# Compressions of stable contractions 

László Kérchy and Vladimír Müller


#### Abstract

The stability of compressions of stable contractions is studied and a sufficient orbit condition is given. On the other hand, it is shown that there are non-stable compressions of the 1-dimensional backward shift and a complete characterization of weighted unilateral shifts with this property is provided. Dilations of bilateral weighted shifts to backward shifts are also considered.

Mathematics Subject Classification (2000). Primary 47A20; Secondary 47A45. Keywords. Dilation, compression, stable contraction, weighted shift.


## 1. Introduction

Let $H$ be a complex Hilbert space, and let $L(H)$ denote the $C^{*}$-algebra of all bounded linear operators acting on $H$. An operator $T \in L(H)$ is called stable, if its positive powers converge to zero in the strong operator topology, that is when $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0$ for every $x \in H$. The Banach-Steinhaus Theorem shows that each stable operator $T$ is power bounded, which means the boundedness of the norm-sequence $\left\{\left\|T^{n}\right\|\right\}_{n \in \mathbb{N}}$, indexed by the set $\mathbb{N}$ of positive integers.

Let $P(H)$ stand for the set of all orthogonal projections in $L(H)$. We are interested in the question whether the stability of $T \in L(H)$ implies the stability of the operator $T_{P}:=P T P \in L(H)$, for a projection $P \in P(H)$. Let $R(P)$ denote the range of $P$. The operator $P T \mid R(P) \in L(R(P))$ is called the compression of $T$ to the subspace $R(P)$. The equations $T_{P}^{n}=P(T P)^{n},(P T)^{n}=T_{P}^{n-1} T$ and $(T P)^{n}=T(P T)^{n-1} P(n \in \mathbb{N})$ show that the operators $T_{P}, P T, T P$ and the compression of $T$ to the subspace $R(P)$ are stable at the same time.

[^0]If the Hilbert space $H$ is non-separable, then it can be decomposed into an orthogonal sum of separable subspaces, which are reducing for both $T$ and $P$. Hence, we can and shall assume that $H$ is separable.

Let $P(T)$ be the set of all projections in $P(H)$, whose range is an invariant subspace of $T$. For $P \in P(T)$, the operator $T \mid R(P) \in L(R(P))$ is called the restriction of $T$ to its invariant subspace $R(P)$. The elements of the set $P_{\mathrm{s}}(T):=\left\{P_{1}-P_{2}: P_{1}, P_{2} \in P(T), P_{1} \geq P_{2}\right\}$ are the projections whose ranges are semiinvariant subspaces of $T$. It can be easily seen that, for any $P \in P_{\mathrm{s}}(T)$, the equality $T_{P}^{n}=P T^{n} P$ is true for every $n \in \mathbb{N}$. Thus, the stability of $T$ is inherited by $T_{P}$ in that case.

Changing the viewpoint, passing from the compression to the operator on the larger space, another terminology is also in use. Let $F$ and $G$ be Hilbert spaces. We say that an operator $A \in L(F)$ can be dilated to an operator $B \in L(G)$, in notation: $A \stackrel{\mathrm{~d}}{\prec} B$, if there exists an isometry $Z \in L(F, G)$ such that $A=Z^{*} B Z$. This happens precisely when $A$ is unitarily equivalent to a compression of $B$ to a subspace of $G$. The operator $A$ can be power dilated to $B$, in notation: $A \stackrel{\mathrm{pd}}{\prec} B$, if there exists an isometry $Z \in L(F, G)$ such that $A^{n}=Z^{*} B^{n} Z$ for every $n \in \mathbb{N}$. It is known that $A \stackrel{\mathrm{pd}}{\prec} B$ if and only if $A$ is unitarily equivalent to the compression of $B$ to a subspace semiinvariant with respect to $B$ (see [S, Lemma 0]). If $B$ is stable and $A$ can be power dilated to $B$, then $A$ is clearly stable. The question is whether the stability of $B$ implies the stability of $A$, if $A$ can be only dilated to $B$. We give a simple example which shows that the answer is negative in such a generality.

An operator $T$ is called uniformly stable, if $\lim _{n \rightarrow \infty}\left\|T^{n}\right\|=0$. This happens if and only if its spectral radius $r(T)$ is less than 1 . In general, even the uniform stability of $T$ does not imply the stability of $T_{P}$. Indeed, let $\left(e_{1}, e_{2}\right)$ be an orthonormal basis in the Hilbert space $H$, and let $T \in L(H)$ be defined by $T e_{1}:=2 e_{2}, T e_{2}:=0$. Then $T^{2}=0$, and so $T$ is uniformly stable. On the other hand, if $P \in P(H)$ is the projection onto the 1-dimensional subspace spanned by the vector $e_{1}+e_{2}$, then $T_{P}\left(e_{1}+e_{2}\right)=P T\left(e_{1}+e_{2}\right)=P\left(2 e_{2}\right)=e_{1}+e_{2}$, and so $T_{P}$ is not stable. Therefore, the stability of $T_{P}$ could be expected only under additional conditions.

It is natural to make the assumption that $T \in L(H)$ is a contraction: $\|T\| \leq 1$. Actually, the question whether compressions of stable contractions are also stable was posed to the first named author by Rongwei Yang. If $T$ is a strict contraction then the answer is obviously positive, since $\left\|T_{P}\right\| \leq\|T\|<1$ implies
the uniform stability of $T_{P}$. It is also easy to verify that the stability of the contraction $T$ is inherited by $T_{P}$ if the projection $P$ has finite rank. Indeed, it is enough to show that $r\left(T_{P}\right)<1$. Assuming $r\left(T_{P}\right)=1$, there exist $\lambda \in \mathbb{C},|\lambda|=1$ and $0 \neq x \in H$ such that $T_{P} x=\lambda x$. Since $\|x\|=\left\|T_{P} x\right\| \leq\|T P x\| \leq\|P x\| \leq\|x\|$, we infer that $T x=\lambda x$, which contradicts to the stability of $T$.

By a well-known theorem of C. Foias, restrictions of the infinite dimensional backward shift provide all stable contractions. To be more precise, for any $1 \leq n \leq \infty\left(:=\aleph_{0}\right)$ fix an $n$-dimensional Hilbert space $E_{n}$, and let us consider the corresponding Hardy space $H^{2}\left(E_{n}\right)$. The operator $S_{n} \in L\left(H^{2}\left(E_{n}\right)\right)$ of multiplication by the identical function $\chi(z)=z$ is the $n$-dimensional unilateral shift, and its adjoint $B_{n}:=S_{n}^{*} \in L\left(H^{2}\left(E_{n}\right)\right)$ is the $n$-dimensional backward shift. We recall that the defect operators of a contraction $T \in L(H)$ are defined by $D_{T}:=\left(I-T^{*} T\right)^{\frac{1}{2}}$ and $D_{T^{*}}:=\left(I-T T^{*}\right)^{\frac{1}{2}}$. The defect spaces of $T$ are the closures of the ranges of the defect operators: $D_{T}:=\left(D_{T} H\right)^{-}, D_{T^{*}}:=\left(D_{T^{*}} H\right)^{-}$, and $d_{T}:=\operatorname{dim} D_{T}, d_{T^{*}}:=$ $\operatorname{dim} D_{T^{*}}$ are the defect numbers of $T$. (For more information on the role of these objects in the study of Hilbert space contractions, we refer to the monograph [NF].) Let $S_{T}$ denote the operator of multiplication by $\chi$ on $H^{2}\left(D_{T}\right)$. The adjoint $B_{T}=S_{T}^{*}$ is unitarily equivalent to $B_{n}$, where $n=d_{T}$. If the contraction $T$ is stable, then the transformation $Z_{T}: H \rightarrow H^{2}\left(D_{T}\right), h \mapsto \sum_{n=0}^{\infty} \chi^{n} D_{T} T^{n} h$ is an isometry, whose range is invariant for $B_{T}$. Since $T=Z_{T}^{*} B_{T} Z_{T}$, we can see that $T$ is unitarily equivalent to a restriction of $B_{\infty}$. Taking into account that compressions of restrictions of $B_{\infty}$ are compressions of $B_{\infty}$, we obtain that Yang's question is equivalent to the problem whether all compressions of the infinite dimensional backward shift $B_{\infty}$ are stable. (We mention also that by a recent result of J.-C. Bourin in [B], for any sequence $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ of strict contractions with $\sup _{n}\left\|A_{n}\right\|<1$, there exists a decomposition $H^{2}\left(E_{\infty}\right)=\sum_{n=1}^{\infty} \oplus M_{n}$ such that $A_{n}$ is unitarily equivalent to the compression of $B_{\infty}$ to $M_{n}$ for all $n$.)

In [TW] K. Takahashi and P.Y. Wu studied the question which contractions can be dilated to a unilateral shift. They proved that if at least one of the defect indices of the contraction $T$ is finite, and if $T$ can be dilated to $B_{\infty}$, then $T$ is stable. Another result due to C. Benhida and D. Timotin states that if $T \in L(H)$ is a stable contraction with $d_{T^{*}}<\infty$, and if for $P \in P(H)$ the projection $I-P$ has finite rank, then the operator $T_{P}$ is also stable (see [BT, Lemma 3.3]). In Section 2 we give an orbit condition yielding the stability for compressions of $B_{\infty}$.

In view of a general theorem on contractions, it can be easily justified that if a non-stable contraction $T$ can be dilated to $B_{\infty}$, then contractions similar to the unilateral shift $S_{1}$ can also be dilated to $B_{\infty}$. Indeed, $T$ is necessarily completely
non-unitary, and its residual set $\rho(T)$ is of positive Lebesgue measure. (We recall that the Borel subset $\rho(T)$ of the unit circle $\mathbb{T}$ is the support of the spectral measure of the canonical unitary operator associated with $T$; for its detailed study we refer to [K2].) Choosing an appropriate sequence $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ on $\mathbb{T}$, it can be attained that $\rho\left(T_{1}\right)=\mathbb{T}$ holds for the orthogonal sum $T_{1}=\sum_{n=1}^{\infty} \oplus \alpha_{n} T$. Then, by [K1, Theorem 3] there exists a subspace $M_{1}$, invariant for $T_{1}$, such that the restriction $T_{2}:=T_{1} \mid M_{1}$ is similar to $S_{1}$. Taking into account that $\alpha_{1} B_{\infty} \oplus \alpha_{2} B_{\infty} \oplus \cdots$ is unitarily equivalent to $B_{\infty}$, we infer that $T_{2}$ can be dilated to $B_{\infty}$.

It is proved in Section 3 that there are indeed non-stable unilateral weighted shifts, similar to $S_{1}$, which can be dilated even to $B_{1}$, and so the answer to Yang's question is negative. Actually, a complete characterization of such unilateral weighted shifts is given. Finally, in Section 4, dilations of bilateral weighted shifts into backward shifts are studied.

## 2. Orbit condition

We are going to show that a contraction, which is close to an isometry regarding the behaviour of the orbit of a vector, cannot be dilated to the infinite dimensional backward shift $B_{\infty} \in L\left(H^{2}\left(E_{\infty}\right)\right)$. The proof relies on some elementary inequalities.

Let us fix a projection $P \in P\left(H^{2}\left(E_{\infty}\right)\right)$, and let us consider the operator $B_{P}:=\left(B_{\infty}\right)_{P}=P B_{\infty} P \in L\left(H^{2}\left(E_{\infty}\right)\right)$. We shall examine the orbit $\left\{B_{P}^{n} u\right\}_{n \in \mathbb{N}}$ of an arbitrarily chosen vector $u \in H^{2}\left(E_{\infty}\right)$ under the action of $B_{P}$.

Let $\mathbb{Z}_{+}$denote the set of non-negative integers. For any $k \in \mathbb{Z}_{+}$, let $E_{k} \in$ $P\left(H^{2}\left(E_{\infty}\right)\right)$ be the projection onto the subspace $S_{\infty}^{k} E_{\infty}$. (Here $E_{\infty}$ is identified with the set of constant functions in $H^{2}\left(E_{\infty}\right)$.) The projections $\left\{E_{k}\right\}_{k=0}^{\infty}$ are pairwise orthogonal, and the series $\sum_{k=0}^{\infty} E_{k}$ converges to the identity operator $I$ in the strong operator topology.

Lemma 1. The constant components of the orbit vectors converge to zero:

$$
\lim _{n \rightarrow \infty}\left\|E_{0} B_{P}^{n} u\right\|=0
$$

Proof. The equation $B_{\infty} E_{0}=0$ implies that $B_{P}^{n+1} u=P B_{\infty}\left(I-E_{0}\right) B_{P}^{n} u$ holds, for every $n \in \mathbb{N}$. Thus $\left\|B_{P}^{n+1} u\right\|^{2} \leq\left\|\left(I-E_{0}\right) B_{P}^{n} u\right\|^{2}=\left\|B_{P}^{n} u\right\|^{2}-\left\|E_{0} B_{P}^{n} u\right\|^{2}$, whence $\left\|E_{0} B_{P}^{n} u\right\|^{2} \leq\left\|B_{P}^{n} u\right\|^{2}-\left\|B_{P}^{n+1} u\right\|^{2}$ follows. Since $B_{P}$ is a contraction, the sequence $\left\{\left\|B_{P}^{n} u\right\|\right\}_{n \in \mathbb{N}}$ converges decreasingly to a non-negative number. Hence the dominating sequence $\left\{\left\|B_{P}^{n} u\right\|^{2}-\left\|B_{P}^{n+1} u\right\|^{2}\right\}_{n \in \mathbb{N}}$ tends to zero, which yields the statement. Q.E.D.

By the next lemma each Fourier coefficient of the vectors in the orbit converges to zero.

## Lemma 2.

(a) For every $n \in \mathbb{N},\left\|(I-P) B_{\infty} B_{P}^{n} u\right\|^{2} \leq\left\|B_{P}^{n} u\right\|^{2}-\left\|B_{P}^{n+1} u\right\|^{2}$.
(b) For every $n \in \mathbb{N}, k \in \mathbb{Z}_{+}$, we have

$$
\left\|E_{k+1} B_{P}^{n} u\right\| \leq\left\|E_{k} B_{P}^{n+1} u\right\|+\left(\left\|B_{P}^{n} u\right\|^{2}-\left\|B_{P}^{n+1} u\right\|^{2}\right)^{\frac{1}{2}}
$$

(c) For every $k \in \mathbb{Z}_{+}, \lim _{n \rightarrow \infty}\left\|E_{k} B_{P}^{n} u\right\|=0$ is true.

Proof. (a): It is immediate that $\left\|(I-P) B_{\infty} B_{P}^{n} u\right\|^{2}=\left\|B_{\infty} B_{P}^{n} u\right\|^{2}-\left\|B_{P}^{n+1} u\right\|^{2} \leq$ $\left\|B_{P}^{n} u\right\|^{2}-\left\|B_{P}^{n+1} u\right\|^{2}$.
(b): Taking into account that $E_{k} B_{\infty}=B_{\infty} E_{k+1}$, we can write $B_{\infty} E_{k+1} B_{P}^{n}=$ $E_{k} B_{\infty} B_{P}^{n}=E_{k} B_{P}^{n+1}+E_{k}(I-P) B_{\infty} B_{P}^{n}$. Hence
$\left\|E_{k+1} B_{P}^{n} u\right\|=\left\|B_{\infty} E_{k+1} B_{P}^{n} u\right\| \leq\left\|E_{k} B_{P}^{n+1} u\right\|+\left\|(I-P) B_{\infty} B_{P}^{n} u\right\|$
is true, and an application of (a) yields the requested inequality.
(c): This statement follows by induction on $k$, relying on (b) and Lemma 1. Q.E.D.

For any $k \in \mathbb{Z}_{+}$, let us consider the projection $Q_{k}:=\sum_{j=k}^{\infty} E_{j} \in P\left(H^{2}\left(E_{\infty}\right)\right)$.
Lemma 3. For every $n, l \in \mathbb{N}$ and $k \in \mathbb{Z}_{+}$, we have

$$
\left\|Q_{k} B_{P}^{n+l} u\right\| \leq\left\|Q_{k+l} B_{P}^{n} u\right\|+\sum_{j=n}^{n+l-1}\left(\left\|B_{P}^{j} u\right\|^{2}-\left\|B_{P}^{j+1} u\right\|^{2}\right)^{\frac{1}{2}}
$$

Proof. Since $Q_{k} B_{\infty}=B_{\infty} Q_{k+1}$, we infer that

$$
Q_{k} B_{P}^{n+1}=Q_{k} B_{\infty} B_{P}^{n}-Q_{k}(I-P) B_{\infty} B_{P}^{n}=B_{\infty} Q_{k+1} B_{P}^{n}-Q_{k}(I-P) B_{\infty} B_{P}^{n}
$$

Hence $\left\|Q_{k} B_{P}^{n+1} u\right\| \leq\left\|Q_{k+1} B_{P}^{n} u\right\|+\left\|(I-P) B_{\infty} B_{P}^{n} u\right\|$, and so Lemma 2.(a) yields the required inequality for $l=1$. Then the statement can be verified by induction on $l$. Q.E.D.

Now, we are ready to prove our theorem.
Theorem 4. If $\sum_{n=1}^{\infty}\left(\left\|B_{P}^{n} u\right\|^{2}-\left\|B_{P}^{n+1} u\right\|^{2}\right)^{\frac{1}{2}}<\infty$, then $\lim _{n \rightarrow \infty}\left\|B_{P}^{n} u\right\|=0$.
Proof. In view of Lemma 3, the inequality

$$
\left\|B_{P}^{n+l} u\right\| \leq \sum_{j=0}^{k-1}\left\|E_{j} B_{P}^{n+l} u\right\|+\left\|Q_{k+l} B_{P}^{n} u\right\|+\sum_{j=n}^{\infty}\left(\left\|B_{P}^{j} u\right\|^{2}-\left\|B_{P}^{j+1} u\right\|^{2}\right)^{\frac{1}{2}}
$$

holds, for any $k, l, n \in \mathbb{N}$. Given a positive $\varepsilon$, let us choose $n_{0} \in \mathbb{N}$ so that

$$
\sum_{j=n_{0}}^{\infty}\left(\left\|B_{P}^{j} u\right\|^{2}-\left\|B_{P}^{j+1} u\right\|^{2}\right)^{\frac{1}{2}}<\varepsilon / 3
$$

Since $\lim _{k \rightarrow \infty}\left\|Q_{k} B_{P}^{n_{0}} u\right\|=0$, we can find $k_{0} \in \mathbb{N}$ such that $\left\|Q_{k_{0}+l} B_{P}^{n_{0}} u\right\|<\varepsilon / 3$ is true for every $l \in \mathbb{N}$. Finally, by Lemma 2.(c) there exists $l_{0} \in \mathbb{N}$ such that $\sum_{j=0}^{k_{0}-1}\left\|E_{j} B_{P}^{n_{0}+l} u\right\|<\varepsilon / 3$ is valid, for every $l \geq l_{0}$. Then $\left\|B_{P}^{n_{0}+l} u\right\|<\varepsilon$ is fulfilled for $l \geq l_{0}$, which proves the statement. Q.E.D.

By the aforementioned theorem of Foias we obtain the following immediate consequence of Theorem 4.

Corollary 5. Let $T \in L(H)$ be a stable contraction, and let $P \in P(H), x \in H$ be given. If $\sum_{n=1}^{\infty}\left(\left\|T_{P}^{n} x\right\|^{2}-\left\|T_{P}^{n+1} x\right\|^{2}\right)^{\frac{1}{2}}<\infty$, then $\lim _{n \rightarrow \infty}\left\|T_{P}^{n} x\right\|=0$.

## 3. Dilation of unilateral weighted shifts

The simplest examples for contractions similar to $S_{1}$ can be found in the class of unilateral weighted shifts.

Let $\left\{v_{k}\right\}_{k \in \mathbb{N}}$ be an orthonormal basis in the Hilbert space $K$. Given any bounded sequence $\left\{w_{k}\right\}_{k \in \mathbb{N}}$ of complex numbers, let us consider the operator $W \in$ $L(K)$, defined by $W v_{k}:=w_{k} v_{k+1}(k \in \mathbb{N})$. The unilateral weighted shift $W$ is a contraction precisely when $\left|w_{k}\right| \leq 1$ for every $k \in \mathbb{N}$. All such contractions are obtained up to unitary equivalence assuming that $w_{k}$ belongs to the closed interval $[0,1]$, for every $k \in \mathbb{N}$. Therefore we can assume that $w_{k} \in[0,1]$ for all $k \in \mathbb{N}$.

It is easy to verify that $W$ is non-stable if and only if $\prod_{k=k_{0}}^{\infty} w_{k}>0$ for some $k_{0} \in \mathbb{N}$, which happens exactly when $\sum_{k=1}^{\infty}\left(1-w_{k}\right)<\infty$. Furthermore, this condition is equivalent to the decomposability of $W$ in the form $W=W_{0} \oplus$ $W_{1}$, where $W_{0}$ is a nilpotent operator on a finite dimensional space, and $W_{1}$ is a unilateral weighted shift similar to $S_{1}$.

Let us assume that $W$ is a non-stable contraction (that is $\left\{w_{k}\right\}_{k \in \mathbb{N}} \subset[0,1]$ and $\left.\sum_{k=1}^{\infty}\left(1-w_{k}\right)<\infty\right)$, and that $W$ can be dilated to the infinite dimensional backward shift $B_{\infty}$. There exists $k_{0} \in \mathbb{N}$ such that $\prod_{k=k_{0}}^{\infty} w_{k}>0$. Since $\lim _{n \rightarrow \infty}\left\|W^{n} v_{k_{0}}\right\|=\lim _{n \rightarrow \infty} \prod_{k=k_{0}}^{k_{0}+n-1} w_{k}>0$, we infer by Theorem 4 that

$$
\sum_{n=1}^{\infty}\left(\left\|W^{n} v_{k_{0}}\right\|^{2}-\left\|W^{n+1} v_{k_{0}}\right\|^{2}\right)^{\frac{1}{2}}=\infty
$$

Taking into account that, for every $n \in \mathbb{N}$,

$$
\left(\left\|W^{n} v_{k_{0}}\right\|^{2}-\left\|W^{n+1} v_{k_{0}}\right\|^{2}\right)^{\frac{1}{2}}=\left(\prod_{k=k_{0}}^{k_{0}+n-1} w_{k}\right)\left(1-w_{k_{0}+n}^{2}\right)^{\frac{1}{2}} \leq 2\left(1-w_{k_{0}+n}\right)^{\frac{1}{2}}
$$

we conclude that $\sum_{k=1}^{\infty}\left(1-w_{k}\right)^{\frac{1}{2}}=\infty$.

We shall show that under these conditions $W$ can be really dilated to $B_{\infty}$, even more, it can be dilated to the 1-dimensional backward shift $B_{1}$. Namely, we are going to prove the following theorem.

Theorem 6. Let $W \in L(K)$ be the unilateral weighted shift corresponding to the weight sequence $\left\{w_{k}\right\}_{k \in \mathbb{N}} \subset[0,1]$, satisfying the condition $\sum_{k=1}^{\infty}\left(1-w_{k}\right)<\infty$. The non-stable contraction $W$ can be dilated to $B_{\infty}$ if and only if it can be dilated to $B_{1}$, which happens exactly when $\sum_{k=1}^{\infty}\left(1-w_{k}\right)^{\frac{1}{2}}=\infty$.

It is easy to find sequences satisfying the previous conditions. For example, these are fulfilled if $w_{k}=1-\varepsilon k^{-p}(k \in \mathbb{N})$ with $1<p \leq 2$ and $0<\varepsilon<1$. Therefore, the answer for Yang's question is negative: there are stable contractions having non-stable compressions. We note also that if $\varepsilon$ is small, then the similarity constant $s\left(W, S_{1}\right):=\inf \left\{\|Q\| \cdot\left\|Q^{-1}\right\|: Q W=S_{1} Q\right\}$ can be arbitrarily close to 1 .

Proof. Let $\left\{w_{k}\right\}_{k \in \mathbb{N}} \subset[0,1]$ be a weight sequence satisfying the conditions $\sum_{k=1}^{\infty}(1-$ $\left.w_{k}\right)<\infty$ and $\sum_{k=1}^{\infty}\left(1-w_{k}\right)^{\frac{1}{2}}=\infty$. We have to show that the corresponding unilateral weighted shift $W \in L(K), W v_{k}:=w_{k} v_{k+1}(k \in \mathbb{N})$, can be dilated to $B_{1}$.

For any $k \in \mathbb{N}$, let $\alpha(k) \in\left[0, \frac{\pi}{2}\right]$ be defined by $\cos \alpha(k)=w_{k}$. The assumption $\sum_{k=1}^{\infty}\left(1-w_{k}\right)<\infty$ yields that $\lim _{k \rightarrow \infty} \alpha(k)=0$. Taking into account that ( $1-$ $\left.w_{k}\right)^{\frac{1}{2}} \leq\left(1-w_{k}^{2}\right)^{\frac{1}{2}}=\sin \alpha(k) \leq 2\left(1-w_{k}\right)^{\frac{1}{2}}$ and $\frac{2}{\pi} \alpha(k) \leq \sin \alpha(k) \leq \alpha(k) \quad(k \in \mathbb{N})$, the assumption $\sum_{k=1}^{\infty}\left(1-w_{k}\right)^{\frac{1}{2}}=\infty$ can be equivalently expressed as $\sum_{k=1}^{\infty} \alpha(k)=$ $\infty$. For any $i, j \in \mathbb{N}, i \leq j$, let us use the notation $\alpha(i, j):=\sum_{k=i}^{j} \alpha(k)$.

With $\{\alpha(k)\}_{k \in \mathbb{N}}$ we associate three sequences: $\left\{k_{j}\right\}_{j=0}^{\infty} \subset \mathbb{Z}_{+},\{\widetilde{\alpha}(j)\}_{j=0}^{\infty} \subset$ $\left[0, \frac{\pi}{2}\right]$ and $\left\{r_{j}\right\}_{j=0}^{\infty} \subset \mathbb{N}$ in the following way. Setting $k_{0}:=0$ and $\widetilde{\alpha}(0):=0$, let us assume that $\left\{k_{i}\right\}_{i=0}^{j}$ and $\{\widetilde{\alpha}(i)\}_{i=0}^{j}$ have already been defined, for $j \in \mathbb{Z}_{+}$. Then $k_{j+1}$ is defined as the minimum of the integers $k$ satisfying the conditions $k>k_{j}$ and $\widetilde{\alpha}(j)+\alpha\left(k_{j}+1, k\right)>\frac{5 \pi}{2}$. (The assumption $\sum_{i=1}^{\infty} \alpha(i)=\infty$ ensures the existence of such a $k$. Clearly, $k_{j+1}>k_{j}+4$.) Since $0 \leq \frac{5 \pi}{2}-\left(\widetilde{\alpha}(j)+\alpha\left(k_{j}+1, k_{j+1}-1\right)\right)<$ $\alpha\left(k_{j+1}\right) \leq \frac{\pi}{2}$, we infer that

$$
\begin{aligned}
\sin \left(\widetilde{\alpha}(j)+\alpha\left(k_{j}+1, k_{j+1}-1\right)\right)= & \cos \left(\frac{5 \pi}{2}-\left(\widetilde{\alpha}(j)+\alpha\left(k_{j}+1, k_{j+1}-1\right)\right)\right) \\
& >\cos \alpha\left(k_{j+1}\right) \geq 0,
\end{aligned}
$$

and so there exists a unique $\widetilde{\alpha}(j+1) \in\left[0, \frac{\pi}{2}\right]$ such that

$$
\cos \widetilde{\alpha}(j+1)=\cos \alpha\left(k_{j+1}\right)\left(\sin \left(\widetilde{\alpha}(j)+\alpha\left(k_{j}+1, k_{j+1}-1\right)\right)\right)^{-1}
$$

The sequence $\left\{r_{j}\right\}_{j=0}^{\infty}$ is defined by $r_{j}:=k_{j+1}-k_{j}\left(j \in \mathbb{Z}_{+}\right)$. Note that $r_{j}>4$.

Let us choose a sequence $\left\{n_{j}\right\}_{j=0}^{\infty}$ of positive integers satisfying the conditions $n_{0}>r_{0}, n_{1}>n_{0}+r_{1}$, and $n_{j}>n_{j-1}+r_{j}+r_{j-2}$ for every $j \geq 2$.

Fixing a unit vector $e_{0} \in E_{1}$, let us consider the orthonormal basis $\{e(n):=$ $\left.S_{1}^{n} e_{0}\right\}_{n=0}^{\infty}$ in the Hardy space $H^{2}\left(E_{1}\right)$.

For any $j \in \mathbb{Z}_{+}$, let

$$
u\left(k_{j}\right):=(\cos \widetilde{\alpha}(j)) e\left(n_{j}\right)+(\sin \widetilde{\alpha}(j)) e\left(n_{j+1}+r_{j}\right),
$$

and, for any $1 \leq i<r_{j}$, let

$$
\begin{aligned}
u\left(k_{j}+i\right) & :=\left(\cos \left(\widetilde{\alpha}(j)+\alpha\left(k_{j}+1, k_{j}+i\right)\right)\right) e\left(n_{j}-i\right) \\
& +\left(\sin \left(\widetilde{\alpha}(j)+\alpha\left(k_{j}+1, k_{j}+i\right)\right)\right) e\left(n_{j+1}+r_{j}-i\right) .
\end{aligned}
$$

The assumptions made at the choice of $\left\{n_{j}\right\}_{j=0}^{\infty}$ ensure that the resulting sequence $\{u(k)\}_{k=0}^{\infty}$ is orthonormal.

Exploiting the fact that

$$
\langle(\cos \varphi) f+(\sin \varphi) g,(\cos \psi) f+(\sin \psi) g\rangle=\cos (\psi-\varphi)
$$

is valid whenever $(f, g)$ forms an orthonormal system, we infer that

$$
\left\langle B_{1} u\left(k_{j}+i-1\right), u\left(k_{j}+i\right)\right\rangle=\cos \alpha\left(k_{j}+i\right)
$$

holds, for every $j \in \mathbb{Z}_{+}$and $1 \leq i<r_{j}$. Furthermore, it is easy to see that
$\left\langle B_{1} u\left(k_{j+1}-1\right), u\left(k_{j+1}\right)\right\rangle=\sin \left(\widetilde{\alpha}(j)+\alpha\left(k_{j}+1, k_{j+1}-1\right)\right) \cos \widetilde{\alpha}(j+1)=\cos \alpha\left(k_{j+1}\right)$ is true, for every $j \in \mathbb{Z}_{+}$. Thus, we have obtained that the equation

$$
\left\langle B_{1} u(k-1), u(k)\right\rangle=\cos \alpha(k)=w_{k}
$$

is fulfilled, for every $k \in \mathbb{N}$.
Taking into account that the vector $B_{1} u(k-1)$ is orthogonal to $u(l)$ whenever $l \neq k(k \in \mathbb{N})$, we conclude that the compression of $B_{1}$ to the subspace $M$, spanned by the vectors $\{u(k)\}_{k=0}^{\infty}$, is unitarily equivalent to the unilateral weighted shift W. Q.E.D.

## 4. Dilation of bilateral weighted shifts

Let us consider the Hilbert space $L^{2}\left(E_{n}\right)$ of vector-valued functions, defined with respect to the Lebesgue measure $\mu$ on $\mathbb{T}$, where $E_{n}$ is an $n$-dimensional Hilbert space. The operator $\check{S}_{n} \in L\left(L^{2}\left(E_{n}\right)\right)$ of multiplication by the identical function $\chi$ is the $n$-dimensional bilateral shift.

Let $\left\{v_{k}\right\}_{k \in \mathbb{Z}}$ be an orthonormal basis in the Hilbert space $\check{K}$, indexed by the set $\mathbb{Z}$ of all integers. Given a bounded sequence $\left\{w_{k}\right\}_{k \in \mathbb{Z}}$ of complex numbers, let
$\check{W} \in L(\check{K})$ be defined by $\check{W} v_{k}:=w_{k} v_{k+1}(k \in \mathbb{Z})$. The bilateral weighted shift $\check{W}$ is a contraction precisely when $\left|w_{k}\right| \leq 1$ holds, for every $k \in \mathbb{Z}$. We may assume without loss of generality that $w_{k} \in[0,1](k \in \mathbb{Z})$.

We note that the contraction $\check{W}$ is similar to the unitary operator $\check{S}_{1}$ if and only if $w_{k}>0$ is true for every $k \in \mathbb{Z}$, and $\sum_{k=1}^{\infty}\left(1-w_{k}\right)<\infty, \sum_{k=1}^{\infty}\left(1-w_{-k}\right)<\infty$ are valid. The following theorem shows that there are operators in the similarity class of unitaries, which can be dilated to $B_{1}$.

Theorem 7. Let $\check{W} \in L(\check{K})$ be the bilateral weighted shift corresponding to the weight sequence $\left\{w_{k}\right\}_{k \in \mathbb{Z}} \subset[0,1]$. If $\sum_{k=1}^{\infty}\left(1-w_{k}\right)^{\frac{1}{2}}=\sum_{k=1}^{\infty}\left(1-w_{-k}\right)^{\frac{1}{2}}=\infty$, then $\check{W}$ can be dilated to the 1-dimensional backward shift $B_{1}$.

Proof. For any $k \in \mathbb{Z}$, let $\alpha(k) \in\left[0, \frac{\pi}{2}\right]$ be defined by $\cos \alpha(k)=w_{k}$. Let us consider the sequences $\left\{k_{j}\right\}_{j=0}^{\infty},\{\widetilde{\alpha}(j)\}_{j=0}^{\infty}$ and $\left\{r_{j}\right\}_{j=0}^{\infty}$, associated with $\{\alpha(k)\}_{k=1}^{\infty}$ according to the proof of Theorem 6 , with initial data $k_{0}=0$ and $\widetilde{\alpha}(0)=0$. Furthermore, let $\left\{k_{-j}\right\}_{j=0}^{\infty},\{\widetilde{\alpha}(-j)\}_{j=0}^{\infty}$ and $\left\{r_{-j}\right\}_{j=0}^{\infty}$ be the sequences associated with $\{\alpha(-k)\}_{k=1}^{\infty}$, with initial data $k_{-0}=0$ and $\widetilde{\alpha}(-0)=\alpha(0)$. (Here we make difference between the indices 0 and -0 .) The positive integers $\left\{n_{ \pm j}\right\}_{j=0}^{\infty}$ are chosen in the following way. We set $n_{0}>r_{0}$ and $n_{-0}:=n_{0}+1$. Assuming that $\left\{n_{ \pm i}\right\}_{i=0}^{j}$ have already been defined, for $j \in \mathbb{Z}_{+}$, let $n_{j+1}>n_{-j}+r_{-j}+r_{j+1}+2$ and $n_{-(j+1)}:=n_{j+1}+r_{j}+r_{-j}+2$.

The vectors $\{u(k)\}_{k=0}^{\infty}$ are defined as in the proof of Theorem 6. On the other hand, for any $j \in \mathbb{Z}_{+}$, let

$$
u\left(-k_{-j}\right):=(\cos \widetilde{\alpha}(-j)) e\left(n_{-j}\right)+(\sin \widetilde{\alpha}(-j)) e\left(n_{-(j+1)}-r_{-j}\right)
$$

and, for any $1 \leq i<r_{-j}$, let

$$
\begin{aligned}
u\left(-k_{-j}-i\right) & :=\left(\cos \left(\widetilde{\alpha}(-j)+\alpha\left(-k_{-j}-1,-k_{-j}-i\right)\right) e\left(n_{-j}+i\right)\right. \\
& +\left(\sin \left(\widetilde{\alpha}(-j)+\alpha\left(-k_{-j}-1,-k_{-j}-i\right)\right) e\left(n_{-(j+1)}-r_{-j}+i\right)\right.
\end{aligned}
$$

(For $k, l \in \mathbb{Z}_{+}, k \leq l, \alpha(-k,-l):=\sum_{s=k}^{l} \alpha(-s)$.) The resulting set $\{u( \pm k)\}_{k=0}^{\infty}$ is an orthonormal system in $H^{2}\left(E_{1}\right)$. Let us consider the subspace $M:=M_{-} \oplus M_{+}$, where $M_{+}:=\vee\{u(k)\}_{k=0}^{\infty}$ and $M_{-}:=\vee\{u(-k)\}_{k=0}^{\infty}$.

It is easy to verify that $P_{M} B_{1} u(k-1)=P_{M_{+}} B_{1} u(k-1)=w_{k} u(k)(k \in \mathbb{N})$ is true. We obtain by symmetry that $P_{M} S_{1} u(-(k-1))=P_{M_{-}} S_{1} u(-(k-1))=$ $w_{-k} u(-k)(k \in \mathbb{N})$. Since, for any $l \in \mathbb{Z}$, we have

$$
\left\langle P_{M} B_{1} u(-k), u(l)\right\rangle=\left\langle u(-k), P_{M} S_{1} u(l)\right\rangle=\delta(l,-(k-1)) w_{-k},
$$

where $\delta(i, j):=1$ if $i=j$ and $\delta(i, j):=0$ otherwise, it follows that $P_{M} B_{1} u(-k)=$ $w_{-k} u(-(k-1))(k \in \mathbb{N})$. Furthermore, the relation $B_{1} e(-0)=e(0)$ implies that

$$
\begin{aligned}
P_{M} B_{1} u(-0) & =P_{M} B_{1}\left((\cos \alpha(0)) e\left(n_{-0}\right)+(\sin \alpha(0)) e\left(n_{-1}-r_{-0}\right)\right) \\
& =(\cos \alpha(0)) e\left(n_{0}\right)=w_{0} u(0)
\end{aligned}
$$

Therefore, the compression of $B_{1}$ to $M$ is unitarily equivalent to the bilateral weighted shift $\check{W}$. Q.E.D.

Keeping the previous notation, for any $j \in \mathbb{Z}_{+}$, let $a_{j}:=n_{j}-r_{j}$. Let us also introduce the notation $s_{0}:=r_{0}+r_{-0}+1$, and $s_{j}:=r_{j}+r_{-j}+r_{j-1}+r_{-(j-1)}+2$ for $j \in \mathbb{N}$. We can see that $M$ is included in the subspace $M_{H}:=\vee\{e(n)\}_{n \in H}$, where $H=\mathbb{N} \cap\left(\cup_{j=0}^{\infty}\left[a_{j}, a_{j}+s_{j}\right]\right)$. In view of this observation, we can strengthen the statement of the previous theorem.

Corollary 8. For any $i \in \mathbb{N}$, let $\breve{W}_{i} \in L(\check{K})$ be the bilateral weighted shift corresponding to the weight sequence $\left\{w_{i, k}\right\}_{k \in \mathbb{Z}} \subset[0,1]$. If $\sum_{k=1}^{\infty}\left(1-w_{i, k}\right)^{\frac{1}{2}}=\infty$ and $\sum_{k=1}^{\infty}\left(1-w_{i,-k}\right)^{\frac{1}{2}}=\infty$ for every $i \in \mathbb{N}$, then the orthogonal sum $\sum_{i=1}^{\infty} \oplus \check{W}_{i}$ can be dilated to $B_{1}$.

Proof. For every $i \in \mathbb{N}$, let $\left\{r_{i, \pm j}\right\}_{j=0}^{\infty}$ and $\left\{s_{i, j}\right\}_{j=0}^{\infty}$ be the sequences corresponding to the weight sequence $\left\{w_{i, k}\right\}_{k \in \mathbb{Z}}$. Let $\tau: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{Z}_{+}$be a bijection. We set $a_{\tau(1)} \in \mathbb{N}$ arbitrarily. Assuming that $\left\{a_{\tau(l)}\right\}_{l=1}^{m}$ have already been defined, for $m \in \mathbb{N}$, let us choose $a_{\tau(m+1)} \in \mathbb{N}$ so that $a_{\tau(m+1)}>a_{\tau(m)}+s_{\tau(m)}+2$ hold. Having introduced the positive integers $\left\{a_{i, j}: i \in \mathbb{N}, j \in \mathbb{Z}_{+}\right\}$, we can define the numbers $\left\{n_{i, \pm j}: i \in \mathbb{N}, j \in \mathbb{Z}_{+}\right\}$as follows: $n_{i, j}:=a_{i, j}+r_{i, j}\left(j \in \mathbb{Z}_{+}\right), n_{i,-0}:=n_{i, 0}+1$ and $n_{i,-j}:=n_{i, j}+r_{i, j-1}+r_{i,-(j-1)}+2(j \in \mathbb{N})$. For every $i \in \mathbb{N}$, let $M_{i}$ be the subspace of $H^{2}\left(E_{1}\right)$ constructed with these data in the way described in the proof of Theorem 7. If $i_{1} \neq i_{2}$, then the subspaces $M_{i_{1}}$ and $B_{1} M_{i_{1}}$ are orthogonal to $M_{i_{2}}$. Thus, taking the orthogonal sum $M:=\sum_{i=1}^{\infty} \oplus M_{i}$, we conclude that $\sum_{i=1}^{\infty} \oplus \check{W}_{i}$ is unitarily equivalent to the compression of $B_{1}$ to $M$. Q.E.D.

Since the unilateral weighted shifts are restrictions of bilateral weighted shifts, an analogous extension of Theorem 6 is also valid.

The assumption $\sum_{k=1}^{\infty}\left(1-w_{-k}\right)^{\frac{1}{2}}=\infty$ in Theorem 7 was made for technical reasons. It can be dropped if we increase the dimension of the backward shift.

Theorem 9. Let $\check{W} \in L(\check{K})$ be the bilateral weighted shift corresponding to the weight sequence $\left\{w_{k}\right\}_{k \in \mathbb{Z}} \subset[0,1]$. If $\sum_{k=1}^{\infty}\left(1-w_{k}\right)^{\frac{1}{2}}=\infty$, then $\check{W}$ can be dilated to the 3-dimensional backward shift $B_{3}$.

Proof. Fixing an orthonormal basis $\left(e_{1}, e_{2}, e_{3}\right)$ in $E_{3}$, the system $\left\{e_{i}(n):=S_{3}^{n} e_{i}\right.$ : $\left.1 \leq i \leq 3, n \in \mathbb{Z}_{+}\right\}$will be an orthonormal basis in $H^{2}\left(E_{3}\right)$. For any $k \in \mathbb{Z}$, let $\alpha(k) \in\left[0, \frac{\pi}{2}\right]$ be defined by $\cos \alpha(k)=w_{k}$. Let us consider the sequences $\left\{k_{j}\right\}_{j=0}^{\infty},\{\widetilde{\alpha}(j)\}_{j=0}^{\infty},\left\{r_{j}\right\}_{j=0}^{\infty}$ and $\left\{n_{j}\right\}_{j=0}^{\infty}$ associated with $\{\alpha(k)\}_{k \in \mathbb{N}}$ in the proof of Theorem 6 , with $k_{0}=0$ and $\widetilde{\alpha}(0)=0$.

The orthonormal sequence $\{u(k)\}_{k \in \mathbb{Z}}$ is defined as follows. Let $u(0):=$ $e_{1}\left(n_{0}\right)$, and for any $1 \leq i<r_{0}$, let

$$
u(i):=(\cos \alpha(1, i)) e_{1}\left(n_{0}-i\right)+(\sin \alpha(1, i)) e_{3}\left(n_{1}+r_{0}-i\right) .
$$

For any $j \in \mathbb{N}$, let

$$
u\left(k_{j}\right):=(\cos \widetilde{\alpha}(j)) e_{3}\left(n_{j}\right)+(\sin \widetilde{\alpha}(j)) e_{3}\left(n_{j+1}+r_{j}\right),
$$

and, for any $1 \leq i<r_{j}$, let

$$
\begin{aligned}
u\left(k_{j}+i\right) & :=\left(\cos \left(\widetilde{\alpha}(j)+\alpha\left(k_{j}+1, k_{j}+i\right)\right)\right) e_{3}\left(n_{j}-i\right) \\
& +\left(\sin \left(\widetilde{\alpha}(j)+\alpha\left(k_{j}+1, k_{j}+i\right)\right)\right) e_{3}\left(n_{j+1}+r_{j}-i\right)
\end{aligned}
$$

Finally, for any $k \in \mathbb{N}$, let

$$
u(-k):=(\cos \alpha(0,-(k-1))) \cdot e_{1}\left(n_{0}+k\right)+(\sin \alpha(0,-(k-1))) \cdot e_{2}\left(n_{0}+k\right) .
$$

It is easy to verify that the compression of $B_{3}$ to the subspace $M:=\vee\{u(k)\}_{k \in \mathbb{Z}}$ is unitarily equivalent to the bilateral weighted shift $\check{W}$. Q.E.D.

In the light of the previous theorems a transparent characterization of all contractions, which can be dilated to $B_{\infty}$, seems to be out of reach.

## References

[B] J.-C. Bourin, Compressions and pinchings, J. Operator Theory, 50 (2003), 211-220.
[BT] C. Benhida and D. Timotin, Finite rank perturbations of contractions, Integral Equations Operator Theory, 36 (2000), 253-268.
[K1] L. Kérchy, Injection of unilateral shifts into contractions with non-vanishing unitary asymptotes, Acta Sci. Math. (Szeged), 61 (1995), 443-476.
[K2] L. Kérchy, On the hyperinvariant subspace problem for asymptotically nonvanishing contractions, Operator Theory: Advances and Applications, 127 (2001), 399-422.
[NF] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North Holland - Akadémiai Kiadó, Amsterdam - Budapest, 1970.
[S] D. Sarason, On spectral sets having connected complement, Acta Sci. Math. (Szeged), 26 (1966), 289-299.
[TW] K. Takahashi and P.Y. Wu, Dilation to the unilateral shifts, Integral Equations Operator Theory, 32 (1998), 101-113.

László Kérchy
Bolyai Institute, University of Szeged
Aradi vértanúk tere 1, H-6720 Szeged, Hungary
e-mail: kerchy@math.u-szeged.hu
Vladimír Müller
Institute of Mathematics, Academy of Sciences of Czech Republic
Žitná 25, 11567 Praha 1, Czech Republic
e-mail: muller@math.cas.cz

László Kérchy ${ }^{11}$ and Vladimír Müller ${ }^{12}$

[^1]
[^0]:    Research partially supported by Hungarian NSRF (OTKA) grant no. T 035123, T 049846.
    Supported by grant no. 201/03/0041 of GA ČR and by Institutional research plan AV0Z10190503.

[^1]:    ${ }^{11}$ Research partially supported by Hungarian NSRF (OTKA) grant no. T 035123, T 049846. ${ }^{12}$ Supported by grant no. 201/03/0041 of GA ČR and by Institutional research plan AV0Z10190503.

