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Abstract. We give a Martinelli-Vasilescu type formula for the Taylor functional cal-
culus and a simple proof of its basic properties.
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Let A = (A1, . . . , An) be an n-tuple of mutually commuting operators acting on a
Banach space X. The existence of the Taylor functional calculus [18], [19], for simpler
versions see [10], [8], [3], [4], [5] and [15], is one of the most important results of
spectral theory. However, the formula defining f(A) for a function f analytic on a
neighbourhood of the Taylor spectrum has some drawbacks. The operator f(A) is
defined locally, the formula gives only f(A)x for each x ∈ X. Therefore it is not easy
to see that f(A) is bounded. Moreover, the formula is rather inexplicit and it is quite
difficult to prove even the basic properties of the calculus.

The situation is better for Hilbert space operators. In [20] and [21], Vasilescu gave
an explicit Martinelli-type formula defining f(A) which is much easier to handle.

The ideas of Vasilescu were used in [9] to prove a similar formula for Banach space
operators. The method works, however, only for functions analytic on a neighbourhood
of the split-spectrum which is in general bigger than the Taylor spectrum. The main
tool is the existence of generalized inverses for operators that appear in the Koszul
complex. For similar ideas see also [1].

In this paper we obtain a similar formula for the general Taylor functional calculus.
The main innovation is the use of non-linear (but continuous) general inverses. In this
way we obtain a formula that defines f(A) globally, and so the continuity of f(A) and
the continuity of the functional calculus become clear. The formula is more explicit, and
so it is possible to avoid some technical difficulties in the proof of the basic properties
of the calculus. The cohomogical methods are avoided and the proofs are based only
on the Stokes and the Bartle-Graves theorems.

The author wishes to thank to Professor F.-H. Vasilescu for numerous consultations
concerning details of the calculus.

All Banach spaces in this paper are complex. Denote by B(X) the algebra of all
bounded linear operators on a Banach space X.

Definition 1. Let X,Y be Banach spaces. Denote by H(X,Y ) the set of all continuous
mappings f : X → Y that are homogeneous (i.e., f(αx) = αf(x) for all α ∈ C and
x ∈ X).
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If f ∈ H(X,Y ) then sup{‖f(x)‖ : x ∈ X, ‖x‖ = 1} < ∞. Clearly H(X,Y )
with this norm is a Banach space. Write for short H(X) instead of H(X,X). Clearly
B(X) ⊂ H(X).

Theorem 2. (Bartle-Graves, see [2], Proposition 5.9) Let M be a closed subspace of a
Banach space X and let ε > 0. Then there exists h ∈ H(X/M,X) such that ‖h‖ < 1+ε
and h(x+M) ∈ x+M for each class x+M ∈ X/M .

Lemma 3. Let X,Y be Banach spaces and let T : X → Y be a bounded linear operator
with closed range. Let f ∈ H(Y ) satisfy f(Y ) ⊂ ImT . Then there exists g ∈ H(Y,X)
such that f = Tg.

Proof. Let h : X/KerT → X be the selection given by the Bartle-Graves theorem. Let
T0 : X/KerT → ImT be the operator induced by T . Set g = hT−1

0 f . For y ∈ Y we
have Tgy = ThT−1

0 fy = fy, and so Tg = f . Q.E.D.

Proposition 4. Let X0, . . . , Xn be Banach spaces, let δj : Xj → Xj+1 (j = 0, . . . , n−
1) be bounded linear operators and suppose that the sequence

0 −→ X0
δ0−→X1

δ1−→· · · δn−1−→Xn −→ 0

is exact. Let gj ∈ H(Xj) (j = 0, . . . , n). The following statements are equivalent:
(i) δjgj = gj+1δj (j = 0, . . . , n− 1);

(ii) there exist mappings Vj ∈ H(Xj+1, Xj) (j = 0, . . . , n− 1) such that

V0δ0 = g0,

Vjδj + δj−1Vj−1 = gj (j = 1, . . . , n− 1),

δn−1Vn−1 = gn.

Proof. (ii)⇒(i): Suppose that the mappings Vj satisfy (ii). We have

δjgj = δj(Vjδj + δj−1Vj−1) = δjVjδj

and
gj+1δj = (Vj+1δj+1 + δjVj)δj = δjVjδj

(note that the same relations are true also for j = 0 and j = n−1). Thus δjgj = gj+1δj
for all j.

(i)⇒(ii): Since δn−1 is onto, there exists Vn−1 such that δn−1Vn−1 = gn.
We construct mappings Vj inductively. Suppose that 1 ≤ j ≤ n − 1 and that

Vj ∈ H(Xj+1, Xj) satisfies Vj+1δj+1 + δjVj = gj+1 (for j = n − 1 set formally Vn = 0
and δn = 0). We have

δj(gj − Vjδj) = gj+1δj − δjVjδj = gj+1δj − (gj+1 − Vj+1δj+1)δj = 0.

Thus (gj − Vjδj)(Xj) ⊂ Ker δj = Im δj−1 and there exists Vj−1 ∈ H(Xj , Xj−1) such
that δj−1Vj−1 = gj − Vjδj . Thus Vjδj + δj−1Vj−1 = gj .
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At the end, suppose that V0 ∈ H(X1, X0) satisfies g1 = V1δ1+δ0V0. Then δ0V0δ0 =
(g1 − V1δ1)δ0 = g1δ0 = δ0g0. Since δ0 is one-to-one, we have V0δ0 = g0. This finishes
the proof. Q.E.D.

We recall now the basic notations of Taylor [18].
Denote by Λ[s] the complex exterior algebra generated by the indeterminates s =

(s1, . . . , sn). Then

Λ[s] =
n⊕

p=0

Λp[s],

where Λp[s] is the set of all elements of degree p in Λ[s]. Thus the elements of Λp[s] are
of form ∑

1≤i1<···<ip≤n

αi1,...,ipsi1 ∧ · · · ∧ sip

where αi1,...,ip are complex numbers. The multiplication operation ∧ is anticommuta-
tive, si ∧ sj = −sj ∧ si for all i, j. In particular si ∧ si = 0. Clearly dim Λp[s] =

(
n
p

)

and dim Λ[s] = 2n.
Let X be a Banach space. Then we write Λ[s,X] = X ⊗ Λ[s] and Λp[s,X] =

X ⊗ Λp[s]. Thus the elements of Λp[s,X] are of form

∑

1≤i1<···<ip≤n

xi1,...,ipsi1 ∧ · · · ∧ sip

where xi1,...,ip ∈ X (the symbol ⊗ is omitted in order to simplify the notation).
Let A = (A1, . . . , An) be an n−tuple of mutually commuting operators in X.

Define operator δA : Λ[s,X] → Λ[s,X] by

δA(xsi1 ∧ · · · ∧ sip) =
n∑

j=1

(Ajx)sj ∧ si1 ∧ · · · ∧ sip .

Write δp
A = δA|Λp[s,X]. The Koszul complex K(A) is the sequence

0 −→ Λ0[s,X]
δ0

A−→Λ1[s,X]
δ1

A−→· · · δ
n−1
A−→Λn[s,X] −→ 0.

Then (δA)2 = 0, i.e., δp
Aδ

p−1
A = 0 for all p. It is convenient to set formally

Λ−1[s,X] = Λn+1[s,X] = 0; similarly let δ−1
A and δn

A be the zero operators.
We say that the n−tuple A = (A1, . . . , An) is Taylor-regular if the Koszul complex

K(A) is exact (i.e., Im δA = Ker δA). The Taylor spectrum σT (A) is the set of all
n−tuples λ = (λ1, . . . , λn) ∈ Cn such that A − λ = (A1 − λ1, . . . , An − λn) is not
Taylor-regular. It is well-known that σT (A) is a nonempty compact subset of Cn.
Further, the Taylor spectrum satisfies the projection property, see [18], [16].

Let A = (A1, . . . , An) be a Taylor-regular n-tuple of operators. By Proposition 4,
there are ”generalized inverses” Vj ∈ H(

Λj+1[s,X],Λj [s,X]
)

such that δj−1
A Vj−1 +

Vjδ
j
A = IΛj [s,X]. In a simpler form, we have δAV +V δA = IΛ[s,X] where V ∈ H(Λ[s,X])

is defined by V (⊕n
j=0ψj) = ⊕n

j=1Vj−1ψj (ψj ∈ Λj [s,X]).
Our first goal is to show that it is possible to find such generalized inverses de-

pending smoothly on z ∈ Cn \ σT (A).

3



Proposition 5. Let A = (A1, . . . , An) be an n−tuple of mutually commuting operators
on a Banach space X. Let G = Cn \ σT (A). Then there exists a C∞- function
V : G→ H(Λ[s,X]) such that δA−zV (z) + V (z)δA−z = IΛ[s,X], and

V (z)Λp[s,X] ⊂ Λp−1[s,X] (z ∈ G, p = 0, . . . , n).

Proof. Consider Banach spaces

M1 =
n−1⊕

j=0

H(
Λj+1[s,X],Λj [s,X]

)
,

M2 =
n⊕

j=0

H(
Λj [s,X]

)
and

M3 =
n−1⊕

j=0

H(
Λj [s,X],Λj+1[s,X]

)
.

For z ∈ G define mappings Φ(z) : M1 →M2 and Ψ(z) : M2 →M3 by

Φ(z)
(n−1⊕

j=0

Vj

)
= V0δ

0
A−z ⊕

n−1⊕

j=1

(
Vjδ

j
A−z + δj−1

A−zVj−1
)⊕ δn−1

A−zVn−1

and

Ψ(z)
( n⊕

j=0

gj

)
=

n−1⊕

j=0

(
δj
A−zgj − gj+1δ

j
A−z

)
.

Clearly Φ(z) and Ψ(z) are bounded linear operators depending analytically on z ∈ G
and, by Proposition 4, Im Φ(z) = Ker Ψ(z). Further IΛ[s,X] = ⊕IΛi[s,X] ∈ Im Φ(z) for
all z ∈ G.

Let λ ∈ G. By [18], Lemma 2.2, cf. also [17], there is a neighbourhood Uλ of λ
and an analytic function Vλ : Uλ →M1 such that Φ(z)Vλ(z) = I (z ∈ Uλ).

Let {ϕi}∞i=1 be a C∞−partition of unity subordinated to the cover {Uλ, λ ∈ G} of
G, i.e. ϕi’s are C∞-functions, 0 ≤ ϕi ≤ 1, suppϕi ⊂ Uλi for some λi ∈ G, for each
λ ∈ G there exists a neighbourhood U of λ such that all but finitely many of ϕi’s are
0 on U and

∑∞
i=1 ϕi(z) = 1 for each z ∈ G.

For z ∈ G set V (z) =
∑∞

i=1 ϕi(z)Vλi(z). Clearly V is a C∞-function satisfying
V (z)Λp[s,X] ⊂ Λp−1[s,X] and Φ(z)V (z) = I for all z ∈ G. Q.E.D.

Remark 6. (i) Function Φ is regular in G (i.e., Im Φ(z) changes continuously). The
existence of a C∞-function V satisfying Φ(z)V (z) = I follows also directly from a deep
result of Mantlik [11]. The present argument, however, is more elementary.

(ii) It is possible to require also that V (z)2 = 0 and V (z)δA−zV (z) = V (z) for all
z ∈ G. In particular, V (z) is a generalized inverse of δA−z.

Indeed, let V : G→ H(Λ[s,X]) be the function constructed in Proposition 5, i.e.,
δA−zV (z) + V (z)δA−z = I and V (z)Λp[s,X] ⊂ Λp−1[s,X].

4



Clearly δA−zV (z)δA−z = δA−z. Set V ′(z) = V (z)δA−zV (z). Then

δA−zV
′(z)δA−z = δA−zV (z)δA−zV (z)δA−z = δA−z

and

V ′(z)δA−zV
′(z) = V (z)δA−zV (z)δA−zV (z)δA−zV (z) = V (z)δA−zV (z) = V ′(z).

Further

δA−zV
′(z) + V ′(z)δA−z = δA−zV (z)δA−zV (z) + V (z)δA−zV (z)δA−z

= δA−zV (z) + V (z)δA−z = I.

Finally we have

V ′(z) =
(
V ′(z)δA−z + δA−zV

′(z)
)
V ′(z) = V ′(z) + δA−zV

′(z)2,

and so δA−zV
′(z)2 = 0. Thus V ′(z)2 =

(
V ′(z)δA−z + δA−zV

′(z)
)
V ′(z)2 = 0.

These additional properties of the generalized inverse V , however, are not essential
for our purpose and we are not going to use them in the sequel.

In the following we fix a commuting n-tuple A = (A1, . . . , An) of bounded linear
operators on a Banach space X, the set G = Cn \ σT (A) and a C∞-function V : G →
H(Λ[s,X]) with the properties of Proposition 5.

Consider the space C∞(G,Λ[s,X]). Clearly this space can be identified with the
set Λ[s, C∞(G,X)].

Function V : G→ H(Λ[s,X]) induces naturally the operator (denoted by the same
symbol) V : C∞(G,Λ[s,X]) → C∞(G,Λ[s,X]) by

(V y)(z) = V (z)y(z)
(
z ∈ G, y ∈ C∞(G,Λ[s,X])

)
.

Similarly we define operator δA−z (or δ for short if no ambiguity can arise) acting in
C∞(G,Λ[s,X]) by

(δy)(z) = δA−z y(z)
(
z ∈ G, y ∈ C∞(G,Λ[s,X])

)
.

Clearly δ2 = 0, V δ + δV = IΛ[s,C∞(G,X)] and both V and δ are ”graded”, i.e.

V Λp[s, C∞(G,X)] ⊂ Λp−1[s, C∞(G,X)] and

δΛp[s, C∞(G,X)] ⊂ Λp+1[s, C∞(G,X)].

Consider now another indeterminates dz̄ = (dz̄1, . . . , dz̄n) and the space
Λ[s, dz̄, C∞(G,X)]. Define the linear operator

∂̄ : Λ[s,dz̄, C∞(G,X)] → Λ[s,dz̄, C∞(G,X)]

by

∂̄fsi1 ∧ . . . ∧ sip ∧ dz̄j1 ∧ . . . ∧ dz̄jq =
n∑

k=1

∂f

∂z̄k
dz̄k ∧ si1 ∧ . . . ∧ sip ∧ dz̄j1 ∧ . . . ∧ dz̄jq .
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Clearly ∂̄2 = 0.
Operators V and δ can be lifted from Λ[s, C∞(G,X)] to Λ[s,dz̄, C∞(G,X)] by

V (ψ ∧ dz̄i1 ∧ . . . dz̄ip
) = (V ψ) ∧ dz̄i1 ∧ . . . dz̄ip

and

δ(ψ ∧ dz̄i1 ∧ . . . dz̄ip
) = (δψ) ∧ dz̄i1 ∧ . . . dz̄ip

for all ψ ∈ Λ[s, C∞(G,X)]. Clearly the properties of V and δ are preserved: δ2 = 0,
V δ+ δV = I and both V and δ are graded. Note also that δ∂̄ = −∂̄δ and (∂̄+ δ)2 = 0.

Let W : Λ[s,dz̄, C∞(G,X)] → Λ[s, dz̄, C∞(G,X)] be the mapping defined in the
following way: if ψ ∈ Λ[s, dz̄, C∞(G,X)], ψ = ψ0 + · · ·+ ψn where ψj is the part of ψ
of degree j in dz̄, then set Wψ = η0 + · · ·+ ηn where

η0 = V ψ0,

η1 = V (ψ1 − ∂̄η0),

...

ηn = V (ψn − ∂̄ηn−1).

(1)

Note that ηj is the part of Wψ of degree j in dz̄.

Lemma 7. Let W : Λ[s, dz̄, C∞(G,X)] → Λ[s,dz̄, C∞(G,X)] be the mapping defined
above. Then:
(i) suppWψ ⊂ suppψ for all ψ;

(ii) if G′ is an open subset of G and ψ ∈ Λ[s,dz̄, C∞(G,X)] satisfies (∂̄ + δ)ψ = 0 on
G′, then (∂̄ + δ)Wψ = ψ on G′;

(iii) (∂̄ + δ)W (∂̄ + δ) = ∂̄ + δ.

Proof. (i) Clear.

(ii) Let ψ = ψ0 + · · ·+ ψn where ψj is the part of ψ of degree j in dz̄. Condition
(∂̄ + δ)ψ = 0 on G′ can be rewritten as

δψ0 = 0,

∂̄ψ0 + δψ1 = 0,

...

∂̄ψn−1 + δψn = 0

(2)

(condition ∂̄ψn = 0 is satisfied automatically).
Let Wψ = η0 + · · · + ηn where ηj are defined by (1). The required condition

(∂̄ + δ)Wψ = ψ then becomes

δη0 = ψ0,

∂̄η0 + δη1 = ψ1,

...

∂̄ηn−1 + δηn = ψn

(3)
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on G′ (again, ∂̄ηn = 0 automatically).
By (1) and (2), we have δη0 = δV ψ0 = (δV + V δ)ψ0 = ψ0 and ∂̄η0 + δη1 =

∂̄η0 + δV (ψ1 − ∂̄η0) = ∂̄η0 + (I − V δ)(ψ1 − ∂̄η0)∂̄η0 = ψ1 − V δ(ψ1 − ∂̄η0) = ψ1 since
δ(ψ1 − ∂̄η0) = δψ1 + ∂̄δη0 = δψ1 + ∂̄ψ0 = 0.

We prove (3) by induction. Suppose that ∂̄ηj−1 + δηj = ψj for some j ≥ 1. Then
δ(ψj+1 − ∂̄ηj) = δψj+1 + ∂̄δηj = δψj+1 + ∂̄ψj = 0 by the induction assumption, and
∂̄ηj + δηj+1 = ∂̄ηj + δV (ψj+1 − ∂̄ηj) = ∂̄ηj + (I − V δ)(ψj+1 − ∂̄ηj) = ψj+1.

(iii) Since (∂̄ + δ)2 = 0, the statement follows from (ii). Q.E.D.

Remark 8. Without any change it is possible to prove the preceding theorem in a
more general form. Let z 7→ A(z) be an analytic function defined on an open subset
G ⊂ Cn such that the values A(z) are Taylor regular n-tuples of operators on X for all
z ∈ G. Let ψ ∈ Λ[s,dz̄, C∞(G,X)] satisfy (∂̄ + δA(z))ψ = 0. Then there exists a form
θ ∈ Λ[s,dz̄, C∞(G,X)] with supp θ ⊂ suppψ and ψ = (∂̄ + δA(z))θ.

We interpret the differential form

(2i)−ndz̄1 ∧ · · · ∧ dz̄n ∧ dz1 ∧ · · · ∧ dzn (4)

as the Lebesgue measure in Cn = R2n.
Let P be the natural projection P : Λ[s, dz̄, C∞(G,X)] → Λ[dz̄, C∞(G,X)] that

annihilates all terms containing at least one of the indeterminates s1, . . . , sn and leaves
invariant all the remaining terms.

The following simple lemma will be used frequently.

Proposition 9. Let η ∈ Λn[s, dz̄, C∞(G,X)] be a differential form with a compact
support disjoint with σT (A) such that (∂̄ + δ)η = 0. Then

∫

Cn

Pη ∧ dz = 0

where dz stands for dz1 ∧ · · · ∧ dzn.

Proof. We have

Pη = P (∂̄ + δ)Wη = P ∂̄Wη = ∂̄PWη

where PWη has a compact support. By the Stokes theorem, we have
∫

Cn

Pη ∧ dz =
∫

Cn

∂̄PWη ∧ dz = 0.

Q.E.D.

Let U be a neighbourhood of σT (A). It is possible to find a compact neighbourhood
∆ of σT (A) such that ∆ ⊂ U and the boundary ∂∆ is a smooth surface. Let f be a
function analytic in U . Define operator f(A) by

f(A)x =
−1

(2πi)n

∫

∂∆
PWf(z)xs ∧ dz (x ∈ X), (5)
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where dz stands for dz1 ∧ · · · ∧ dzn and s = s1 ∧ · · · ∧ sn. By the Stokes formula,

f(A)x =
−1

(2πi)n

∫

∆
∂̄ϕPWf(z)xs ∧ dz

where ϕ is a C∞-function equal to 0 on a neighbourhood of σT (A) and to 1 on Cn \∆
(consequently, ϕ = 1 also on ∂∆).

On Cn \∆ we have

∂̄ϕPWfxs = P (∂̄ + δ)Wfxs = Pfxs = 0.

Thus we can write

f(A)x =
−1

(2πi)n

∫

Cn

∂̄ϕPWf(z)xs ∧ dz. (6)

It is clear from the Stokes theorem that the definition of f(A)x does not depend
on the choice of function ϕ and, by (6), it is independent of ∆.

We show that f(A) does not depend on the choice of the generalized inverse V
which determines W .

Suppose that W1,W2 are two operators satisfying

(∂̄ + δ)Wif(z)xs = f(z)xs (i = 1, 2).

For those z where ϕ ≡ 1 we have

(∂̄ + δ)ϕ(W1 −W2)f(z)xs = 0,

and so the form (∂̄ + δ)ϕ(W1 − W2)f(z)xs satisfies the conditions of Proposition 9.
Hence

0 =
∫

Cn

P (∂̄ + δ)ϕ(W1 −W2)f(z)xs ∧ dz =
∫

Cn

P ∂̄ϕ(W1 −W2)f(z)xs ∧ dz =

=
∫

Cn

∂̄ϕPW1f(z)xs ∧ dz −
∫

Cn

∂̄ϕPW2f(z)xs ∧ dz.

It is possible to express the mapping PW that appears in the definition of the
functional calculus more explicitly. By the definition of W , we have

PWxs = (−1)n−1V (∂̄V )n−1xs = (−1)n−1V0∂̄V1∂̄ · · · ∂̄Vn−1xs.

Since Λ[s,X] is a direct sum of 2n copies of X, we can express V (z) : Λ[s,X] →
Λ[s,X] in the matrix form whose entries are elements of H(X) depending smoothly on
z ∈ G.

Clearly we can write PWxs =
∑n

i=1M
(i)xdz̄1∧· · · d̂z̄i · · ·∧dz̄n for certain functions

M (i) ∈ C∞(
G,H(X)

)
where the hat denotes the omitted term.

Thus we can write formulas (5) and (6) also globally:

f(A) =
−1

(2πi)n

∫

∂∆
PWf(z)Is ∧ dz =

−1
(2πi)n

∫

Cn

∂̄ϕPWf(z)Is ∧ dz

=
(−1)n

(2πi)n

∫

Cn

∂̄ϕV (∂̄V )n−1f(z)Is ∧ dz
(7)

where I = IX is the identity operator on X. The coefficients of forms in (7) are
H(X)-valued C∞-functions. Therefore f(A) ∈ H(X).
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Lemma 10. f(A) is a bounded linear operator.

Proof. Since f(A) ∈ H(X), it is sufficient to show only the additivity. Let x, y ∈ X.
Let ϕ be a C∞-function equal to 0 on a neighbourhood of σT (A) such that supp (1−ϕ)
is compact. Then

− (2πi)n
(
f(A)(x+ y)− f(A)x− f(A)y

)

=
∫

Cn

∂̄ϕPWf · (x+ y)s ∧ dz −
∫

Cn

∂̄ϕPWfxs ∧ dz −
∫

Cn

∂̄ϕPWfys ∧ dz

=
∫

Cn

Pη ∧ dz

where
η = (∂̄ + δ)ϕWf · (x+ y)s− (∂̄ + δ)ϕWfxs− (∂̄ + δ)ϕWfys.

Clearly η has a compact support disjoint with σT (A) and (∂̄+δ)η = 0. By Proposition 9,∫
Pη ∧ dz = 0 and f(A)(x+ y) = f(A)x+ f(A)y. Q.E.D.

Proposition 11. For n = 1 the functional calculus defined by (7) coincides with the
classical functional calculus given by the Cauchy formula.

Proof. Let A ∈ B(X) and let f be a function analytic on a neighbourhood of σ(A).
Then Wxs = V xs = (A− z)−1x. Thus, for a suitable contour Σ surrounding σ(A), we
have

f(A)=
−1
2πi

∫

Σ
PWfIs ∧ dz =

−1
2πi

∫

Σ
(A− z)−1f(z)Idz =

1
2πi

∫

Σ
f(z)(z −A)−1dz,

which is the Cauchy formula. Q.E.D.

Proposition 12. Let f be a function analytic on a neighbourhood of σT (A), 1 ≤ j ≤ n
and g(z) = zjf(z). Then g(A) = Ajf(A).

Proof. The statement is well-known for n = 1. Suppose that n ≥ 2. Then

−(2πi)n
(
Ajf(A)− g(A)

)
= Aj

∫

Cn

∂̄ϕPWfIs ∧ dz −
∫

Cn

∂̄ϕPWzjfIs ∧ dz

=
∫

Cn

∂̄ϕf · (Aj − zj)PWIs ∧ dz.

For F ⊂ {1, . . . , n}, F = {i1, . . . , ip} where i1 < i2 < · · · < ip write sF = si1 ∧ · · · ∧ sip .
Express WIs ∈ Λn−1

[
s,dz̄, C∞(G,X)

]
as

WIs =
∑

F⊂{1,...,n}
sF ∧ ξF

where ξF contains no variable from s1, . . . , sn. Since (∂̄ + δA−z)WIs = Is, for each
F 6= {1, . . . , n} we have

∂̄ξF +
∑

k∈F

(−1)card {k′∈F :k′<k}(Ak − zk)ξF\{k} = 0.

9



In particular, for F = {j} we have

(Aj − zj)PWIs = (Aj − zj)ξ∅ = −∂̄ξ{j}.
Thus ∫

Cn

∂̄ϕf · (Aj − zj)PWIs ∧ dz = −
∫

Cn

∂̄ϕf∂̄ξ{j} ∧ dz

= −
∫

Cn

∂̄
(
ϕ∂̄fξ{j} − ∂̄ϕfξ{j}

) ∧ dz = 0

by the Stokes theorem. Hence g(A) = Ajf(A). Q.E.D.

Proposition 13. Let A = (A1, . . . , An) ∈ B(X)n, B = (B1, . . . , Bm) ∈ B(X)m.
Suppose that (A,B) = (A1, . . . , An, B1, . . . , Bm) is a commuting (n+m)-tuple and let
f and g be functions analytic on a neighbourhood of σT (A) and σT (B), respectively.
Define function h by h(z, w) = f(z) · g(w). Then h(A,B) = g(B)f(A).

Proof. Write z = (z1, . . . , zn) and w = (w1, . . . , wm). Denote by ∂̄z, ∂̄w and ∂̄z,w the
∂̄ operator corresponding to z, w and (z, w), respectively. We associate with B another
system t = (t1, . . . , tm) of exterior indeterminates when defining the operator δB−w.

Choose mappings WA,WB and WA,B corresponding to the tuples A,B and (A,B).
Let ∆′ and ∆′′ be compact neighbourhoods of σT (A) and σT (B) contained in the
domains of definition of f and g, respectively. Let ϕ,ψ and χ be C∞-functions equal to
0 on a neighbourhood of σT (A)

(
σT (B) and σT (A,B)

)
, and to 1 on Cn \∆′ (

Cm \∆′′

and Cn+m \∆′ ×∆′′, respectively
)
.

Denote by Ps and Pt the projections which annihilate all terms containing at least
one of variables s1, . . . , sn (t1, . . . , tm, respectively) and leave invariant the remaining
terms. Set P = PsPt.

Let x ∈ X. We have

f(A)x =
−1

(2πi)n

∫

Cn

∂̄zϕPsWAfxs ∧ dz =
−1

(2πi)n

∫

Cn

Psξ ∧ dz

where ξ = (∂̄z + δA−z)ϕWAfxs− fxs. On Cn \∆′ we have ϕ ≡ 1 and so ξ ≡ 0. Thus
supp ξ is compact. Further

g(B)f(A)x =
1

(2πi)n+m

∫

Cm

Pt(∂̄w + δB−w)ψWBg
(∫

Cn

Psξ ∧ dz
)
t ∧ dw.

Since WB is not linear, we cannot interchange it with the inner integral. However,
consider the form

η = (∂̄w + δB−w)ψWBg
(∫

Cn

Psξ ∧ dz
)
t− (∂̄w + δB−w)ψ

∫

Cn

WB

(
Psgξ ∧ dz ∧ t)

where WB is extended to Λ
[
dz̄, dz, t, dw̄, C∞(Cn × (Cm \ σT (B)), X)

]
in the obvious

way. Clearly (∂̄w +δB−w)η = 0 and supp η is disjoint with σT (B). On Cm \∆′′ we have
ψ ≡ 1 and η ≡ 0 since suppWB(Psgξ ∧ dz ∧ t) ⊂ supp ξ × Cm and we can interchange
∂̄w with the second integral. Thus

∫
Cm Ptη ∧ dw = 0 and we have

(2πi)n+mg(B)f(A)x =
∫

Cm

Pt(∂̄w + δB−w)ψ
∫

Cn

WB

(
Psgξ ∧ dz ∧ t) ∧ dw. (8)
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On the other hand, −(2πi)m+nh(A,B)x =
∫
Pη1 ∧ dz ∧ dw where

η1 = (∂̄z,w + δA−z,B−w)χWA,Bhxs ∧ t− hxs ∧ t.

Clearly supp η1 is compact.
Set

η2 = (∂̄z,w + δA−z,B−w)ψWA,Bgξ ∧ t− gξ ∧ t.
Clearly supp η2 ⊂ supp ξ ×Cm. Moreover, if ψ ≡ 1 then η2 ≡ 0, so supp η2 is compact.
On a neighbourhood of σT (A,B) we have η2 = −gξ ∧ t = fgxs ∧ t = −η1. By
Proposition 9, we have

∫
P (η1 + η2) ∧ dz ∧ dw = 0 and so

(2πi)m+nh(A,B)x =
∫

Cn+m

Pη2 ∧ dz ∧ dw

= (−1)mn

∫

Cm

(∫

Cn

Pt(∂̄z,w + δB−w)ψPsWA,Bgξ ∧ t ∧ dz
)
∧ dw

by the Fubini theorem (the factor (−1)mn is caused by convention (4) defining the
Lebesgue measures in Cn, Cm and Cm+n, respectively). By the Stokes theorem we
have

(2πi)m+nh(A,B)x =
∫

Cm

Pt(∂̄w + δB−w)ψ
(∫

Cn

PsWA,Bgξ ∧ dz ∧ t
)
∧ dw.

Consider the form

η3 = (∂̄w + δB−w)ψ
∫

Cn

PsWA,Bgξ ∧ dz ∧ t− (∂̄w + δB−w)ψ
∫

Cn

WB(Psgξ ∧ dz ∧ t).

Clearly supp η3 ∩ σT (B) = ∅ and (∂̄w + δB−w)η3 = 0. If ψ ≡ 1 then, by the Stokes
theorem,

η3 =
∫

Cn

Ps(∂̄z,w + δA−z,B−w)WA,Bgξ ∧ dz ∧ t−
∫

Cn

∂̄zPsWA,Bgξ ∧ dz ∧ t

−
∫

Cn

Psgξ ∧ dz ∧ t =
∫

Cn

Psgξ ∧ dz ∧ t−
∫

Cn

Psgξ ∧ dz ∧ t = 0.

Thus
∫
Ptη3 ∧ dw = 0 and

(2πi)n+mh(A,B)x =
∫

Cm

Pt(∂̄w + δB−w)ψ
∫

Cn

WB(Psgξdz ∧ t) ∧ dw

= (2πi)m+ng(B)f(A)x

by (8). Hence h(A,B) = g(B)f(A). Q.E.D.

We shall use the following simple lemma:
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Lemma 14. Let K be a compact subset of Cn and let f be a function analytic on an
open neighbourhood of K. Then there are functions hj (j = 1, . . . , n) analytic on a
neighbourhood of the set D = {(z, z) : z ∈ K} such that

f(z)− f(w) =
n∑

j=1

(zj − wj) · hj(z, w).

Proof. For j = 1, . . . , n define gj by

gj(z1, . . . , zn, w1, . . . , wn) = f(z1, . . . , zj , wj+1, . . . , wn)− f(z1, . . . , zj−1, wj , . . . , wn).

It is easy to see that gj is defined and analytic on a neighbourhood of D.

Let hj(z, w) = gj(z,w)
zj−wj

. Clearly hj is analytic at each point (z, w) with zj 6= wj .
By the Weierstrass division theorem (see [7], p. 70), hj can be defined and is analytic
also on a neighbourhood of each point (z, w) with zj = wj . Thus hj is analytic on a
neighbourhood of D. Clearly

n∑

j=1

(zj − wj) · hj(z, w) =
n∑

j=1

gj(z, w) = f(z)− f(w).

Q.E.D.

Denote by AK the algebra of all functions analytic on a neighbourhood of a com-
pact set K ⊂ Cn (more precisely, the algebra of all germs of functions analytic on a
neighbourhood of K).

Theorem 15. Let A = (A1, . . . , An) be an n-tuple of mutually commuting operators
on X. Then:
(i) the mapping f 7→ f(A) is linear and multiplicative, i.e., the Taylor functional

calculus is a homomorphism from AσT (A) to B(X);
(ii) if p is a polynomial, p(z) =

∑
α∈Zn

+
cαz

α then p(A) =
∑

α∈Zn
+
cαA

α;

(iii) if fn → f uniformly on a compact neighbourhood of σT (A) then fn(A) → f(A) in
the norm topology;

(iv) f(A) ∈ (A)′′ for each f ∈ AσT (A).

Proof. (i) The linearity of the mapping f 7→ f(A) is clear. Let f and g be functions
analytic on a neighbourhood of σT (A). Consider the (2n)-tuple (A,A). It is easy to
see that σT (A,A) = {(z, z) : z ∈ σT (A)}. Define functions h1(z, w) = f(z)g(w) and
h2(z, w) = f(z)g(z). By Lemma 14, we can write g(z)− g(w) =

∑n
i=1(zi − wi)qi(z, w)

for some functions q1, . . . , qn analytic on a neighbourhood of σT (A,A). By Proposition
13, we have h1(A,A) = f(A)g(A) and h2(A,A) = (fg)(A). Thus, by Proposition 12,

(fg)(A)− f(A)g(A) = h2(A,A)− h1(A,A) =
n∑

i=1

(Ai −Ai)(fqi)(A,A) = 0.

Hence (fg)(A) = f(A)g(A).
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(ii) The statement follows from Propositions 11 and 13.

(iii) follows from the definition.

(iv) Let S ∈ B(X) be an operator commuting with A1, . . . , An. By Proposition
13, it is possible to consider f(A) to be a function of the (n+ 1)-tuple (A1, . . . , An, S).
Therefore f(A) commutes with its argument S. Hence f(A) ∈ (A)′′. Q.E.D.

It follows from the general theory [23] that the Taylor spectrum satisfies the spectral
mapping property for all polynomials (and consequently, for all functions that can be
approximated by polynomials uniformly on a neighbourhood of the Taylor spectrum).
In fact the spectral mapping property is true for all analytic functions. To show this,
we need the following lemma:

Lemma 16. Let A = (A1, . . . , An) be a commuting n-tuple of operators on X, let
c = (c1, . . . , cn) ∈ σT (A) and let f be a function analytic on a neighbourhood of σT (A).
Consider exterior indeterminates t = (t1, . . . , tn) and operator δA−c,t : Λ[t,X] → Λ[t,X]
defined by δA−c,tψ =

∑n
j=1(Aj − cj)tj ∧ ψ (ψ ∈ Λ[t,X]). Let η0 ∈ Ker δA−c,t. Then

(f(A)− f(c))η0 ∈ δA−c,tΛ[t,X].

Proof. Without loss of generality we can assume that η0 is homogeneous of degree p,
0 ≤ p ≤ n.

To define f(A), consider exterior indeterminates s = (s1, . . . , sn), the mapping
δA−z acting on Λ[s,dz̄, C∞(Cn \ σT (A), X)] defined by δA−zψ =

∑n
j=1(Aj − zj)sj ∧ ψ

and the mapping WA corresponding to A. We can lift δA−z and WA to the space
Λ[s, t, dz̄, C∞(Cn\σT (A), X)] in the natural way. Note that δA−z and WA are connected
with variables s; the mapping δA−c,t is related to variables t.

Set η = fη0 ∧ s and ξ1 =
∑n

k=0(−1)kWA(δA−c,tWA)kη. We show by induction
that (∂̄ + δA−z)(δA−c,tWA)kη = 0 for all k. This is clear for k = 0; for k ≥ 1 we have

(∂̄ + δA−z)(δA−c,tWA)kη = −δA−c,t(∂̄ + δA−z)WA(δA−c,tWA)k−1η

= −δA−c,t(δA−c,tWA)k−1η = 0.

Hence
(∂̄ + δA−z + δA−c,t)ξ1 = (∂̄ + δA−z)ξ1 + δA−c,tξ1

=
n∑

k=0

(−1)k(δA−c,tWA)kη +
n∑

k=0

(−1)k(δA−c,tWA)k+1η = η

since (δA−c,tWA)n+1 = 0. Let ϕ be a C∞-function equal to 0 on a neighbourhood
of σT (A) such that supp (1 − ϕ) is compact. Let Ps be the projection annihilating all
terms that contain at least one of the variables s1, . . . , sn and leaving invariant all other
terms.

Consider the integral∫
(∂̄ + δA−c,t)Psϕξ1 ∧ dz =

∫
(∂̄ + δA−c,t)Psϕ(WAη −WAδA−c,tWAη + · · ·) ∧ dz.

Since WA(δA−c,tWA)kη has degree p+ k in t and n− k− 1 in (s,dz̄), the only relevant
term in the integral above is WAη. Thus∫

(∂̄ + δA−c,t)Psϕξ1 ∧ dz =
∫

(∂̄ + δA−c,t)PsϕWAη ∧ dz

=
∫
∂̄PsϕWAη ∧ dz = −(2πi)nf(A)η0.
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Consider now the n-tuple B = (c1I, . . . , cnI) ∈ B(X)n. Since f can be approxi-
mated by polynomials uniformly on a neighbourhood of c, we note that f(B) = f(c) ·I.

As above, consider mappings δB−z and WB connected with variables s.
Let ξ2 =

∑n
k=0(−1)kWB(δA−c,tWB)kη. As above, we have (∂̄+δB−z +δA−c,t)ξ2 =

η and ∫
(∂̄ + δA−c,t)Psϕξ2 ∧ dz =

∫
(∂̄ + δA−c,t)PsϕWBη ∧ dz

=
∫
∂̄PsϕWBη ∧ dz = −(2πi)nf(B)η0 = −(2πi)nf(c)η0.

To show that (f(A)− f(c))η0 ∈ δA−c,tΛ[t,X], consider the linear mapping U acting on
Λ[s, t, dz̄, C∞(Cn \ σT (A), X)] defined by

U
(
ti1 ∧ · · · ∧ tim ∧ ψ

)
= (ti1 − si1) ∧ · · · ∧ (tim − sim) ∧ ψ

for all i1, . . . , im and ψ ∈ Λ[s, dz̄, C∞(Cn \σT (A), X)]. Clearly PsU = Ps and, for each
ψ ∈ Λ[s, t, dz̄, C∞(Cn \ σT (A), X)],

U(∂̄ + δA−z + δA−c,t)ψ

= ∂̄Uψ +
∑

(Aj − zj)sj ∧ Uψ +
∑

(Aj − cj)(tj − sj) ∧ Uψ
= (∂̄ + δB−z + δA−c,t)Uψ.

We have

− (2πi)nf(A)η0 =
∫

(∂̄ + δA−c,t)Psϕξ1 ∧ dz =
∫
Ps(∂̄ + δA−z + δA−c,t)ϕξ1 ∧ dz

=
∫
PsU(∂̄ + δA−z + δA−c,t)ϕξ1 ∧ dz =

∫
Ps(∂̄ + δB−z + δA−c,t)ϕUξ1 ∧ dz.

Thus

−(2πi)n(f(A)− f(c))η0 =
∫
Ps(∂̄ + δB−z + δA−c,t)ϕ(Uξ1 − ξ2) ∧ dz =

∫
Psθ ∧ dz

where θ = (∂̄+δB−z+δA−c,t)ϕ(Uξ1−ξ2). If ϕ ≡ 1 then θ = (∂̄+δB−z+δA−c,t)Uξ1−η =
U(∂̄+ δA−z + δA−c,t)ξ1− η = Uη− η = 0; so supp θ is compact. Furthermore, θ can be
written as θ = (∂̄+δB−z +δA−c,t)ψ for some form ψ ∈ Λ[s, t,dz̄, C∞(Cn, X)] with com-
pact support. Indeed, by Remark 8, there exists a form ϑ ∈ Λ[s, t,dz̄, dw̄, C∞(C2n, X)]
with suppϑ ⊂ supp θ × Cn such that (∂̄z,w + δB−z + δA−c,t)ϑ = θ.

Set ψ(z) = ϑ0(z, c) where ϑ0 is the part of ϑ containing none of the variables dw̄j .
Then suppψ ⊂ supp θ and (∂̄z + δB−z + δA−c,t)ψ = θ. By the Stokes theorem,

∫
Psθ ∧ dz =

∫
Ps(∂̄z + δB−z + δA−c,t)ψ ∧ s ∧ dz

=
∫
∂̄zPsψ ∧ dc+

∫
PsδA−c,tψ ∧ dz = δA−c,t

∫
Psψ ∧ dz ∈ δA−c,tΛ[t,X].

Q.E.D.
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Proposition 17. Let A = (A1, . . . , An) be a commuting n-tuple of operators on X,
c = (c1, . . . , cn) ∈ σT (A) and let f be a function analytic on a neighbourhood of σT (A).
Then the (n + 1)-tuple (A1 − c1, . . . , An − cn, f(A)) is Taylor regular if and only if
f(c) 6= 0.

Proof. To the (n + 1)-tuple (A − c,f(A)) we relate exterior variables s1, . . . , sn+1.
Write for short s = (s1, . . . , sn). Let δA−c : Λ[s,X] → Λ[s,X] be be defined by δA−cψ =∑

(Aj− cj)sj ∧ψ (ψ ∈ Λ[s,X]). Clearly Λ[s, sn+1, X] = Λ[s,X]⊕sn+1∧Λ[s,X]. The
operator δA−c,f(A) corresponding to the (n + 1)-tuple (A − c, f(A)) can be written in
this decomposition in the matrix form

δA−c,f(A) =

(
δA−c 0
f(A) −δA−c

)
.

We distinguish two cases:
(a) f(c) = 0.
Since c ∈ σT (A), there is a ψ ∈ Λ[s,X] such that δA−cψ = 0 and ψ /∈ δA−cΛ[s,X].

By the preceding lemma, there is an η ∈ Λ[s,X] such that f(A)ψ = δA−cη. Then
δA−c,f(A)(ψ + sn+1 ∧ η) = 0 and (ψ + sn+1 ∧ η) /∈ δA−c,f(A)Λ[s, sn+1, X] since ψ /∈
δA−cΛ[s,X]. Thus the (n+ 1)-tuple (A− c, f(A)) is Taylor singular.

(b) f(c) 6= 0. Without loss of generality we can assume that f(c) = 1.
Let ψ, ξ ∈ Λ[s,X], δA−c,f(A)(ψ + sn+1 ∧ ξ) = 0. Then δA−cψ = 0 and f(A)ψ −

δA−cξ = 0. By the preceding lemma, f(A)ψ − ψ ∈ δA−cΛ[s,X]. Since f(A)ψ ∈
δA−cΛ[s,X], we have ψ = δA−cη for some η ∈ Λ[s,X].

Further δA−c(f(A)η − ξ) = f(A)ψ − δA−cξ = 0. Thus there is an θ ∈ Λ[s,X] with
f(A)(f(A)η−ξ)−(f(A)η−ξ) = δA−cθ. Set η′ = η−(f(A)η−ξ). Then δA−cη

′ = δA−cη =
ψ and f(A)η′− δA−cθ = f(A)η− f(A)(f(A)η− ξ) + δA−cθ = f(A)η− (f(A)η− ξ) = ξ.
Hence δA−c,f(A)(η′ − sn+1 ∧ θ) = (ψ + sn+1 ∧ ξ) and the (n+ 1)-tuple (A− c, f(A)) is
Taylor regular. Q.E.D.

Theorem 18. (spectral mapping property) Let A = (A1, . . . , An) be a commuting
n-tuple of operators on X and let f = (f1, . . . , fm) be an m-tuple of functions analytic
on a neighbourhood of σT (A). Then σT (f(A)) = fσT (A).

Proof. Consider the commutative Banach algebra A generated by A1, . . . , An, I and
f1(A), . . . , fm(A). Since the restriction of σT to A satisfies the projection property, by
[23] there is a compact subset K of the maximal ideal space of A such that σT (B) =
{ϕ(B) : ϕ ∈ K} for each tuple B = (B1, . . . , Bk) ⊂ A.

Fix ϕ ∈ K and i, 1 ≤ i ≤ m. Let cj = ϕ(Aj) (j = 1, . . . , n) and c = (c1, . . . , cn) ∈
σT (A). Then the (n+1)-tuple (A1−c1, . . . , An−cn, fi(A)−ϕ(fi(A))) is Taylor singular.
By Proposition 17, fi(c)− ϕ(fi(A)) = 0, i.e., ϕ(fi(A)) = fi(ϕ(A)). Then

σT (f(A)) = {(ϕ(f1(A), . . . ϕ(fm(A))) : ϕ ∈ K} = {(f1(ϕ(A)), . . . , fm(ϕ(A))) : ϕ ∈ K}
= {f(c) : c ∈ σT (A)} = fσT (A).

Q.E.D.

Theorem 19. (superposition property [13], [6]) Let A = (A1, . . . , Am) be a commuting
n-tuple of operators on X, let f = (f1, . . . , fm) be an m-tuple of function analytic on a
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neighbourhood of σT (A), let B = f(A), let g be a function analytic on a neighbourhood
of σT (B) and let h(z) = g(f1(z), . . . , fm(z)). Then h(A) = g(B).

Proof. By Lemma 14, g(v) − g(w) =
∑m

j=1(vj − wj)rj(v, w) for some functions
r1, . . . , rm analytic on a neighbourhood of the set {(v, v) : v ∈ σT (B)}. Thus

g(f(z))− g(w) =
m∑

j=1

(fj(z)− wj)r′j(z, w)

where r′j(z, w) = rj
(
f(z), w)

)
and functions r′j are analytic on a neighbourhood of

the set {(z, f(z)) : z ∈ σT (A)} = σT (A, f(A)). Thus h(A) − g(B) =
∑m

j=1

(
fj(A) −

Bj

)
r′j(A,B) = 0. Hence h(A) = g(B). Q.E.D.

Concluding Remarks

1. There are many variants of formulas (5), (6) defining the Taylor functional calculus
that differ from each other in the sign in front of the integral. There are several sources
of differences:

(a) Instead of the n-tuple A− z = (A1 − z1, . . . , An − zn) it is possible to consider the
n-tuple z − A (which appears naturally in the Cauchy formula). In this approach
an additional factor (−1)n in front of the integral (5) would appear.

(b) Instead of (4) it is possible to use convention that the Lebesgue measure in Cn is
(2i)−ndz̄1∧dz1∧· · ·∧dz̄n∧dzn. With this convention the Fubini theorem becomes

more natural. In formula (5), however, an additional factor (−1)(
n
2) would appear.

(c) It is also possible to modify the definition of the mappings δp
A in the Koszul complex

as in [10]: δp
Axsi1 ∧ · · · ∧ sip =

∑
j Ajxsi1 ∧ · · · ∧ sip ∧ sj . This convention results

also in an additional factor (−1)(
n
2) in formula (5).

2. For Hilbert space operators it is possible to choose V = (δA−z + δ∗A−z)−1, see [20],
[21], [22]. Formula (7) is then quite explicit.

3. The split-spectrum σS(A) of the n-tuple A = (A1, . . . , An) ∈ B(X)n is defined as the
set of all λ ∈ Cn such that either Im δA−λ 6= Ker δA−λ or Im δA−λ is not complemented
in Λ[s,X]. In general σS(A) is bigger than σT (A), see [12] (in Hilbert spaces these two
spectra coincide).

On the complement of σS(A) it is possible to find bounded linear generalized
inverses V (z), see [9]. Thus for functions analytic on a neighbourhood of the split-
spectrum the proof of basic properties of the Taylor functional calculus becomes simpler.
The linearity of f(A) is clear and also the proofs of multiplicativity of the functional
calculus and the spectral mapping property are simpler.

4. As in Theorem 18, it is possible to prove the spectral mapping property for func-
tions analytic on a neighbourhood of the Taylor spectrum for each spectral system
which is contained in the Taylor spectrum. In particular, this applies to the spectra of
S lodkowski and the essential Taylor spectrum, see [14].

5. An interesting problem is to generalize the Taylor spectrum for Banach algebras.
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Let a = (a1, . . . , an) be a commuting n-tuple of elements of a Banach algebra.
Denote by La = (La1 , . . . , Lan) the n-tuple of left multiplication operators acting on A.
A natural idea is to define the Taylor spectrum of a as σT (La). However, if A = B(X)
is the algebra of operators on a Banach space X and A ∈ B(X)n a commuting n-tuple,
then σT (LA) = σS(A). Thus this simple way does not produce the Taylor spectrum in
B(X).

In fact in this situation A can be considered also as a commuting n-tuple of
elements of H(X) where H(X) satisfies all axioms of Banach algebras except one
of the distributive laws; let us call such objects semi-distributive algebras. Define
L′A = (L′A1

, . . . , L′An
) ∈ B(H(X))n by L′Ai

ϕ = Aiϕ (ϕ ∈ H(X)); clearly L′Ai
is an

extension of LAi . It is easy to check now that σT (L′A) = σT (A).
It seems that the natural setting for the Taylor spectrum in algebras is to define

it for commuting n-tuples a = (a1, . . . , an) of elements of a semi-distributive algebra A
that lie in the ”distributive center” of A (more precisely, ai(b + c) = aib + aic for all
b, c ∈ A, 1 ≤ i ≤ n. For such an n-tuple, Lai

: A → A defined by Lai
b = aib (b ∈ A)

is a linear operator and we can define the Taylor spectrum of a as the Taylor spectrum
of La = (La1 , . . . , Lan) ∈ B(A)n.
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