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Abstract. We construct a Kato-type decomposition of quasi-Fredholm operators on
Banach spaces. This generalizes the corresponding result of Labrousse for Hilbert space
operators. The result is then applied to B-Fredholm operators.

Denote by B(X) the set of all bounded linear operators acting on a Banach space
X. For T ∈ B(X) denote by N(T ) = {x ∈ X : Tx = 0} and R(T ) = TX its kernel and
range, respectively.

Let T ∈ B(X). For n ≥ 0 set αn(T ) = dim N(Tn+1)/N(Tn) and βn(T ) =
dim R(Tn)/R(Tn+1). For n = 0 these numbers reduce to the well-known defect num-
bers α0(T ) = dim N(T ) and β0(T ) = codim R(T ).

It is possible to show that αn(T ) = dim
(
N(T ) ∩ R(Tn)

)
, and similarly, βn(T ) =

codim
(
R(T ) + N(Tn)

)
. This implies that the sequences αn(T ) and βn(T ) are non-

increasing.
Further we define the ”difference sequence” kn(T ), see [4], by

kn(T ) = dim
(
R(Tn) ∩N(T )

)
/
(
R(Tn+1) ∩N(T )

)
.

Equivalently,
kn(T ) = dim

(
R(T ) + N(Tn+1)

)
/
(
R(T ) + N(Tn)

)
.

From this one can see easily that kn(T ) = αn(T )−αn+1(T ) whenever the difference has
meaning, i.e., if αn+1(T ) < ∞. Similarly, kn(T ) = βn(T )− βn+1(T ) if βn+1(T ) < ∞.

The numbers αn(T ), βn(T ) and kn(T ) enable to define many interesting classes
of operators that have been studied by many authors. For a survey of such classes see
[10].

One of the most important classes is that of semiregular operators. An operator
T ∈ B(X) is called semiregular if R(T ) is closed and ki(T ) = 0 for all i ≥ 0. Semi-
regular operators have been studied intensely, see e.g. [3], [5], [9], [11], [12].

Let T ∈ B(X) be a semiregular operator. It is well-known that N(T i) ⊂ R(T j) for
all i, j. Further T ∗ is semiregular and Tn is semiregular for all n. Conversely, if Tn is
semiregular for some n ≥ 1, then T is semiregular.

In the present paper we concentrate on classes of quasi-Fredholm and B-Fredholm
operators.

Definition 1. Let d ≥ 0. An operator T ∈ B(X) is called quasi-Fredholm of degree d
if kn(T ) = 0 (n ≥ d), and subspaces N(T d) + R(T ) and N(T ) ∩R(T d) are closed.

An operator is quasi-Fredholm if it is quasi-Fredholm of some degree d.
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Definition 1 is due to Labrousse [8] who introduced and studied quasi-Fredholm
operators on Hilbert spaces. The same definition can be used for Banach space opera-
tors. The assumption that the subspaces N(T d) + R(T ) and N(T ) ∩R(T d) are closed
can be replaced by other equivalent conditions.

First we need the following lemma.

Lemma 2. Let T ∈ B(X) be a quasi-Fredholm operator of degree d and let j ≥ 1.
Then N(T j) ∩R(T d) ⊂ ⋂∞

n=0 R(Tn).

Proof. We prove the statement by induction on j.
Since kj(T ) = 0 (j ≥ d), we have N(T )∩R(T d) = N(T )∩R(Tn+1) = · · ·. Hence

N(T ) ∩R(T d) ⊂ ⋂∞
n=0 R(Tn).

Suppose that the statement is true for some j ≥ 1. Let x ∈ N(T j+1) ∩R(T d) and
let n ≥ d. Then Tx ∈ N(T j)∩R(T d) ⊂ R(Tn+1), and so Tx = Tn+1y for some y ∈ X.
Thus x − Tny ∈ N(T ) and x = Tny + u for some u ∈ N(T ). Clearly also u ∈ R(T d),
and so x ∈ R(Tn) +

(
N(T ) ∩R(T d)

) ⊂ R(Tn).
This finishes the proof.

Proposition 3. Let T ∈ B(X), d ≥ 0 and let kn(T ) = 0 for all n ≥ d. The following
statements are equivalent:
(i) T is quasi-Fredholm, i.e., R(T ) + N(T d) and N(T ) ∩R(T d) are closed;

(ii) R(T d+1) is closed;
(iii) R(Tn) is closed for all n ≥ d;
(iv) R(T i) + N(T j) is closed for all i, j with i + j ≥ d.

Proof. The equivalences (ii)⇔(iii)⇔(iv) were proved in [10].

The implication (iv)⇒(i) is trivial.

(i)⇒(ii): We shall use repeatedly a lemma of Neubauer, see [8], Proposition 2.1.1:
if M, N ⊂ X are paracomplete subspaces (= ranges of bounded operators) such that
both M ∩N and M + N are closed, then M and N are closed.

To show that R(T d+1) is closed, it is therefore sufficient to prove that R(T d+1) +
N(T d) and R(T d+1) ∩N(T d) are closed.

(A) We prove by induction on j that N(T j) + R(T d) is closed. This is true for j = 1.
Let j ≥ 1 and let N(T j) ∩ R(T d) = N(T j) ∩ R(T d+1) be closed. Then the space
T−1

(
N(T j) ∩ R(T d+1)

)
= N(T ) +

(
N(T j+1) ∩ R(T d)

)
is closed. Further N(T ) ∩(

N(T j+1) ∩ R(T d)
)

= N(T ) ∩ R(T d) is closed and the space N(T j+1) ∩ R(T d) is
paracomplete. By the lemma of Neubauer, N(T j+1) ∩R(T d) is closed.

This proves that N(T j) ∩ R(T d) is closed for all j ≥ 1. In particular, N(T d) ∩
R(T d) = N(T d) ∩R(T d+1) is closed.

(B) We show first that N(T d+1) ⊂ R(T j) + N(T d) for each j ≥ 1. Let x ∈ N(T d+1)
and j ≥ 1. Then T dx ∈ N(T )∩R(T d) = N(T )∩R(T d+j). Thus T dx = T d+jy for some
y ∈ X and x−T jy ∈ N(T d). Hence x ∈ N(T d)+R(T j) and N(T d+1) ⊂ N(T d)+R(T j).

Consider the operator T̂ : X/N(T d) → X/N(T d) induced by T . The previous
inclusion gives that N(T̂ ) ⊂ ⋂∞

j=1 R(T̂ j). Further R(T ) + N(T d) is closed and thus

R(T̂ ) is a closed subspace of X/N(T d). Hence T̂ is semiregular and, consequently,
R(T̂ d+1) is closed. Let Q be the canonical projection Q : X → X/N(T d). Then the
space R(T d+1) + N(T d) = Q−1R(T̂ d+1) is closed.

This completes the proof.
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Lemma 4. Let T ∈ B(X) be quasi-Fredholm of degree d. Then T ∗ ∈ B(X∗) is
quasi-Fredholm of the same degree d.

Proof. Since R(T d+1) is closed, the space R(T ∗d+1) is also closed.

Let j ≥ d. We have N(T ∗j) + R(T ∗) ⊂ (
R(T j) ∩N(T )

)⊥
. Thus

R(T j) ∩N(T ) = ⊥
((

R(T j) ∩N(T )
)⊥)

⊂ ⊥(
N(T ∗j) + R(T ∗)

)
= R(T j) ∩N(T ).

Therefore

kj(T ∗) = dim
(
N(T ∗j+1) + R(T ∗)

)
/
(
N(T ∗j) + R(T ∗)

)

= dim
(
R(T j) ∩N(T )

)
/
(
R(T j+1) ∩N(T )

)
= kj(T ) = 0.

Hence T ∗ is quasi-Fredholm of degree d.

The main result of Labrousse [8] is that any quasi-Fredholm operator T on a
Hilbert space admits a Kato-type decomposition T = T1⊕T2 with T1 nilpotent and T2

semiregular. We prove an analogues result for Banach space operators under an addi-
tional assumption that the subspaces that appear in the definition of quasi-Fredholm
operators are complemented. For Hilbert space operators this condition is satisfied
automatically.

Theorem 5. Let T ∈ B(X) be a quasi-Fredholm operator of degree d and let the
subspaces R(T ) + N(T d) and N(T ) ∩ R(T d) be complemented. Then there are closed
subspaces X1, X2 such that X = X1 ⊕X2, TXi ⊂ Xi (i = 1, 2), T d|X1 = 0 and T |X2

is semiregular.

Proof. Let T ∈ B(X) be a quasi-Fredholm operator of degree d. By Lemma 2 and
Proposition 3, R(T d) is closed and N(T i) ∩R(T d) ⊂ R(T j) for all i, j ≥ 0.

If d = 0 then T is semiregular and the decomposition is trivial. In the following
we assume that d ≥ 1.

By the assumption, there exists a closed subspace L such that X =
(
R(T d) ∩

N(T )
)⊕ L.

We define closed subspaces Nj (j = 0, . . . , d) inductively by N0 = {0} and Nj+1 =
T−1Nj ∩ L (j < d).

Clearly TNj+1 ⊂ Nj ∩ R(T ). Conversely, let x ∈ Nj ∩ R(T ). Then x = Tu for
some u ∈ X. Express u = l + v with l ∈ L and v ∈ N(T ) ∩R(T d). Then u− v = l ∈ L
and T (u− v) = Tu = x. Thus u− v ∈ Nj+1 and x ∈ TNj+1.

Hence
TNj+1 = Nj ∩R(T ) (j < d).

We prove by induction on j that Nj ⊂ Nj+1. The statement is clear for j = 0.
Suppose that j ≥ 0, Nj ⊂ Nj+1, and let x ∈ Nj+1. Then Tx ∈ Nj ⊂ Nj+1, and so
x ∈ T−1Nj+1. Since also x ∈ Nj+1 ⊂ L, we conclude that x ∈ Nj+2.

Hence
Nj ⊂ Nj+1 (j = 0, 1, . . . , d− 1).

Also one can see easily that Nj ⊂ N(T j) for all j.
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We prove now by induction on j that

N(T j) ⊂ Nj + N(T j) ∩R(T d). (1)

The inclusion is clear for j = 0. For j = 1 we have N(T ) = N(T )∩L+N(T )∩R(T d) =
N1 + N(T ) ∩ R(T d). Let j ≥ 1, N(T j) ⊂ Nj + N(T j) ∩ R(T d) and let x ∈ N(T j+1).
Then Tx ∈ N(T j), and so Tx = v1 + v2 for some v1 ∈ Nj and v2 ∈ N(T j) ∩ R(T d) =
N(T j) ∩R(T d+1) = T (N(T j+1) ∩R(T d)). Thus v1 ∈ Nj ∩R(T ) = TNj+1 and

x ∈ Nj+1 + N(T j+1) ∩R(T d) + N(T )

= Nj+1 + N(T j+1) ∩R(T d) + N(T ) ∩ L + N(T ) ∩R(T d)

= Nj+1 + N(T j+1) ∩R(T d).

This proves (1).
Finally, we prove by induction on j that Nj ∩R(T d) = {0}. This is clear for j = 0.

Let j ≥ 0, Nj ∩ R(T d) = {0} and let x ∈ Nj+1 ∩ R(T d). Then Tx ∈ Nj ∩ R(T d) and
so, by the induction assumption, Tx = 0. Thus x ∈ N(T ) ∩R(T d) and x ∈ Nj+1 ⊂ L.
Consequently, x = 0. Hence

Nj ∩R(T d) = {0} (j ≤ d).

Set N = Nd. Then TN ⊂ N and N ⊂ N(T d). Further N(T d) ⊂ N + R(T d) and
N ∩R(T d) = {0}. Note also that the space N + R(T d) = N(T d) + R(T d) is closed.

Since T ∗ is quasi-Fredholm of degree d, we can use the same construction for

T ∗. Moreover, since R(T ) + N(T d) is complemented and N(T ∗) ∩ R(T ∗d) =
(
R(T ) +

N(T d)
)⊥

, we can choose a w∗-closed space L′ such that
(
N(T ∗)∩R(T ∗d)

)⊕L′ = X∗.

As above, construct subspaces M ′
i ⊂ X∗ by M ′

0 = {0} and Mi+1 = T ∗−1Mi ∩
L′ (0 ≤ i ≤ d− 1). Clearly all speces M ′

i are w∗-closed. Set M ′ = M ′
d. Thus we have

T ∗M ′ ⊂ M ′ ⊂ N(T ∗d),

M ′ ∩R(T ∗d) = {0} and

N(T ∗d) ⊂ M ′ + R(T ∗d).

Further M ′ + R(T ∗d) is a closed subspace.
Set M = ⊥M ′. Then TM ⊂ M and

M = ⊥M ′ ⊃ ⊥N(T ∗d) = R(T d),

M + N(T d) = ⊥M ′ + ⊥R(T ∗d) = ⊥(
M ′ ∩R(T ∗d)

)
= X, and

R(T d) = ⊥N(T ∗d) ⊃ ⊥(
M ′ + R(T ∗d)

)
= ⊥M ′ ∩ ⊥R(T ∗d) = M ∩N(T d)

(the equality ⊥M ′ + ⊥R(T ∗d) = ⊥(
M ′ ∩ R(T ∗d)

)
follows from the fact that the space

M ′ + R(T ∗d) is closed, see [7], p. 221). Thus

M + N ⊃ M + R(T d) + N ⊃ M + N(T d) = X

4



and
M ∩N ⊂ M ∩N(T d) ∩N ⊂ R(T d) ∩N = {0}.

Hence X = N ⊕M , TN ⊂ N , TM ⊂ M and (T |N)d = 0.
Let T2 = T |M .
If x ∈ N(T2) then x ∈ N(T ) ∩ M ⊂ N(T d) ∩ M ⊂ M ∩ N(T d) ∩ R(T d) ⊂

M ∩ ⋂∞
i=0 R(T i) =

⋂∞
i=0 R(T i

2). Further R(T d
2 ) = T d

2 M = R(T d), and so R(T d
2 ) is a

closed subspace. Thus T d
2 is semiregular and so is also T2.

We apply the previous result to B-Fredholm operators.

Definition 6. An operator T ∈ B(X) is called B-Fredholm if there exists d ≥ 0 such
that R(T d) is closed and the restriction T |R(T d) is Fredholm.

B-Fredholm operators were introduced and studied by Berkani [1], [2]. In [1] it was
proved that an operator T is B-Fredholm if and only if T = T1 ⊕ T2 with T1 nilpotent
and T2 Fredholm. The proof, however, is based on the decomposition of quasi-Fredholm
operators of Labrousse [8], which was proved only for Hilbert space operators.

Theorem 7. Let T be an operator on a Banach space X. The following statements
are equivalent:
(i) T is B-Fredholm;

(ii) there are closed subspaces X1, X2 such that X = X1 ⊕X2, TXi ⊂ Xi (i = 1, 2),
T |X1 is nilpotent and T |X2 Fredholm.

Proof. (ii)⇒(i): Let X = X1 ⊕X2, TXi ⊂ Xi (i = 1, 2), T |X1 nilpotent and T |X2

Fredholm. Let Tn|X1 = 0. Then R(Tn) = R(Tn|X2), which is of finite codimension in
X2. Therefore R(Tn) is closed. It is easy to see that T |R(Tn) is Fredholm.

(i)⇒(ii): Let n ≥ 0 satisfy that R(Tn) is closed and the restriction T0 = T |R(Tn)
is Fredholm. Then αn(T ) = dim N(T ) ∩ R(Tn) = dim N(T0) < ∞ and βn(T ) =
dim R(Tn)/R(Tn+1) = codim R(T0) < ∞. Since the sequences αj(T ) and βj(T ) are
non-increasing, they are constant for j large enough, i.e., there exists d such that
αd(T ) = αd+1(T ) = · · · < ∞ and βd(T ) = βd+1(T ) = · · · < ∞. This means that
kj(T ) = αj(T )−αj+1(T ) = 0 for j ≥ d. Further dim

(
N(T )∩R(T d)

)
= αd(T ) < ∞ and

codim
(
R(T ) + N(T d)

)
= βd(T ) < ∞, and so these two subspaces are complemented.

Thus T is quasi-Fredholm of degree d and, by Theorem 5, X = X1 ⊕ X2 where
X1, X2 are closed subspaces, TXi ⊂ Xi (i = 1, 2), (T |X1)d = 0 and T2 = T |X2 is
semiregular. Further αd(T2) = αd(T1) + αd(T2) = αd(T ) < ∞ and βd(T2) = βd(T1) +
βd(T2) = βd(T ) < ∞. Since kj(T2) = 0 for all j, we conclude that α0(T2) = αd(T2) < ∞
and β0(T2) = βd(T2) < ∞, and so T2 is Fredholm.
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