beta\left(S_{1}, T_{1}\right) \neq-\infty$. Without loss of generality we can assume $\beta\left(S_{1}, T_{1}\right) \neq-\infty$ so that $R\left(\hat{S}_{1}\right) \subset N\left(\hat{T}_{1}\right)$. By [13] or [14], for ( $\left.S_{1}, T_{1}\right)$ close enough to $(S, T)$, we have $R\left(\hat{S}_{1}\right)=N\left(\hat{T}_{1}\right)$. Further $\alpha\left(S_{1}, T_{1}\right) \neq \infty$ so that $N\left(S_{1}\right) \stackrel{e}{\subset} R\left(T_{1}\right)$, i.e. $N\left(\hat{S}_{1}\right) \subset R\left(\hat{T}_{1}\right)$. By Lemma 7 we have

$$
0=\operatorname{dim} N\left(\hat{S}_{1}\right) /\left(R\left(\hat{T}_{1}\right) \cap N\left(\hat{S}_{1}\right)\right)=\operatorname{dim} N\left(\hat{T}_{1}\right) /\left(R\left(\hat{S}_{1}\right) \cap N\left(\hat{T}_{1}\right)\right) .
$$

Consequently $N\left(\hat{S_{1}}\right)=R\left(\hat{T_{1}}\right)$, i.e. $N\left(S_{1}\right) \stackrel{e}{=} R\left(T_{1}\right)$ and $\left(S_{1}, T_{1}\right)$ is also a Fredholm pair.

The equality ind ( $S_{1}, T_{1}$ ) $=\operatorname{ind}(S, T)$ for Fredholm pairs $\left(S_{1}, T_{1}\right)$ close enough to $(S, T)$ was proved in [2] and [3].

The next result - the stability of index under finite dimensional perturbations is an easy consequence of the corresponding result for Fredholm pairs, see [3], Theorem 3.10. We give a simpler proof.

Theorem 9. Let $X, Y$ be Banach spaces, $X_{0}, Y_{0}$ their subspaces and $S, S_{1}: X_{0} \rightarrow Y$, $T, T_{1}: Y_{0} \rightarrow X$ operators. Suppose that $(S, T)$ is a semi-Fredholm pair and that $S-S_{1}$ and $T-T_{1}$ are operators of finite rank. Then ( $S_{1}, T_{1}$ ) is a semi-Fredholm pair and $\operatorname{ind}\left(S_{1}, T_{1}\right)=\operatorname{ind}(S, T)$.

Proof. Clearly $N(S) \stackrel{e}{=} N\left(S_{1}\right), N(T) \stackrel{e}{=} N\left(T_{1}\right), R(S) \stackrel{e}{=} R\left(S_{1}\right)$ and $R(T) \stackrel{e}{=} R\left(T_{1}\right)$. So $\operatorname{dim} N(S) /(R(T) \cap N(S))=\infty$ if and only if $\operatorname{dim} N\left(S_{1}\right) /\left(R\left(T_{1} \cap N\left(S_{1}\right)\right)=\infty\right.$. Similar equivalences are true also for the remaining terms appearing in the definition of the index (8). Thus ( $S_{1}, T_{1}$ ) is a semi-Fredholm pair. Further ind $(S, T)= \pm \infty$ if and only if ind $\left(S_{1}, T_{1}\right)= \pm \infty$.

Thus we can assume that ind $(S, T)$ is finite, i.e., $N(S) \stackrel{e}{=} R(T)$ and $N(T) \stackrel{e}{=} R(S)$ and both $(S, T)$ and $\left(S_{1}, T_{1}\right)$ are Fredholm pairs.

It is sufficient to show that ind $(S, T)=\operatorname{ind}\left(S_{1}, T\right)$. Indeed, from the symmetry we have also ind $\left(S_{1}, T\right)=\operatorname{ind}\left(S_{1}, T_{1}\right)$.

Denote

$$
\begin{aligned}
M & =N(S) \cap N\left(S_{1}\right) \cap R(T), & M^{\prime} & =N(S)+N\left(S_{1}\right)+R(T), \\
L & =R(S) \cap R\left(S_{1}\right) \cap N(T), & L^{\prime} & =R(S)+R\left(S_{1}\right)+N(T) .
\end{aligned}
$$

Clearly $M \subset X_{0}, L \subset Y_{0}, \operatorname{dim} M^{\prime} / M<\infty$ and $\operatorname{dim} L^{\prime} / L<\infty$. Then

$$
\begin{aligned}
\operatorname{ind}(S, T) & =\operatorname{dim} N(S) /(N(S) \cap R(T))-\operatorname{dim} R(T) /(N(S) \cap R(T)) \\
& -\operatorname{dim} N(T) /(N(T) \cap R(S))+\operatorname{dim} R(S) /(N(T) \cap R(S)) \\
& =\operatorname{dim} N(S) / M-\operatorname{dim} R(T) / M-\operatorname{dim} N(T) / L+\operatorname{dim} R(S) / L
\end{aligned}
$$

and similarly

$$
\operatorname{ind}\left(S_{1}, T\right)=\operatorname{dim} N\left(S_{1}\right) / M-\operatorname{dim} R(T) / M-\operatorname{dim} N(T) / L+\operatorname{dim} R\left(S_{1}\right) / L
$$

Thus
$\operatorname{ind}(S, T)-\operatorname{ind}\left(S_{1}, T\right)=\operatorname{dim} N(S) / M-\operatorname{dim} N\left(S_{1}\right) / M+\operatorname{dim} R(S) / L-\operatorname{dim} R\left(S_{1}\right) / L$.
Define operators $\tilde{S}, \tilde{S}_{1}: X_{0} / M \rightarrow L^{\prime}$ by $\tilde{S}(x+M)=S x, \tilde{S}_{1}(x+M)=S_{1} x \quad(x+M \in$ $\left.X_{0} / M\right)$. Clearly $R(\tilde{S})=R(S), R\left(\tilde{S}_{1}\right)=R\left(S_{1}\right)$, $\operatorname{dim} N(\tilde{S})=\operatorname{dim} N(S) / M<\infty$ and $\operatorname{dim} N\left(\tilde{S}_{1}\right)=\operatorname{dim} N\left(S_{1}\right) / M<\infty$. Thus $\tilde{S}, \tilde{S}_{1}$ are upper semi-Fredholm operators and $\tilde{S}-\tilde{S}_{1}$ has finite rank.

Further

$$
\operatorname{dim} L^{\prime} / L=\operatorname{dim} L^{\prime} / R(S)+\operatorname{dim} R(S) / L=\operatorname{dim} L^{\prime} / R\left(S_{1}\right)+\operatorname{dim} R\left(S_{1}\right) / L
$$

Hence

$$
\begin{aligned}
& \operatorname{ind}(S, T)-\operatorname{ind}\left(S_{1}, T\right) \\
= & \operatorname{dim} N(S) / M-\operatorname{dim} N\left(S_{1}\right) / M-\operatorname{dim} L^{\prime} / R(S)+\operatorname{dim} L^{\prime} / R\left(S_{1}\right) \\
= & \operatorname{dim} N(\tilde{S})-\operatorname{codim} R(\tilde{S})-\operatorname{dim} N\left(\tilde{S}_{1}\right)+\operatorname{codim} R\left(\tilde{S}_{1}\right) \\
= & \operatorname{ind}(\tilde{S})-\operatorname{ind}\left(\tilde{S}_{1}\right)=0 .
\end{aligned}
$$

Theorem 10. Let $X, Y$ be Banach spaces, let $S, K: X \rightarrow Y$ and $T, L: Y \rightarrow X$ be operators, let $K$ and $L$ be compact and let $(S, T)$ and $(S+K, T+L)$ be semi-Fredholm pairs. Then $\operatorname{ind}(S+K, T+L)=\operatorname{ind}(S, T)$.
Proof. We use the approach of Ambrozie, see [3] or [4]. Set $C=C\langle 0,1\rangle$. Since $\overline{R(K)}$ and $\overline{R(L)}$ are separable Banach spaces, there exist isometric embeddings $i: \overline{R(K)} \rightarrow C$ and $j: \overline{R(L)} \rightarrow C$. Consider the spaces $X \oplus C$ and $Y \oplus C$ with $\ell^{1}$-norms and let $G(-i)=\{y \oplus(-i y), y \in \overline{R(K)}\}$ and $G(-j)=\{x \oplus(-j x), x \in \overline{R(L)}\}$ be the graphs of $-i$ and $-j$, respectively. Let $E=(X \oplus C) / G(-j)$ and $F=(Y \oplus C) / G(-i)$. Let $\alpha: X \rightarrow E$ and $\beta: Y \rightarrow F$ be defined by $\alpha x=(x \oplus 0)+G(-j)$ and $\beta y=(y \oplus 0)+G(-i)$. Since $i$ and $j$ are isometries, it is easy to check that $\alpha$ and $\beta$ are isometries. Denote $X^{\prime}=R(\alpha) \subset E$ and $Y^{\prime}=R(\beta) \subset F$. Thus $X^{\prime}$ and $Y^{\prime}$ are "copies" of $X$ and $Y$. Denote by $S^{\prime}, T^{\prime}, K^{\prime}, L^{\prime}$ copies of $S, T, K, L$. More precisely, let $S^{\prime}, K^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ and $T^{\prime}, L^{\prime}: Y^{\prime} \rightarrow X^{\prime}$ be defined by $S^{\prime}=\beta S \alpha^{-1}, K^{\prime}=\beta K \alpha^{-1}, T^{\prime}=\alpha T \beta^{-1}$ and $L^{\prime}=\alpha L \beta^{-1}$.

Clearly ind $\left(S^{\prime}, T^{\prime}\right)=\operatorname{ind}(S, T)$ and $\operatorname{ind}\left(S^{\prime}+K^{\prime}, T^{\prime}+L^{\prime}\right)=\operatorname{ind}(S+K, T+L)$. Since operators $i K: X \rightarrow C$ and $j L: Y \rightarrow C$ are compact and $C$ has the approximation property, there exist finite dimensional operators $U_{n}: X \rightarrow C$ and $V_{n}: Y \rightarrow C \quad(n=$ $1,2, \ldots)$ such that $\left\|U_{n}-i K\right\| \rightarrow 0$ and $\left\|V_{n}-j L\right\| \rightarrow 0$.

Define operators $\gamma: C \rightarrow F$ and $\delta: C \rightarrow E$ by $\gamma c=(0 \oplus c)+G(-i)$ and $\delta c=(0 \oplus c)+G(-j) \quad(c \in C)$. It is easy to check that $\gamma$ and $\delta$ are isometries. Define $U_{n}^{\prime}: X^{\prime} \rightarrow F$ and $V_{n}^{\prime}: Y^{\prime} \rightarrow E$ by $U_{n}^{\prime}=\gamma U_{n} \alpha^{-1}$ and $V_{n}^{\prime}=\delta V_{n} \beta^{-1} \quad(n=1,2, \ldots)$.

Since ind $\left(S^{\prime}, T^{\prime}\right)=\operatorname{ind}\left(S^{\prime}+U_{n}^{\prime}, T^{\prime}+V_{n}^{\prime}\right)$ for every $n$, by Theorem 8 it is sufficient to show that $\left\|K^{\prime}-U_{n}^{\prime}\right\|=\left\|\left(S^{\prime}+K^{\prime}\right)-\left(S^{\prime}+U_{n}^{\prime}\right)\right\| \rightarrow 0$ and $\left\|L^{\prime}-V_{n}^{\prime}\right\| \rightarrow 0$. Let $x^{\prime}$ be an element of $X^{\prime}$ with $\left\|x^{\prime}\right\|=1$. Let $x^{\prime}=\alpha x=(x \oplus 0)+G(-j)$ for some $x \in X$, $\|x\|=1$. Then

$$
\begin{aligned}
& \left\|\left(K^{\prime}-U_{n}^{\prime}\right) x^{\prime}\right\|=\left\|\left(\beta K-\gamma U_{n}\right) x\right\|=\left\|[(K x \oplus 0)+G(-i)]-\left[\left(0 \oplus U_{n} x\right)+G(-i)\right]\right\| \\
= & \left\|\left(K x \oplus\left(-U_{n} x\right)\right)+G(-i)\right\|=\left\|0 \oplus\left(i K-U_{n}\right) x+G(-i)\right\|=\left\|\gamma\left(\left(i K-U_{n}\right) x\right)\right\| \\
= & \|\left(\left(i K-U_{n}\right) x\|\leq\| i K-U_{n} \| .\right.
\end{aligned}
$$

Thus $\left\|K^{\prime}-U_{n}^{\prime}\right\| \rightarrow 0$ and similarly $\left\|L^{\prime}-V_{n}^{\prime}\right\| \rightarrow 0$. This finishes the proof.
Definition. A chain is a sequence $\mathcal{K}=\left\{X_{i}, \delta_{i}\right\}_{i=0}^{n}$ where $X_{0}, X_{1}, \ldots, X_{n}$ are Banach spaces and $\delta_{i}: X_{i} \rightarrow X_{i+1}$ operators. Formally we set $X_{i}=0$ for $i<0$ or $i>n$ and $\delta_{i}=0 \quad(i<0$ or $i \geq n)$.

Thus a chain is an object of the following type:

$$
\mathcal{K}: \quad 0 \longrightarrow X_{0} \xrightarrow{\delta_{0}} X_{1} \xrightarrow{\delta_{1}} \cdots \xrightarrow{\delta_{n-1}} X_{n} \longrightarrow 0 .
$$

We say that $\mathcal{K}$ is a semi-Fredholm chain if
(1) the operators $\delta_{0}, \ldots, \delta_{n-1}$ have closed ranges,
(2) either

$$
\sum_{i \text { even }} \operatorname{dim} N\left(\delta_{i}\right) /\left(R\left(\delta_{i-1}\right) \cap N\left(\delta_{i}\right)\right)+\sum_{i \text { odd }} \operatorname{dim} R\left(\delta_{i-1}\right) /\left(R\left(\delta_{i-1}\right) \cap N\left(\delta_{i}\right)\right)
$$

or

$$
\sum_{i \text { odd }} \operatorname{dim} N\left(\delta_{i}\right) /\left(R\left(\delta_{i-1}\right) \cap N\left(\delta_{i}\right)\right)+\sum_{i \text { even }} \operatorname{dim} R\left(\delta_{i-1}\right) /\left(R\left(\delta_{i-1}\right) \cap N\left(\delta_{i}\right)\right)
$$

For a semi-Fredholm chain and for $0 \leq i \leq n$ define

$$
\alpha_{i}(\mathcal{K})=\operatorname{dim} N\left(\delta_{i}\right) /\left(R\left(\delta_{i-1}\right) \cap N\left(\delta_{i}\right)\right)-\operatorname{dim} R\left(\delta_{i-1}\right) /\left(R\left(\delta_{i-1}\right) \cap N\left(\delta_{i}\right)\right)
$$

and the index of $\mathcal{K}$,

$$
\operatorname{ind}(\mathcal{K})=\sum_{i=0}^{n}(-1)^{i} \alpha_{i}(\mathcal{K})
$$

(Simply, a chain $\mathcal{K}$ is semi-Fredholm if the operators $\delta_{i}$ have closed ranges and the index is well-defined.)

Remark. A semi-Fredholm chain $\mathcal{K}$ with $|\operatorname{ind}(\mathcal{K})|<\infty$ was called a Fredholm essential complex in [4] and [11]. In the present notation it would be logical to call it a Fredholm chain.

For a chain $\mathcal{K}=\left\{X_{i}, \delta_{i}\right\}_{i=0}^{n}$ denote

$$
X=\underset{i \text { even }}{\bigoplus_{i}} X_{i}, \quad Y=\bigoplus_{i \text { odd }} X_{i}, \quad S=\bigoplus_{i \text { even }} \delta_{i}, \quad \text { and } \quad T=\bigoplus_{i \text { even }} \delta_{i}
$$

It is easy to see that the chain $\mathcal{K}$ is semi-Fredholm if and only if the corresponding pair $(S, T)$ is semi-Fredholm and ind $(\mathcal{K})=$ ind $(S, T)$. Thus we get the following perturbation properties of semi-Fredholm chains:

Theorem 11. Let $\mathcal{K}=\left\{X_{i}, \delta_{i}\right\}_{i=0}^{n}$ be a semi-Fredholm chain. Then there exists $\varepsilon>0$ such that, for every semi-Fredholm chain $\mathcal{K}^{\prime}=\left\{X_{i}, \delta_{i}^{\prime}\right\}_{i=0}^{n}$ with $\left\|\delta_{i}^{\prime}-\delta_{i}\right\|<$ $\varepsilon(i=0, \ldots, n-1)$ we have
(1) $\alpha_{i}\left(\mathcal{K}^{\prime}\right) \leq \alpha_{i}(\mathcal{K}) \quad(i=0, \ldots, n)$,
(2) $\operatorname{ind}\left(\mathcal{K}^{\prime}\right)=\operatorname{ind}(\mathcal{K})$.

Theorem 12. Let $\mathcal{K}=\left\{X_{i}, \delta_{i}\right\}_{i=0}^{n}$ and $\mathcal{K}^{\prime}=\left\{X_{i}^{\prime}, \delta_{i}^{\prime}\right\}_{i=0}^{n}$ be semi-Fredholm complexes such that $\delta_{i}^{\prime}-\delta_{i}$ are compact for $i=0, \ldots, n-1$. Then $\operatorname{ind}\left(\mathcal{K}^{\prime}\right)=\operatorname{ind}(\mathcal{K})$.

Remark. It is necessary to assume that $\mathcal{K}^{\prime}$ is semi-Fredholm.
Let $H$ be a separable infinite dimensional Hilbert space and consider the following complex:

$$
\mathcal{K}: \quad 0 \longrightarrow H \xrightarrow{\delta_{0}} H \oplus H \xrightarrow{\delta_{1}} H \oplus H \xrightarrow{\delta_{2}} H \longrightarrow 0
$$

where the mappings $\delta_{i}$ are defined by $\delta_{0} h=h \oplus 0, \delta_{1}(h \oplus g)=0 \oplus g, \delta_{2}(h \oplus g)=h$. It is easy to check that $\mathcal{K}$ is exact.
(a) Let $A: H \rightarrow H$ be an operator with a small norm and non-closed range. Then $\delta_{1}^{\prime}: H \oplus H \rightarrow H \oplus H$ defined by $\delta_{1}^{\prime}(h \oplus g)=A h \oplus g$ has not closed range.
(b) Let $\varepsilon$ be a small positive number. Define $\delta_{1}^{\prime \prime}: H \oplus H \rightarrow H \oplus H$ by $\delta_{1}^{\prime}(h \oplus g)=\varepsilon h \oplus g$. Then $\delta_{1}^{\prime \prime}$ has closed range but the chain

$$
\mathcal{K}^{\prime}: \quad 0 \longrightarrow H \xrightarrow{\delta_{0}} H \oplus H \xrightarrow{\delta_{1}^{\prime \prime}} H \oplus H \xrightarrow{\delta_{2}} H \longrightarrow 0
$$

is not semi-Fredholm.

## References

[1] E. Albrecht, F.-H. Vasilescu, Stability of the index of a semi-Fredholm complex of Banach spaces, J. Functional Analysis 66(1986), 141-172.
[2] C.-G. Ambrozie, Stability of the index of a Fredholm symmetrical pair, J. Operator Theory 25 (1991), 61-69.
[3] C.-G. Ambrozie, The solution of a problem on Fredholm complexes, preprint No. 30/94, Institutul de Matematici al Academici Roman, Bucuresti.
[4] C.-G. Ambrozie, F.-H. Vasilescu, Banach space complexes, to appear.
[5] J.J. Buoni, R. Harte, T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc. 66 (1977), 309-314.
[6] A.S. Fainshtein, Stability of Fredholm complexes of Banach spaces with respect to perturbations which are small in $q$-norm (Russian), SSR Ser. Fiz.-Tehn. Mat. Nauk 1 (1980), 3-8, Izv. Akad. Nauk Azerbaidžan.
[7] A.S. Fainshtein, On the gap between subspaces of a Banach space (Russian), Inst. Mat. Mech. Akad. Azerb. SSR, Baku, 1983.
[8] R. Harte, T. Wickstead, Upper and lower Fredholm spectra II., Math, Zeit. 154 (1977), 253-256.
[9] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin 1966.
[10] A. Lebow, M. Schechter, Semigroups of operators and measures of non-compactness, J. Funct. Anal. 7 (1971), 1-26.
[11] M. Putinar, Some invariants for semi-Fredholm systems of essentially commuting operators, J. Operator Theory 8 (1982), 65-90.
[12] B.N. Sadoskii, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 85-155.
[13] J.L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191.
[14] F.-H. Vasilescu, Stability of the index of a complex of Banach spaces, J. Operator Theory 2 (1979), 247-275.

Mathematical Institute AV ČR
Žitná 25, 11567 Praha 1
Czech Republic


[^0]:    * The research was supported by the grant No. 201/96/0411 of GA ČR.

