On the topological boundary of the one-sided spectrum

V. Müller*

Abstract

It is well-known that the topological boundary of the spectrum of an operator is contained in the approximate point spectrum. We show that the one-sided version of this result is not true. This gives also a negative answer to a problem of Schmoeger.

Denote by $\mathcal{L}(X)$ the algebra of all bounded linear operators acting in a Banach space X. For $T \in \mathcal{L}(X)$ denote by $\sigma(T), \sigma_{l}(T)$ and $\sigma_{\pi}(T)$ the spectrum, left spectrum and the approximate point spectrum of T, respectively:

$$
\begin{aligned}
& \sigma(T)=\{\lambda \in \mathbf{C}: T-\lambda \text { is not invertible }\} \\
& \sigma_{l}(T)=\{\lambda \in \mathbf{C}: T-\lambda \text { is not left invertible }\} \\
& \sigma_{\pi}(T)=\{\lambda \in \mathbf{C}: T-\lambda \text { is not bounded below }\}
\end{aligned}
$$

It is well-known that $\partial \sigma(T) \subset \sigma_{\pi}(T) \subset \sigma_{l}(T) \subset \sigma(T)$. This implies in particular that the outer topological boundaries ($=$ the boundaries of the polynomially convex hull) of $\sigma(T), \sigma_{l}(T)$ and $\sigma_{\pi}(T)$ coincide.

The aim of this paper is to show that the inner topological boundaries of σ_{l} and σ_{π} can be different.

The author wishes to express his thanks to G. Pisier for the proof of Proposition 3.
We use the following notations. If X is a closed subspace of a Banach space Y then we denote $c(X, Y)=\inf \{\|P\|: P \in \mathcal{L}(Y)$ is a projection with range $X\}$ (if X is not complemented in Y then we set $c(X, Y)=\infty)$.

For Banach spaces X and Y denote by $X \hat{\otimes} Y$ and $X \tilde{\otimes} Y$ the projective and injective tensor products (see [2]). Thus $X \hat{\otimes} Y$ and $X \ddot{\otimes} Y$ are the completions of the algebraic tensor product $X \otimes Y$ endowed with the projective (injective) norms

$$
\|u\|_{X \hat{\otimes} Y}=\inf \left\{\sum_{i}\left\|x_{i}\right\| \cdot\left\|y_{i}\right\|: u=\sum_{i} x_{i} \otimes y_{i}\right\}
$$

and

$$
\|u\|_{X \ddot{\otimes} Y}=\sup \left\{\left|\left(x^{*} \otimes y^{*}\right)(u)\right|: x^{*} \in X^{*}, y^{*} \in Y^{*},\left\|x^{*}\right\| \leq 1,\left\|y^{*}\right\| \leq 1\right\}
$$

Clearly elements of $Y \hat{\otimes} X^{*}$ can be identified with the trace class operators $X \rightarrow Y$ (with the trace norm).

If $\left\{Y_{i}\right\}$ is a family of Banach spaces then we denote by $\bigoplus_{i} Y_{i}$ the direct sum of Y_{i} 's with the ℓ_{1} norm, $\left\|\oplus y_{i}\right\|=\sum_{i}\left\|y_{i}\right\|$.

[^0]Lemma 1. Let $X_{i}, Y_{i} \quad(i \in \mathbf{Z})$ be Banach spaces, $X_{i} \subset Y_{i}$. Then

$$
c\left(\bigoplus_{i} X_{i}, \bigoplus_{i} Y_{i}\right)=\sup _{i}\left\{c\left(X_{i}, Y_{i}\right)\right\} .
$$

Proof. Denote $X=\bigoplus_{i} X_{i}$ and $Y=\bigoplus_{i} Y_{i}$.
$\leq:$ If $P_{i} \in \mathcal{L}\left(Y_{i}\right)$ are projections with ranges X_{i} and $\sup _{i}\left\|P_{i}\right\|<\infty$ then $P=\bigoplus_{i} P_{i}$ is a projection onto X with the norm $\|P\|=\sup _{i}\left\|P_{i}\right\|$.
\geq : Suppose $P \in \mathcal{L}(Y)$ is a projection with range X. Denote $P_{k}=Q_{k} P J_{k} \quad(k \in \mathbf{Z})$ where $J_{k}: Y_{k} \rightarrow Y$ is the natural embedding and $Q_{k}: X \rightarrow X_{k}$ the canonical projection. It is easy to check that P_{k} is a projection with range X_{k} and $\left\|P_{k}\right\| \leq\|P\|$ so that $c\left(X_{k}, Y_{k}\right) \leq c(X, Y)$.

Lemma 2. Let E be a finite dimensional subspace of a Banach space X. Then

$$
c(E, X)=\sup \left\{|\operatorname{tr}(S)|: S \in \mathcal{L}(E),\|J S\|_{X \hat{\otimes} E^{*}} \leq 1\right\}
$$

where $J: E \rightarrow X$ is the natural embedding.
Proof. \geq : Let P be a projection from X onto E and let $S \in \mathcal{L}(E)$. Then

$$
|\operatorname{tr}(S)|=|\operatorname{tr}(P J S)| \leq\|P J S\|_{E \hat{\otimes} E^{*}} \leq\|P\| \cdot\|J S\|_{X \hat{\otimes} E^{*}} .
$$

$\leq:$ Consider $\mathcal{M}=\{J S: S \in \mathcal{L}(E)\}$ as a subspace of $X \hat{\otimes} E^{*}$. Define $f \in \mathcal{M}^{*}$ by $f(J S)=\operatorname{tr}(S)$. The norm of f is equal to $k=\sup \left\{|\operatorname{tr}(S)|: S \in \mathcal{L}(E),\|J S\|_{X \hat{\otimes} E^{*}} \leq 1\right\}$. By the Hahn-Banach theorem there exists an extension $g \in\left(X \hat{\otimes} E^{*}\right)^{*}$ with the same norm k. Since $\left(X \hat{\otimes} E^{*}\right)^{*}$ is isometrically isometric to $\mathcal{L}(X, E)$ (see [2], p.230), there exists $P \in \mathcal{L}(X, E)$ with $\|P\|=k$ and, for all $x \in X$ and $e^{*} \in E^{*},<P x, e^{*}>=g\left(x \otimes e^{*}\right)$. In particular, for $e \in E$ and $e^{*} \in E^{*}$,

$$
<P e, e^{*}>=g\left(e \otimes e^{*}\right)=f\left(e \otimes e^{*}\right)=\operatorname{tr}\left(e \otimes e^{*}\right)=<e, e^{*}>
$$

so that $P e=e$ and P is a projection with range E. Hence $c(E, X) \leq k$.
Proposition 3. Let X_{1} and X_{2} be Banach spaces, let $E_{1} \subset X_{1}$ and $E_{2} \subset X_{2}$ be finite dimensional subspaces. Then

$$
c\left(E_{1} \check{\otimes} E_{2}, X_{1} \check{\otimes} X_{2}\right)=c\left(E_{1}, X_{1}\right) \cdot c\left(E_{2}, X_{2}\right) .
$$

Proof. It is well-known that $E_{1} \check{\otimes} E_{2}$ is a subspace of $X_{1} \check{\otimes} X_{2} \quad$ (see [2], p.225).
\leq : If $P_{i} \in \mathcal{L}\left(X_{i}\right)$ is a projection with range $E_{i} \quad(i=1,2)$ then it is easy to check that $P_{1} \otimes P_{2} \in \mathcal{L}\left(X_{1} \check{\otimes} X_{2}\right)$ is a projection onto $E_{1} \check{\otimes} E_{2}$ with $\left\|P_{1} \otimes P_{2}\right\| \leq\left\|P_{1}\right\| \cdot\left\|P_{2}\right\|$.
$\geq:$ Denote by $J_{i}: E_{i} \rightarrow X_{i} \quad(i=1,2)$ the natural embedding. Then $J=J_{1} \otimes J_{2}$ is the natural embedding of $E_{1} \check{\otimes} E_{2}$ into $X_{1} \check{\otimes} X_{2}$. Let $\varepsilon>0$. By Lemma 2 there exist $S_{i} \in \mathcal{L}\left(E_{i}\right) \quad(i=1,2)$ such that $\left\|J_{i} S_{i}\right\|_{X_{i} \hat{\otimes} E_{i}^{*}}=1$ and $\left|\operatorname{tr}\left(S_{i}\right)\right|>c\left(E_{i}, X_{i}\right)-\varepsilon \quad(i=$ 1,2). Consider $S=S_{1} \otimes S_{2} \in \mathcal{L}\left(E_{1} \otimes E_{2}\right)$. It is easy to check that

$$
\begin{equation*}
\operatorname{tr}(S)=\operatorname{tr}\left(S_{1}\right) \cdot \operatorname{tr}\left(S_{2}\right)>\left(c\left(E_{1}, X_{1}\right)-\varepsilon\right) \cdot\left(c\left(E_{2}, X_{2}\right)-\varepsilon\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|J S\|_{\left(X_{1} \dot{\otimes} X_{2}\right) \hat{\otimes}\left(E_{1} \dot{\otimes} E_{2}\right)^{*}} \leq\left\|J_{1} S_{1}\right\|_{X_{1} \hat{\otimes} E_{1}^{*}}\left\|J_{2} S_{2}\right\|_{\dot{\otimes} X_{2} \hat{\otimes} E_{2}^{*}}=1 \tag{2}
\end{equation*}
$$

To see (2), observe that if $\delta>0, J_{1} S_{1}=\sum_{i} x_{1 i} \otimes e_{1 i}^{*}$ and $J_{2} S_{2}=\sum_{j} x_{2 j} \otimes e_{2 j}^{*}$ for some $x_{1 i} \in X_{1}, x_{2 j} \in X_{2}, e_{1 i}^{*} \in E_{1}^{*}, e_{2 j} \in E_{2}^{*}, \sum_{i}\left\|x_{1 i}\right\| \cdot\left\|e_{1 i}^{*}\right\|<1+\delta$ and $\sum_{i}\left\|x_{2 j}\right\| \cdot\left\|e_{2 j}^{*}\right\|<1+\delta$ then

$$
J S=\sum_{i, j}\left(x_{1 i} \otimes x_{2 j}\right) \otimes\left(e_{1 i}^{*} \otimes e_{2 j}^{*}\right)
$$

where $x_{1 i} \otimes x_{2 j} \in X_{1} \check{\otimes} X_{2}, e_{1 i}^{*} \otimes e_{2 j}^{*} \in\left(E_{1} \ddot{\otimes} E_{2}\right)^{*}$ and

$$
\sum_{i, j}\left\|x_{1 i} \otimes x_{2 j}\right\|_{X_{1} \check{\otimes} X_{2}} \cdot\left\|e_{1 i}^{*} \otimes e_{2 j}^{*}\right\|_{\left(E_{1} \check{\otimes} E_{2}\right)^{*}}<(1+\delta)^{2}
$$

Thus we have (2) and together with (1) and Lemma 2 we obtain for $\varepsilon \rightarrow 0$ the required inequality

$$
c\left(E_{1} \check{\otimes} E_{2}, X_{1} \check{\otimes} X_{2}\right) \geq c\left(E_{1}, X_{1}\right) \cdot c\left(E_{2}, X_{2}\right)
$$

Theorem 4. There exists a Banach space Z and an operator $T \in \mathcal{L}(Z)$ such that dist $\left\{0, \sigma_{\pi}(T)\right\}>\operatorname{dist}\left\{0, \sigma_{l}(T)\right\}>0$.
Proof. Fix a Banach space X and a finite dimensional subspace $E \subset X$ such that $c(E, X)=a>1$ (it is well-known that such a pair exists, see e.g. [11], \$ 32). Set

$$
\begin{aligned}
Y_{0} & =X \oplus X \check{\otimes} X \oplus X \check{\otimes} X \check{\otimes} X \oplus \cdots, \\
Y_{1} & =E \oplus E \ddot{\otimes} X \oplus E \check{\otimes} X \ddot{\otimes} X \oplus \cdots, \\
Y_{2} & =E \oplus E \check{\otimes} E \oplus E \check{\otimes} E \check{\otimes} X \oplus \cdots, \\
& \vdots \\
Y_{k} & =\bigoplus_{i=1}^{\infty} \underbrace{E \check{\otimes} \cdots \check{\otimes} E}_{\min \{k, i\}} \check{\otimes} \underbrace{X \check{\otimes} \cdots \check{\otimes} X}_{\max \{i-k, 0\}} \\
& \vdots
\end{aligned}
$$

We can consider Y_{k+1} as a subspace of Y_{k} so that $Y_{0} \supset Y_{1} \supset Y_{2} \supset \cdots$. By Lemma 1 and Proposition 3, $c\left(Y_{j}, Y_{k}\right)=a^{j-k} \quad(k<j)$. Set $Z=\cdots \oplus Y_{0} \oplus \cdots \oplus Y_{0} \oplus Y_{1} \oplus Y_{2} \oplus \cdots$ and let $T \in \mathcal{L}(Z)$ be the shift operator to the left,

$$
T\left(\cdots y_{-2} \oplus y_{-1} \oplus y_{0} \oplus y_{1} \oplus y_{2} \cdots\right)=\left(\cdots y_{-2} \oplus y_{-1} \oplus y_{0} \oplus y_{1} \oplus y_{2} \cdots\right)
$$

(the box denotes the zero position). Clearly T is an isometry so that $\sigma_{\pi}(T)=\{\lambda \in \mathbf{C}$: $|\lambda|=1\}$ and dist $\left\{0, \sigma_{\pi}(T)\right\}=1$.

Further

$$
c\left(T^{k} Z, Z\right)=c\left(\cdots Y_{k-1} \oplus Y_{k} \oplus Y_{k+1} \oplus \cdots, \cdots Y_{0} \oplus Y_{0} \oplus Y_{1} \oplus \cdots\right)=a^{k}
$$

In particular $T Z$ is complemented in Z so that T is left invertible.
Denote $t=\operatorname{dist}\left\{0, \sigma_{l}(T)\right\}$ and $U=\{\lambda \in \mathbf{C}:|\lambda|<t\}$. By [1] there exists an analytic function $F: U \rightarrow \mathcal{L}(Z)$ such that $F(\lambda)(T-\lambda)=I \quad(\lambda \in U)$. Let

$$
F(\lambda)=\sum_{i=0}^{\infty} F_{i} \lambda^{i} \quad(\lambda \in U)
$$

be the Taylor expansion of F. Since $F(\lambda)(T-\lambda)=I$ we have $F_{0} T=I, F_{i} T=$ $F_{i-1} \quad(i \geq 1)$ so that $F_{i} T^{i+1}=I \quad(i=0,1, \ldots)$. It is easy to check that $T^{i+1} F_{i}$ is a projection onto $T^{i+1} Z$. Thus

$$
a^{i}=c\left(T^{i} Z, Z\right) \leq\left\|T^{i} F_{i-1}\right\|=\left\|F_{i-1}\right\|
$$

so that the radius of convergence of the function $F(\lambda)=\sum_{i=0}^{\infty} F_{i} \lambda^{i}$ is

$$
t=\left(\limsup _{i \rightarrow \infty}\left\|F_{i}\right\|^{1 / i}\right)^{-1} \leq a^{-1}<1
$$

Hence $0<\operatorname{dist}\left\{0, \sigma_{l}(T)\right\}<\operatorname{dist}\left\{0, \sigma_{\pi}(T)\right\}$.
Corollary 5. In general $\partial \sigma_{l}(T) \not \subset \sigma_{\pi}(T)$.
Remark 6. An operator $T \in \mathcal{L}(X)$ is called semiregular if T has closed range and $\operatorname{ker}(T) \subset \bigcap_{n>0} T^{n} X$. A semiregular operator with a generalized inverse (i.e, with $\operatorname{ker}(T)$ and the range $T X$ complemented) is called regular. Semiregular and regular operators have been studied by many authors, see e.g. [4], [6], [7], [8], [9], [10].

Denote by $\sigma_{s r}(T)=\{\lambda: T-\lambda$ is not semiregular $\}$ and $\sigma_{\text {reg }}(T)=\{\lambda: T-$ λ is not regular $\}$ the corresponding spectra. The sets $\sigma_{s r}(T)$ and $\sigma_{r e g}(T)$ are nonempty compact sets and $\partial \sigma(T) \subset \sigma_{s r}(T) \subset \sigma_{r e g}(T) \subset \sigma(T)$.

The previous example shows that in general $\partial \sigma_{\text {reg }}(T) \not \subset \sigma_{s r}(T)$. Indeed, let T be the operator constructed in Theorem 4. For $|\lambda|<1$ the operator $T-\lambda$ is bounded below and so semiregular. Further T has a left inverse so that it is regular. On the other hand there exists $\mu \in \mathbf{C}$ with $|\mu|=a^{-1}<1$ such that $T-\mu$ is not left invertible. This means that the range of $T-\mu$ is not complemented and so $T-\mu$ is not regular. Hence dist $\left\{0, \sigma_{s r}\right\}>\operatorname{dist}\left\{0, \sigma_{r e g}\right\}>0$ and $\partial \sigma_{r e g}(T) \not \subset \sigma_{s r}(T)$. This gives a negative answer to Question 1 of [11] (note that by [5], dist $\left\{0, \sigma_{s r}(T)\right\}=\lim \gamma\left(T^{n}\right)^{1 / n}$ where γ denotes the Kato reduced minimum modulus).

Remark 7. Let A be a unital Banach algebra and $a \in A$. Denote by

$$
\sigma_{l}(a)=\{\lambda: A(a-\lambda) \not \supset 1\}
$$

and

$$
\tau_{l}(a)=\{\lambda: \inf \{\|(a-\lambda) x\|: x \in A,\|x\|=1\}=0\}
$$

the left spectrum and the left approximate point spectrum of a, respectively. The right spectrum σ_{r} and the right approximate point spectrum τ_{r} can be defined analogously. For the algebra $\mathcal{L}(X)$ of operators in a Banach space X, τ_{l} coincides with σ_{π} and τ_{r}
coincides with σ_{δ}. Thus in general $\partial \sigma_{l}(a) \not \subset \tau_{l}(a)$ and $\partial \sigma_{r}(a) \not \subset \tau_{r}(a)$. In fact, it is much simpler to construct the corresponding example in the context of Banach algebras:

Let A be the Banach space of all formal power series $u=\sum_{i, j=0}^{\infty} \alpha_{i j} a^{i} b^{j}$ in two variables a, b with complex coefficients $\alpha_{i j}$ such that

$$
\|u\|=\sum_{i, j=0}^{\infty}\left|\alpha_{i j}\right| 2^{i}<\infty
$$

The algebra multiplication in A is determined uniquely by setting $b a=1_{A}$ so that

$$
\left(a^{i} b^{j}\right) \cdot\left(a^{k} b^{l}\right)= \begin{cases}a^{i+k-j} b^{l} & (k \geq j), \\ a^{i} b^{l+j-k} & (k<j) .\end{cases}
$$

With this multiplication A becomes a unital Banach algebra.
Clearly $\|a\|=2,\|b\|=1$ and a is left invertible since $b a=1$. Further $\|a x\|=2\|x\|$ for every $x \in A$ so that dist $\left\{0, \tau_{l}(a)\right\}=2$.

We show that dist $\left\{0, \sigma_{l}(a)\right\}=1$. Since $b a=1$ and $\|b\|=1$ it is easy to check that dist $\left\{0, \sigma_{l}(a)\right\} \geq 1$. On the other hand we show that $a-1$ is not left invertible. Suppose on the contrary that

$$
\begin{equation*}
\left(\sum_{i, j=0}^{\infty} \alpha_{i j} a^{i} b^{j}\right)(a-1)=1 \tag{3}
\end{equation*}
$$

for some $\alpha_{i j}$ with $\sum\left|\alpha_{i j}\right| 2^{i}<\infty$. This means

$$
1=\sum_{i, j=0}^{\infty} a^{i} b^{j}\left(\alpha_{i, j+1}-\alpha_{i j}\right)
$$

so that $\alpha_{i, j+1}=\alpha_{i j}$ if either i or j is nonzero. Since $\sum_{i, j}\left|\alpha_{i j}\right| 2^{i}<\infty$ we conclude that $\alpha_{i j}=0$ for $(i, j) \neq(0,0)$. This leads to a contradiction with (3).

On the other hand, the following "mixed" result can be proved in a standard way:
Theorem 8. Let a be an element of a unital Banach algebra A. Then $\partial \sigma_{l}(a) \subset \tau_{r}(a)$ and $\partial \sigma_{r}(a) \subset \tau_{l}(a)$.

Proof. Let $\lambda \in \partial \sigma_{l}(a)$, let $\lambda_{n} \notin \sigma_{l}(a)$ and $\lambda_{n} \rightarrow \lambda$. Then $b_{n}\left(a-\lambda_{n}\right)=1$ for some $b_{n} \in A$. We distinguish two cases:
(a) Suppose $\sup \left\|b_{n}\right\|=\infty$. Then $c_{n}=\frac{b_{n}}{\left\|b_{n}\right\|}$ satisfies $\left\|c_{n}\right\|=1$ and

$$
\left\|c_{n}(a-\lambda)\right\|=\frac{\left\|b_{n}(a-\lambda)\right\|}{\left\|b_{n}\right\|} \leq \frac{\left\|b_{n}\left(a-\lambda_{n}\right)\right\|}{\left\|b_{n}\right\|}+\frac{\left\|b_{n}\left(\lambda_{n}-\lambda\right)\right\|}{\left\|b_{n}\right\|} \leq \frac{1}{\left\|b_{n}\right\|}+\left|\lambda_{n}-\lambda\right| \rightarrow 0
$$

so that $\lambda \in \tau_{r}(a)$.
(b) Suppose $\sup \left\|b_{n}\right\|<\infty$. Then

$$
b_{n}(a-\lambda)=b_{n}\left(a-\lambda_{n}\right)+b_{n}\left(\lambda_{n}-\lambda\right)=1+b_{n}\left(\lambda_{n}-\lambda\right)
$$

and $b_{n}\left(\lambda_{n}-\lambda\right) \rightarrow 0$ so that $b_{n}(a-\lambda)$ is invertible for n big enough. Thus $a-\lambda$ has a left inverse, a contradiction with the assumption $\lambda \in \partial \sigma_{l}(a) \subset \sigma_{l}(a)$.

Corollary 9. Let a be a left invertible element of a unital Banach algebra A. Then

$$
\operatorname{dist}\left\{0, \sigma_{r}(a)\right\} \leq \operatorname{dist}\left\{0, \tau_{r}(a)\right\} \leq \operatorname{dist}\left\{0, \sigma_{l}(a)\right\} \leq \operatorname{dist}\left\{0, \tau_{l}(a)\right\}
$$

If a has a right inverse then

$$
\operatorname{dist}\left\{0, \sigma_{l}(a)\right\} \leq \operatorname{dist}\left\{0, \tau_{l}(a)\right\} \leq \operatorname{dist}\left\{0, \sigma_{r}(a)\right\} \leq \operatorname{dist}\left\{0, \tau_{r}(a)\right\} .
$$

(if a is invertible then all these four numbers are equal).

Added in proofs. As another example of an operator T with $\partial \sigma_{l}(T) \not \subset \sigma_{\pi}(T)$ may serve the operator constructed by A. Pietsch, Zur Theorie der σ-Transformationen in lokalconvexen Vektorräumen, Math. Nachr. 21 (1960), 347-369, see p. 367-368. This operator is bounded below but not left invertible. Further (see L. Burlando, Continuity of spectrum and spectral radius in algebras of operators, Ann. Fac. Sci. Toulouse 9 (1988), 5-54, Example 1.11), $T-\lambda$ is left invertible for all λ in a punctured neighbourhood of 0 .

The author is indebted to L. Burlando for drawing his attention to the above cited papers.

References

[1] G.R. Allan, Holomorphic vector-valued functions on a domain of holomorphy, J. London Math. Soc. 42 (1967), 509-513.
[2] J. Diestel, J.J. Uhl, Jr., Vector measures, Math. Surveys 15, Amer. Math. Soc., Providence, Rhode Island, 1977
[3] R. Harte, Spectral mapping theorems, Proc. Roy. Irish. Acad. Sect. A 73 (1973), 89-107.
[4] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322.
[5] V. Kordula, V. Müller, the distance from the Apostol spectrum, Proc. Amer. Math. Soc. (to appear)
[6] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105.
[7] V. Müller, On the regular spectrum, J. Operator Theory, to appear.
[8] V. Rakočevič, Generalized spectrum and commuting compact perturbations, Proc. Edinb. Math. Soc. 36 (1993), 197-208.
[9] P. Saphar, Contributions à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384.
[10] Ch. Schmoeger, The stability radius of an operator of Saphar type, Studia Math. 113 (1995), 169-175.
[11] N. Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics 38, Longman Scientific\&Technical, Harlow 1989.

Mathematical Institute
Academy of Sciences of the Czech Republic
Žitná 25, 11567 Prague 1
Czech Republic
e-mail: muller@math.cas.cz

[^0]: * The research was supported by the grant No. 201/96/0411 of GA ČR.

