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Abstract. The stability of compressions of stable contractions is studied and a
sufficient orbit condition is given. On the other hand, it is shown that there are
non-stable compressions of the 1-dimensional backward shift and a complete
characterization of weighted unilateral shifts with this property is provided.
Dilations of bilateral weighted shifts to backward shifts are also considered.
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1. Introduction

Let H be a complex Hilbert space, and let L(H) denote the C∗-algebra of all

bounded linear operators acting on H. An operator T ∈ L(H) is called stable, if

its positive powers converge to zero in the strong operator topology, that is when

limn→∞ ‖Tnx‖ = 0 for every x ∈ H. The Banach–Steinhaus Theorem shows that

each stable operator T is power bounded, which means the boundedness of the

norm-sequence {‖Tn‖}n∈N, indexed by the set N of positive integers.

Let P (H) stand for the set of all orthogonal projections in L(H). We are

interested in the question whether the stability of T ∈ L(H) implies the stability

of the operator TP := PTP ∈ L(H), for a projection P ∈ P (H). Let R(P ) denote

the range of P . The operator PT |R(P ) ∈ L(R(P )) is called the compression of

T to the subspace R(P ). The equations Tn
P = P (TP )n, (PT )n = Tn−1

P T and

(TP )n = T (PT )n−1P (n ∈ N) show that the operators TP , PT , TP and the

compression of T to the subspace R(P ) are stable at the same time.
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If the Hilbert space H is non-separable, then it can be decomposed into an

orthogonal sum of separable subspaces, which are reducing for both T and P .

Hence, we can and shall assume that H is separable.

Let P (T ) be the set of all projections in P (H), whose range is an invari-

ant subspace of T . For P ∈ P (T ), the operator T |R(P ) ∈ L(R(P )) is called

the restriction of T to its invariant subspace R(P ). The elements of the set

Ps(T ) := {P1 −P2 : P1, P2 ∈ P (T ), P1 ≥ P2} are the projections whose ranges are

semiinvariant subspaces of T . It can be easily seen that, for any P ∈ Ps(T ), the

equality Tn
P = PTnP is true for every n ∈ N. Thus, the stability of T is inherited

by TP in that case.

Changing the viewpoint, passing from the compression to the operator on

the larger space, another terminology is also in use. Let F and G be Hilbert spaces.

We say that an operator A ∈ L(F ) can be dilated to an operator B ∈ L(G), in

notation: A
d≺ B, if there exists an isometry Z ∈ L(F,G) such that A = Z∗BZ.

This happens precisely when A is unitarily equivalent to a compression of B to a

subspace of G. The operator A can be power dilated to B, in notation: A
pd≺ B, if

there exists an isometry Z ∈ L(F,G) such that An = Z∗BnZ for every n ∈ N. It

is known that A
pd≺ B if and only if A is unitarily equivalent to the compression

of B to a subspace semiinvariant with respect to B (see [S, Lemma 0]). If B is

stable and A can be power dilated to B, then A is clearly stable. The question is

whether the stability of B implies the stability of A, if A can be only dilated to

B. We give a simple example which shows that the answer is negative in such a

generality.

An operator T is called uniformly stable, if limn→∞ ‖Tn‖ = 0. This hap-

pens if and only if its spectral radius r(T ) is less than 1. In general, even the

uniform stability of T does not imply the stability of TP . Indeed, let (e1, e2) be

an orthonormal basis in the Hilbert space H, and let T ∈ L(H) be defined by

Te1 := 2e2, T e2 := 0. Then T 2 = 0, and so T is uniformly stable. On the other

hand, if P ∈ P (H) is the projection onto the 1-dimensional subspace spanned by

the vector e1+e2, then TP (e1+e2) = PT (e1+e2) = P (2e2) = e1+e2, and so TP is

not stable. Therefore, the stability of TP could be expected only under additional

conditions.

It is natural to make the assumption that T ∈ L(H) is a contraction:

‖T‖ ≤ 1. Actually, the question whether compressions of stable contractions are

also stable was posed to the first named author by Rongwei Yang. If T is a strict

contraction then the answer is obviously positive, since ‖TP ‖ ≤ ‖T‖ < 1 implies
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the uniform stability of TP . It is also easy to verify that the stability of the contrac-

tion T is inherited by TP if the projection P has finite rank. Indeed, it is enough

to show that r(TP ) < 1. Assuming r(TP ) = 1, there exist λ ∈ C, |λ| = 1 and

0 6= x ∈ H such that TPx = λx. Since ‖x‖ = ‖TPx‖ ≤ ‖TPx‖ ≤ ‖Px‖ ≤ ‖x‖, we

infer that Tx = λx, which contradicts to the stability of T .

By a well-known theorem of C. Foias, restrictions of the infinite dimen-

sional backward shift provide all stable contractions. To be more precise, for any

1 ≤ n ≤ ∞ (:= ℵ0) fix an n-dimensional Hilbert space En, and let us consider the

corresponding Hardy space H2(En). The operator Sn ∈ L(H2(En)) of multiplica-

tion by the identical function χ(z) = z is the n-dimensional unilateral shift, and its

adjoint Bn := S∗n ∈ L(H2(En)) is the n-dimensional backward shift. We recall that

the defect operators of a contraction T ∈ L(H) are defined by DT := (I − T ∗T )
1
2

and DT∗ := (I−TT ∗) 1
2 . The defect spaces of T are the closures of the ranges of the

defect operators: DT := (DTH)−, DT∗ := (DT∗H)−, and dT := dimDT , dT∗ :=
dimDT∗ are the defect numbers of T . (For more information on the role of these

objects in the study of Hilbert space contractions, we refer to the monograph

[NF].) Let ST denote the operator of multiplication by χ on H2(DT ). The adjoint

BT = S∗T is unitarily equivalent to Bn, where n = dT . If the contraction T is stable,

then the transformation ZT : H → H2(DT ), h 7→ ∑∞
n=0 χ

nDTT
nh is an isometry,

whose range is invariant for BT . Since T = Z∗TBTZT , we can see that T is unitarily

equivalent to a restriction of B∞. Taking into account that compressions of restric-

tions of B∞ are compressions of B∞, we obtain that Yang’s question is equivalent

to the problem whether all compressions of the infinite dimensional backward shift

B∞ are stable. (We mention also that by a recent result of J.-C. Bourin in [B],

for any sequence {An}n∈N of strict contractions with supn ‖An‖ < 1, there exists

a decomposition H2(E∞) =
∑∞

n=1⊕ Mn such that An is unitarily equivalent to

the compression of B∞ to Mn for all n.)

In [TW] K. Takahashi and P.Y. Wu studied the question which contractions

can be dilated to a unilateral shift. They proved that if at least one of the defect

indices of the contraction T is finite, and if T can be dilated to B∞, then T is

stable. Another result due to C. Benhida and D. Timotin states that if T ∈ L(H)
is a stable contraction with dT∗ <∞, and if for P ∈ P (H) the projection I−P has

finite rank, then the operator TP is also stable (see [BT, Lemma 3.3]). In Section

2 we give an orbit condition yielding the stability for compressions of B∞.

In view of a general theorem on contractions, it can be easily justified that if

a non-stable contraction T can be dilated to B∞, then contractions similar to the

unilateral shift S1 can also be dilated to B∞. Indeed, T is necessarily completely
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non-unitary, and its residual set ρ(T ) is of positive Lebesgue measure. (We recall

that the Borel subset ρ(T ) of the unit circle T is the support of the spectral measure

of the canonical unitary operator associated with T ; for its detailed study we refer

to [K2].) Choosing an appropriate sequence {αn}n∈N on T, it can be attained

that ρ(T1) = T holds for the orthogonal sum T1 =
∑∞

n=1⊕ αnT . Then, by [K1,

Theorem 3] there exists a subspace M1, invariant for T1, such that the restriction

T2 := T1|M1 is similar to S1. Taking into account that α1B∞ ⊕ α2B∞ ⊕ · · · is

unitarily equivalent to B∞, we infer that T2 can be dilated to B∞.

It is proved in Section 3 that there are indeed non-stable unilateral weighted

shifts, similar to S1, which can be dilated even to B1, and so the answer to

Yang’s question is negative. Actually, a complete characterization of such uni-

lateral weighted shifts is given. Finally, in Section 4, dilations of bilateral weighted

shifts into backward shifts are studied.

2. Orbit condition

We are going to show that a contraction, which is close to an isometry regarding

the behaviour of the orbit of a vector, cannot be dilated to the infinite dimen-

sional backward shift B∞ ∈ L(H2(E∞)). The proof relies on some elementary

inequalities.

Let us fix a projection P ∈ P (H2(E∞)), and let us consider the operator

BP := (B∞)P = PB∞P ∈ L(H2(E∞)). We shall examine the orbit {Bn
Pu}n∈N of

an arbitrarily chosen vector u ∈ H2(E∞) under the action of BP .

Let Z+ denote the set of non-negative integers. For any k ∈ Z+, let Ek ∈
P (H2(E∞)) be the projection onto the subspace Sk

∞E∞. (Here E∞ is identified

with the set of constant functions in H2(E∞).) The projections {Ek}∞k=0 are pair-

wise orthogonal, and the series
∑∞

k=0Ek converges to the identity operator I in

the strong operator topology.

Lemma 1. The constant components of the orbit vectors converge to zero:

lim
n→∞

‖E0B
n
Pu‖ = 0.

Proof. The equation B∞E0 = 0 implies that Bn+1
P u = PB∞(I − E0)Bn

Pu holds,

for every n ∈ N. Thus ‖Bn+1
P u‖2 ≤ ‖(I − E0)Bn

Pu‖2 = ‖Bn
Pu‖2 − ‖E0B

n
Pu‖2,

whence ‖E0B
n
Pu‖2 ≤ ‖Bn

Pu‖2 − ‖Bn+1
P u‖2 follows. Since BP is a contraction, the

sequence {‖Bn
Pu‖}n∈N converges decreasingly to a non-negative number. Hence

the dominating sequence {‖Bn
Pu‖2 − ‖Bn+1

P u‖2}n∈N tends to zero, which yields

the statement. Q.E.D.
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By the next lemma each Fourier coefficient of the vectors in the orbit con-

verges to zero.

Lemma 2.
(a) For every n ∈ N, ‖(I − P )B∞Bn

Pu‖2 ≤ ‖Bn
Pu‖2 − ‖Bn+1

P u‖2.
(b) For every n ∈ N, k ∈ Z+, we have

‖Ek+1B
n
Pu‖ ≤ ‖EkB

n+1
P u‖+

(‖Bn
Pu‖2 − ‖Bn+1

P u‖2)
1
2 .

(c) For every k ∈ Z+, limn→∞ ‖EkB
n
Pu‖ = 0 is true.

Proof. (a): It is immediate that ‖(I − P )B∞Bn
Pu‖2 = ‖B∞Bn

Pu‖2 − ‖Bn+1
P u‖2 ≤

‖Bn
Pu‖2 − ‖Bn+1

P u‖2.
(b): Taking into account that EkB∞ = B∞Ek+1, we can write B∞Ek+1B

n
P =

EkB∞Bn
P = EkB

n+1
P + Ek(I − P )B∞Bn

P . Hence

‖Ek+1B
n
Pu‖ = ‖B∞Ek+1B

n
Pu‖ ≤ ‖EkB

n+1
P u‖+ ‖(I − P )B∞Bn

Pu‖
is true, and an application of (a) yields the requested inequality.

(c): This statement follows by induction on k, relying on (b) and Lemma 1. Q.E.D.

For any k ∈ Z+, let us consider the projectionQk :=
∑∞

j=k Ej ∈ P (H2(E∞)).

Lemma 3. For every n, l ∈ N and k ∈ Z+, we have

‖QkB
n+l
P u‖ ≤ ‖Qk+lB

n
Pu‖+

n+l−1∑

j=n

(
‖Bj

Pu‖2 − ‖Bj+1
P u‖2

) 1
2
.

Proof. Since QkB∞ = B∞Qk+1, we infer that

QkB
n+1
P = QkB∞Bn

P −Qk(I − P )B∞Bn
P = B∞Qk+1B

n
P −Qk(I − P )B∞Bn

P .

Hence ‖QkB
n+1
P u‖ ≤ ‖Qk+1B

n
Pu‖+‖(I−P )B∞Bn

Pu‖, and so Lemma 2.(a) yields

the required inequality for l = 1. Then the statement can be verified by induction

on l. Q.E.D.

Now, we are ready to prove our theorem.

Theorem 4. If
∑∞

n=1

(‖Bn
Pu‖2 − ‖Bn+1

P u‖2)
1
2 <∞, then limn→∞ ‖Bn

Pu‖ = 0.

Proof. In view of Lemma 3, the inequality

‖Bn+l
P u‖ ≤

k−1∑

j=0

‖EjB
n+l
P u‖+ ‖Qk+lB

n
Pu‖+

∞∑

j=n

(
‖Bj

Pu‖2 − ‖Bj+1
P u‖2

) 1
2

holds, for any k, l, n ∈ N. Given a positive ε, let us choose n0 ∈ N so that
∞∑

j=n0

(
‖Bj

Pu‖2 − ‖Bj+1
P u‖2

) 1
2
< ε/3.
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Since limk→∞ ‖QkB
n0
P u‖ = 0, we can find k0 ∈ N such that ‖Qk0+lB

n0
P u‖ < ε/3

is true for every l ∈ N. Finally, by Lemma 2.(c) there exists l0 ∈ N such that∑k0−1
j=0 ‖EjB

n0+l
P u‖ < ε/3 is valid, for every l ≥ l0. Then ‖Bn0+l

P u‖ < ε is fulfilled

for l ≥ l0, which proves the statement. Q.E.D.

By the aforementioned theorem of Foias we obtain the following immediate

consequence of Theorem 4.

Corollary 5. Let T ∈ L(H) be a stable contraction, and let P ∈ P (H), x ∈ H be

given. If
∑∞

n=1

(‖Tn
P x‖2 − ‖Tn+1

P x‖2)
1
2 <∞, then limn→∞ ‖Tn

P x‖ = 0.

3. Dilation of unilateral weighted shifts

The simplest examples for contractions similar to S1 can be found in the class of

unilateral weighted shifts.

Let {vk}k∈N be an orthonormal basis in the Hilbert space K. Given any

bounded sequence {wk}k∈N of complex numbers, let us consider the operator W ∈
L(K), defined by Wvk := wkvk+1 (k ∈ N). The unilateral weighted shift W is

a contraction precisely when |wk| ≤ 1 for every k ∈ N. All such contractions are

obtained up to unitary equivalence assuming that wk belongs to the closed interval

[0, 1], for every k ∈ N. Therefore we can assume that wk ∈ [0, 1] for all k ∈ N.

It is easy to verify that W is non-stable if and only if
∏∞

k=k0
wk > 0 for

some k0 ∈ N, which happens exactly when
∑∞

k=1(1 − wk) < ∞. Furthermore,

this condition is equivalent to the decomposability of W in the form W = W0 ⊕
W1, where W0 is a nilpotent operator on a finite dimensional space, and W1 is a

unilateral weighted shift similar to S1.

Let us assume that W is a non-stable contraction (that is {wk}k∈N ⊂ [0, 1]
and

∑∞
k=1(1 − wk) < ∞), and that W can be dilated to the infinite dimen-

sional backward shift B∞. There exists k0 ∈ N such that
∏∞

k=k0
wk > 0. Since

limn→∞ ‖Wnvk0‖ = limn→∞
∏k0+n−1

k=k0
wk > 0, we infer by Theorem 4 that

∞∑
n=1

(‖Wnvk0‖2 − ‖Wn+1vk0‖2
) 1

2 = ∞.

Taking into account that, for every n ∈ N,

(‖Wnvk0‖2 − ‖Wn+1vk0‖2
) 1

2 =

(
k0+n−1∏

k=k0

wk

)
(1− w2

k0+n)
1
2 ≤ 2(1− wk0+n)

1
2 ,

we conclude that
∑∞

k=1(1− wk)
1
2 = ∞.
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We shall show that under these conditions W can be really dilated to B∞,

even more, it can be dilated to the 1-dimensional backward shift B1. Namely, we

are going to prove the following theorem.

Theorem 6. Let W ∈ L(K) be the unilateral weighted shift corresponding to the

weight sequence {wk}k∈N ⊂ [0, 1], satisfying the condition
∑∞

k=1(1 − wk) < ∞.

The non-stable contraction W can be dilated to B∞ if and only if it can be dilated

to B1, which happens exactly when
∑∞

k=1(1− wk)
1
2 = ∞.

It is easy to find sequences satisfying the previous conditions. For example,

these are fulfilled if wk = 1 − εk−p (k ∈ N) with 1 < p ≤ 2 and 0 < ε < 1.

Therefore, the answer for Yang’s question is negative: there are stable contractions

having non-stable compressions. We note also that if ε is small, then the similarity

constant s(W,S1) := inf{‖Q‖ · ‖Q−1‖ : QW = S1Q} can be arbitrarily close to 1.

Proof. Let {wk}k∈N ⊂ [0, 1] be a weight sequence satisfying the conditions
∑∞

k=1(1−
wk) <∞ and

∑∞
k=1(1−wk)

1
2 = ∞. We have to show that the corresponding uni-

lateral weighted shift W ∈ L(K), Wvk := wkvk+1 (k ∈ N), can be dilated to

B1.

For any k ∈ N, let α(k) ∈ [0, π
2 ] be defined by cosα(k) = wk. The assumption∑∞

k=1(1 − wk) < ∞ yields that limk→∞ α(k) = 0. Taking into account that (1 −
wk)

1
2 ≤ (1−w2

k)
1
2 = sinα(k) ≤ 2(1−wk)

1
2 and 2

πα(k) ≤ sinα(k) ≤ α(k) (k ∈ N),
the assumption

∑∞
k=1(1−wk)

1
2 = ∞ can be equivalently expressed as

∑∞
k=1 α(k) =

∞. For any i, j ∈ N, i ≤ j, let us use the notation α(i, j) :=
∑j

k=i α(k).
With {α(k)}k∈N we associate three sequences: {kj}∞j=0 ⊂ Z+, {α̃(j)}∞j=0 ⊂

[0, π
2 ] and {rj}∞j=0 ⊂ N in the following way. Setting k0 := 0 and α̃(0) := 0, let us

assume that {ki}j
i=0 and {α̃(i)}j

i=0 have already been defined, for j ∈ Z+. Then

kj+1 is defined as the minimum of the integers k satisfying the conditions k > kj

and α̃(j)+α(kj+1, k) > 5π
2 . (The assumption

∑∞
i=1 α(i) = ∞ ensures the existence

of such a k. Clearly, kj+1 > kj + 4.) Since 0 ≤ 5π
2 − (α̃(j) + α(kj + 1, kj+1 − 1)) <

α(kj+1) ≤ π
2 , we infer that

sin (α̃(j) + α(kj + 1, kj+1 − 1)) = cos
(

5π
2
− (α̃(j) + α(kj + 1, kj+1 − 1))

)

> cosα(kj+1) ≥ 0,

and so there exists a unique α̃(j + 1) ∈ [0, π
2 ] such that

cos α̃(j + 1) = cosα(kj+1) (sin(α̃(j) + α(kj + 1, kj+1 − 1)))−1
.

The sequence {rj}∞j=0 is defined by rj := kj+1 − kj (j ∈ Z+). Note that rj > 4.
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Let us choose a sequence {nj}∞j=0 of positive integers satisfying the conditions

n0 > r0, n1 > n0 + r1, and nj > nj−1 + rj + rj−2 for every j ≥ 2.

Fixing a unit vector e0 ∈ E1, let us consider the orthonormal basis {e(n) :=
Sn

1 e0}∞n=0 in the Hardy space H2(E1).
For any j ∈ Z+, let

u(kj) := (cos α̃(j))e(nj) + (sin α̃(j))e(nj+1 + rj),

and, for any 1 ≤ i < rj , let

u(kj + i) := (cos(α̃(j) + α(kj + 1, kj + i))) e(nj − i)
+ (sin(α̃(j) + α(kj + 1, kj + i))) e(nj+1 + rj − i).

The assumptions made at the choice of {nj}∞j=0 ensure that the resulting sequence

{u(k)}∞k=0 is orthonormal.

Exploiting the fact that

〈(cosϕ)f + (sinϕ)g, (cosψ)f + (sinψ)g〉 = cos(ψ − ϕ)

is valid whenever (f, g) forms an orthonormal system, we infer that

〈B1u(kj + i− 1), u(kj + i)〉 = cosα(kj + i)

holds, for every j ∈ Z+ and 1 ≤ i < rj . Furthermore, it is easy to see that

〈B1u(kj+1 − 1), u(kj+1)〉 = sin(α̃(j)+α(kj +1, kj+1−1)) cos α̃(j+1) = cosα(kj+1)

is true, for every j ∈ Z+. Thus, we have obtained that the equation

〈B1u(k − 1), u(k)〉 = cosα(k) = wk

is fulfilled, for every k ∈ N.

Taking into account that the vector B1u(k−1) is orthogonal to u(l) whenever

l 6= k (k ∈ N), we conclude that the compression of B1 to the subspace M , spanned

by the vectors {u(k)}∞k=0, is unitarily equivalent to the unilateral weighted shift

W . Q.E.D.

4. Dilation of bilateral weighted shifts

Let us consider the Hilbert space L2(En) of vector-valued functions, defined with

respect to the Lebesgue measure µ on T, where En is an n-dimensional Hilbert

space. The operator Šn ∈ L(L2(En)) of multiplication by the identical function χ

is the n-dimensional bilateral shift.

Let {vk}k∈Z be an orthonormal basis in the Hilbert space Ǩ, indexed by the

set Z of all integers. Given a bounded sequence {wk}k∈Z of complex numbers, let
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W̌ ∈ L(Ǩ) be defined by W̌vk := wkvk+1 (k ∈ Z). The bilateral weighted shift W̌

is a contraction precisely when |wk| ≤ 1 holds, for every k ∈ Z. We may assume

without loss of generality that wk ∈ [0, 1] (k ∈ Z).
We note that the contraction W̌ is similar to the unitary operator Š1 if and

only if wk > 0 is true for every k ∈ Z, and
∑∞

k=1(1−wk) <∞,
∑∞

k=1(1−w−k) <∞
are valid. The following theorem shows that there are operators in the similarity

class of unitaries, which can be dilated to B1.

Theorem 7. Let W̌ ∈ L(Ǩ) be the bilateral weighted shift corresponding to the

weight sequence {wk}k∈Z ⊂ [0, 1]. If
∑∞

k=1(1 − wk)
1
2 =

∑∞
k=1(1 − w−k)

1
2 = ∞,

then W̌ can be dilated to the 1-dimensional backward shift B1.

Proof. For any k ∈ Z, let α(k) ∈ [0, π
2 ] be defined by cosα(k) = wk. Let us

consider the sequences {kj}∞j=0, {α̃(j)}∞j=0 and {rj}∞j=0, associated with {α(k)}∞k=1

according to the proof of Theorem 6, with initial data k0 = 0 and α̃(0) = 0.

Furthermore, let {k−j}∞j=0, {α̃(−j)}∞j=0 and {r−j}∞j=0 be the sequences associated

with {α(−k)}∞k=1, with initial data k−0 = 0 and α̃(−0) = α(0). (Here we make

difference between the indices 0 and−0.) The positive integers {n±j}∞j=0 are chosen

in the following way. We set n0 > r0 and n−0 := n0 + 1. Assuming that {n±i}j
i=0

have already been defined, for j ∈ Z+, let nj+1 > n−j + r−j + rj+1 + 2 and

n−(j+1) := nj+1 + rj + r−j + 2.

The vectors {u(k)}∞k=0 are defined as in the proof of Theorem 6. On the

other hand, for any j ∈ Z+, let

u(−k−j) := (cos α̃(−j))e(n−j) + (sin α̃(−j))e(n−(j+1) − r−j),

and, for any 1 ≤ i < r−j , let

u(−k−j − i) := (cos(α̃(−j) + α(−k−j − 1,−k−j − i)) e(n−j + i)
+ (sin(α̃(−j) + α(−k−j − 1,−k−j − i)) e(n−(j+1) − r−j + i).

(For k, l ∈ Z+, k ≤ l, α(−k,−l) :=
∑l

s=k α(−s).) The resulting set {u(±k)}∞k=0 is

an orthonormal system in H2(E1). Let us consider the subspace M := M−⊕ M+,

where M+ := ∨{u(k)}∞k=0 and M− := ∨{u(−k)}∞k=0.

It is easy to verify that PMB1u(k − 1) = PM+B1u(k − 1) = wku(k) (k ∈ N)
is true. We obtain by symmetry that PMS1u(−(k − 1)) = PM−S1u(−(k − 1)) =
w−ku(−k) (k ∈ N). Since, for any l ∈ Z, we have

〈PMB1u(−k), u(l)〉 = 〈u(−k), PMS1u(l)〉 = δ(l,−(k − 1))w−k,
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where δ(i, j) := 1 if i = j and δ(i, j) := 0 otherwise, it follows that PMB1u(−k) =
w−ku(−(k − 1)) (k ∈ N). Furthermore, the relation B1e(−0) = e(0) implies that

PMB1u(−0) = PMB1 ((cosα(0))e(n−0) + (sinα(0))e(n−1 − r−0))
= (cosα(0))e(n0) = w0u(0).

Therefore, the compression of B1 to M is unitarily equivalent to the bilateral

weighted shift W̌ . Q.E.D.

Keeping the previous notation, for any j ∈ Z+, let aj := nj − rj . Let us also

introduce the notation s0 := r0 + r−0 + 1, and sj := rj + r−j + rj−1 + r−(j−1) + 2
for j ∈ N. We can see that M is included in the subspace MH := ∨{e(n)}n∈H ,

where H = N∩ (∪∞j=0[aj , aj + sj ]
)
. In view of this observation, we can strengthen

the statement of the previous theorem.

Corollary 8. For any i ∈ N, let W̌i ∈ L(Ǩ) be the bilateral weighted shift corre-

sponding to the weight sequence {wi,k}k∈Z ⊂ [0, 1]. If
∑∞

k=1(1 − wi,k)
1
2 = ∞ and∑∞

k=1(1−wi,−k)
1
2 = ∞ for every i ∈ N, then the orthogonal sum

∑∞
i=1⊕ W̌i can

be dilated to B1.

Proof. For every i ∈ N, let {ri,±j}∞j=0 and {si,j}∞j=0 be the sequences corresponding

to the weight sequence {wi,k}k∈Z. Let τ : N → N × Z+ be a bijection. We set

aτ(1) ∈ N arbitrarily. Assuming that {aτ(l)}m
l=1 have already been defined, for

m ∈ N, let us choose aτ(m+1) ∈ N so that aτ(m+1) > aτ(m)+sτ(m)+2 hold. Having

introduced the positive integers {ai,j : i ∈ N, j ∈ Z+}, we can define the numbers

{ni,±j : i ∈ N, j ∈ Z+} as follows: ni,j := ai,j + ri,j (j ∈ Z+), ni,−0 := ni,0 + 1
and ni,−j := ni,j + ri,j−1 + ri,−(j−1) + 2 (j ∈ N). For every i ∈ N, let Mi be the

subspace of H2(E1) constructed with these data in the way described in the proof

of Theorem 7. If i1 6= i2, then the subspaces Mi1 and B1Mi1 are orthogonal to Mi2 .

Thus, taking the orthogonal sum M :=
∑∞

i=1⊕ Mi, we conclude that
∑∞

i=1⊕ W̌i

is unitarily equivalent to the compression of B1 to M . Q.E.D.

Since the unilateral weighted shifts are restrictions of bilateral weighted

shifts, an analogous extension of Theorem 6 is also valid.

The assumption
∑∞

k=1(1−w−k)
1
2 = ∞ in Theorem 7 was made for technical

reasons. It can be dropped if we increase the dimension of the backward shift.

Theorem 9. Let W̌ ∈ L(Ǩ) be the bilateral weighted shift corresponding to the

weight sequence {wk}k∈Z ⊂ [0, 1]. If
∑∞

k=1(1− wk)
1
2 = ∞, then W̌ can be dilated

to the 3-dimensional backward shift B3.
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Proof. Fixing an orthonormal basis (e1, e2, e3) in E3, the system {ei(n) := Sn
3 ei :

1 ≤ i ≤ 3, n ∈ Z+} will be an orthonormal basis in H2(E3). For any k ∈ Z,

let α(k) ∈ [0, π
2 ] be defined by cosα(k) = wk. Let us consider the sequences

{kj}∞j=0, {α̃(j)}∞j=0, {rj}∞j=0 and {nj}∞j=0 associated with {α(k)}k∈N in the proof

of Theorem 6, with k0 = 0 and α̃(0) = 0.

The orthonormal sequence {u(k)}k∈Z is defined as follows. Let u(0) :=
e1(n0), and for any 1 ≤ i < r0, let

u(i) := (cosα(1, i))e1(n0 − i) + (sinα(1, i))e3(n1 + r0 − i).

For any j ∈ N, let

u(kj) := (cos α̃(j))e3(nj) + (sin α̃(j))e3(nj+1 + rj),

and, for any 1 ≤ i < rj , let

u(kj + i) := (cos(α̃(j) + α(kj + 1, kj + i))) e3(nj − i)
+ (sin(α̃(j) + α(kj + 1, kj + i))) e3(nj+1 + rj − i).

Finally, for any k ∈ N, let

u(−k) := (cosα(0,−(k − 1))) · e1(n0 + k) + (sinα(0,−(k − 1))) · e2(n0 + k).

It is easy to verify that the compression of B3 to the subspace M := ∨{u(k)}k∈Z
is unitarily equivalent to the bilateral weighted shift W̌ . Q.E.D.

In the light of the previous theorems a transparent characterization of all

contractions, which can be dilated to B∞, seems to be out of reach.
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