HYPERREFLEXIVITY OF FINITE-DIMENSIONAL SUBSPACES

VLADIMÍR MU̇LLER AND MAREK PTAK

Abstract

We show that each reflexive finite-dimensional subspace of operators is hyperreflexive. This gives a positive answer to a problem of Kraus and Larson. We also show that each $n-$ dimensional subspace of Hilbert space operators is $[\sqrt{2 n}]$-hyperreflexive.

1. Introduction

Let X be a complex Banach space and let $B(X)$ be the algebra of all bounded linear operators on X. For an algebra $\mathcal{W} \subset B(X)$ with identity, let $\operatorname{Alg} \operatorname{Lat} \mathcal{W}$ denote the set of all operators which leave invariant all (closed) subspaces of X, which are invariant for all operators from \mathcal{W}. The algebra \mathcal{W} is called reflexive if $\mathcal{W}=\operatorname{Alg} \operatorname{Lat} \mathcal{W}$.

The definition was introduced for the first time in [16] and further studied by a number of authors. The concept of reflexivity is interesting even if the underlying space is finite dimensional. For example, the algebra $\left\{\left[\begin{array}{cc}a & b \\ 0 & a\end{array}\right] \oplus[a]: a, b \in \mathbb{C}\right\}$ is reflexive, but the algebra $\left\{\left[\begin{array}{ll}a & b \\ 0 & a\end{array}\right]\right.$: $a, b \in \mathbb{C}\}$ is not reflexive (the former example will be used later).

The definition of reflexivity was extended to subspaces of operators in [13]. Let X, Y be Banach spaces and let \mathcal{M} be a norm-closed subspace of $B(X, Y)$ - the space of all bounded linear operators from X into Y. Write

$$
\operatorname{ref} \mathcal{M}=\{T \in B(X, Y): T x \in \overline{\mathcal{M} x} \text { for all } x \in X\}
$$

where $\mathcal{M} x=\{S x: S \in \mathcal{M}\}$. The subspace \mathcal{M} is called reflexive if $\mathcal{M}=\operatorname{ref} \mathcal{M}$. For algebras with identity both definition coincide.

[^0]A stronger concept of hyperreflexivity was introduced for algebras in [1] and extended for subspaces of operators in [10]. Denote by $\operatorname{dist}(\cdot, \cdot)$ the usual distance in Y; we use also the same notation for the distance in $B(X, Y)$. Let $\mathcal{M} \subset B(X, Y)$ be a norm-closed subspace and $T \in$ $B(X, Y)$. Write

$$
\begin{equation*}
\alpha(T, \mathcal{M})=\sup \{\operatorname{dist}(T x, \mathcal{M} x): x \in X,\|x\|=1\} . \tag{1}
\end{equation*}
$$

We always have $\alpha(T, \mathcal{M}) \leqslant \operatorname{dist}(T, \mathcal{M})$. The subspace \mathcal{M} is called hyperreflexive if there is a constant $C>0$ such that for all $T \in$ $B(X, Y)$, we have

$$
\begin{equation*}
\operatorname{dist}(T, \mathcal{M}) \leqslant C \alpha(T, \mathcal{M}) \tag{2}
\end{equation*}
$$

The smallest constant C fulfilling (1) is called the hyperreflexive constant and denoted by $\kappa_{\mathcal{M}}$.

Let us observe that if \mathcal{M} is reflexive and $T \in \operatorname{ref} \mathcal{M}$, then $\alpha(T, \mathcal{M})=$ 0 . Hence $\operatorname{dist}(T, \mathcal{M})=0$ and, since \mathcal{M} is norm closed, we have $T \in \mathcal{M}$. Thus each hyperreflexive subspace is also reflexive. On the other hand there are reflexive non-hyperreflexive subspaces (see [9]). However, if both spaces X and Y are finite dimensional then each reflexive subspace is also hyperreflexive. Namely, as we have observed above the reflexivity of a norm-closed subspace \mathcal{M} is equivalent to the condition:

$$
\alpha(T, \mathcal{M})=0 \quad \Longleftrightarrow \quad \operatorname{dist}(T, \mathcal{M})=0
$$

Thus, for the whole conclusion, it is enough to note that all norms on the finite dimensional space $B(X, Y) / \mathcal{M}$ are equivalent.

In [10, Problem 3.9], Kraus and Larson posed the question whether the concepts of reflexivity and hyperreflexivity are equivalent for finitedimensional subspaces of operators on infinite dimensional spaces. The problem was considered also in [6].

In [10] it was shown that each one-dimensional subspace is hyperreflexive. By [14], the hyperreflexive constant is equal to 1 .

The aim of this paper is to give a positive answer to the problem of Kraus and Larson. The main result of the paper is

Main Theorem. Let $\mathcal{M} \subset B(X, Y)$ with $\operatorname{dim} \mathcal{M}<\infty$. If \mathcal{M} is reflexive, then \mathcal{M} is hyperreflexive.

In [12] it was shown that each n-dimensional subspace of Hilbert space operators is $[\sqrt{2 n}]$-reflexive, where $[\sqrt{2 n}]$ is the integer part of $\sqrt{2 n}$. Using our main result we show in Section 3 that each n-dimensional subspace is even $[\sqrt{2 n}]$-hyperreflexive (for definitions see Section 3).
Remark. Many authors (including [10]) considered the reflexivity and hyperreflexivity only for subspaces of operators on a Hilbert space.

They use a different definition of the distance $\alpha(T, \mathcal{M})$:

$$
\alpha(T, \mathcal{M})=\sup \{\|Q T P\|: P, Q \text { are projections and } Q \mathcal{M} P=0\}
$$

To see the equivalence of both definitions of the distance $\alpha(\cdot, \cdot)$, note that (see [3, Proposition 58.1]) both distances are equal to (3)

$$
\alpha(T, \mathcal{M})=\sup \{|(T x, y)|:\|x\|=\|y\|=1,(S x, y)=0 \text { for all } S \in \mathcal{M}\} .
$$

It is easy to see that the definitions of reflexivity and hyperreflexivity used in this paper also agree with the more general definitions introduced in [5].

2. Main theorem

Let X, Y be Banach spaces. Denote by $F(X, Y)$ the set of all finiterank operators from X to Y and by $F_{k}(X, Y)$ the set of all operators in $B(X, Y)$ of rank smaller or equal to k. Denote by $S_{X}=\{x \in X$: $\|x\|=1\}$ the unit sphere in X.

Let $n \geq 1$ and let $A_{1}, \ldots, A_{n} \in B(X, Y)$. Denote by $\operatorname{span}\left\{A_{i}: i=\right.$ $1, \ldots, n\}$ the closed linear space generated by A_{1}, \ldots, A_{n}. Write

$$
s_{0}\left(A_{1}, \ldots, A_{n}\right)=\inf \left\{\left\|\sum_{i=1}^{n} \lambda_{i} A_{i}\right\|: \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}, \max \left|\lambda_{i}\right|=1\right\}
$$

More generally, for $k \in \mathbb{N}$ set

$$
s_{k}\left(A_{1}, \ldots, A_{n}\right)=\inf \left\{s_{0}\left(\left.A_{1}\right|_{M},\left.\ldots A_{n}\right|_{M}\right): M \subset X, \operatorname{codim} M \leqslant k\right\} .
$$

The following lemma summarizes the properties of the quantities s_{k}.
Lemma 2.1. Let $A_{1}, \ldots, A_{n} \in B(X, Y)$. Then:
(1) $s_{0}\left(A_{1}, \ldots, A_{n}\right)=\inf \left\{\left\|\sum_{i=1}^{n} \lambda_{i} A_{i}\right\|: \max \left|\lambda_{i}\right| \geqslant 1\right\}$;
(2) $s_{0}\left(A_{1}\right)=\left\|A_{1}\right\|$;
(3) $s_{0}\left(A_{1}, \ldots, A_{n}\right) \leqslant \min \left\{\left\|A_{i}\right\|: i=1, \ldots, n\right\}$;
(4) $s_{0}\left(A_{1}, \ldots, A_{n}\right)>0$ if and only if the operators A_{1}, \ldots, A_{n} are linearly independent;
(5) $s_{k}\left(A_{1}, \ldots, A_{n}\right) \geqslant s_{l}\left(A_{1}, \ldots, A_{n}\right)$ for $k \leqslant l$;
(6) $s_{k}\left(A_{1}, \ldots, \widehat{A_{j}}, \ldots, A_{n}\right) \geqslant s_{k}\left(A_{1}, \ldots, A_{n}\right)$ for $j=1, \ldots, n$, where the hat denotes the omitted term;
(7) if M is a subspace of X and $\operatorname{codim} M \leqslant k$ then for any l we have $s_{l}\left(\left.A_{1}\right|_{M}, \ldots,\left.A_{n}\right|_{M}\right) \geqslant s_{l+k}\left(A_{1}, \ldots, A_{n}\right)$;
(8) $\operatorname{dist}\left(A_{j}, \operatorname{span}\left\{A_{i}: i \neq j\right\}\right) \geqslant s_{0}\left(A_{1}, \ldots, A_{n}\right)$ for $j=1, \ldots, n$;
(9) if $k \in \mathbb{N}$ and no non-trivial linear combination of A_{1}, \ldots, A_{n} belongs to $F_{k}(X, Y)$, then $s_{k}\left(A_{1}, \ldots, A_{n}\right)>0$.

Proof. The statements (1)-(7) are trivial. To see (8), fix j and observe that

$$
\begin{aligned}
& \operatorname{dist}\left(A_{j}, \operatorname{span}\left\{A_{i}: i \neq j\right\}\right)=\inf \left\{\left\|\sum_{i=1}^{n} \lambda_{i} A_{i}\right\|:\left|\lambda_{j}\right|=1\right\} \\
& \geqslant \inf \left\{\left\|\sum_{i=1}^{n} \lambda_{i} A_{i}\right\|: \max \left|\lambda_{i}\right| \geqslant 1\right\}=s_{0}\left(A_{1}, \ldots, A_{n}\right)
\end{aligned}
$$

To see (9), let us fix $k \geqslant 0$. Let $Z=\left\{\sum_{i=1}^{n} \lambda_{i} A_{i}: \max \left|\lambda_{i}\right|=1\right\}$. Since Z is compact and $F_{k}(X, Y)$ closed, we have $\operatorname{dist}\left(Z, F_{k}(X, Y)\right)>0$.

Let $M \subset X, \operatorname{codim} M \leqslant k$. Let $P \in B(X)$ be a projection onto M such that $\|P\| \leqslant k+2$, see [4, Exercise 5.24]. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$, $\max \left|\lambda_{i}\right|=1$. Then

$$
\begin{aligned}
& \operatorname{dist}\left(\sum_{i=1}^{n} \lambda_{i} A_{i}, F_{k}(X, Y)\right) \leqslant\left\|\sum_{i=1}^{n} \lambda_{i} A_{i}-\sum_{i=1}^{n} \lambda_{i} A_{i}(I-P)\right\| \\
& \quad\left\|\sum_{i=1}^{n} \lambda_{i} A_{i} P\right\| \leqslant\left\|\left.\sum_{i=1}^{n} \lambda_{i} A_{i}\right|_{M}\right\| \cdot\|P\| \leqslant(k+2)\left\|\left.\sum_{i=1}^{n} \lambda_{i} A_{i}\right|_{M}\right\| .
\end{aligned}
$$

Thus

$$
\left\|\left.\sum_{i=1}^{n} \lambda_{i} A_{i}\right|_{M}\right\| \geqslant \frac{1}{k+2} \operatorname{dist}\left(\sum_{i=1}^{n} \lambda_{i} A_{i}, F_{k}(X, Y)\right)
$$

and so

$$
s_{k}\left(A_{1}, \ldots, A_{n}\right) \geqslant \frac{1}{k+2} \operatorname{dist}\left(Z, F_{k}(X, Y)\right)>0
$$

The following lemma is a quantitative version of [15, Lemma 1]. Note that for Hilbert spaces it is possible to take $M=F^{\perp}$.

Lemma 2.2. Let $F \subset X, \operatorname{dim} F=n<\infty$, let $\varepsilon>0$. Then there exists a subspace $M \subset X$ such that codim $M \leqslant\left(4 n \varepsilon^{-1}+3\right)^{2 n}$ and

$$
\|f+m\| \geqslant(1-\varepsilon) \max \{\|f\|,\|m\| / 2\}
$$

for all $m \in M, f \in F$.
In particular, there is a subspace $M_{0} \subset X$ with $\operatorname{codim} M_{0} \leqslant(12 n+$ $3)^{2 n}$ such that

$$
\|f+m\| \geqslant \frac{1}{3} \max \{\|f\|,\|m\|\}
$$

for all $f \in F$ and $m \in M_{0}$.

Proof. By the Auerbach lemma there are vectors $x_{1}, \ldots, x_{n} \in F$ and $x_{1}^{*}, \ldots, x_{n}^{*} \in F^{*}$ of norm one such that $\left\langle x_{j}, x_{k}^{*}\right\rangle=\delta_{j, k}$ (the Kronecker symbol) for all j, k. Thus for all $\gamma_{1}, \ldots, \gamma_{n} \in \mathbb{C}$ we have

$$
\left\|\sum_{j=1}^{n} \gamma_{j} x_{j}\right\| \geqslant \max _{k}\left|\left\langle\sum_{j=1}^{n} \gamma_{j} x_{j}, x_{k}^{*}\right\rangle\right|=\max _{k}\left|\gamma_{k}\right| .
$$

In particular, the vectors x_{1}, \ldots, x_{n} are linearly independent and therefore form a basis of F. Let

$$
Z=\left\{\sum_{j=1}^{n}\left(\frac{k_{j} \varepsilon}{2 n}+i \frac{l_{j} \varepsilon}{2 n}\right) x_{j}: k_{j}, l_{j} \text { integers },\left|k_{j}\right|,\left|l_{j}\right| \leqslant 2 n \varepsilon^{-1}+1\right\} .
$$

Then card $Z \leqslant\left(4 n \varepsilon^{-1}+3\right)^{2 n}$.
Let $u \in F,\|u\|=1$. Write $u=\sum_{j=1}^{n}\left(t_{j}+i s_{j}\right) x_{j}$ for real t_{j}, s_{j}. Clearly $\left|t_{j}\right|,\left|s_{j}\right| \leqslant 1$ and we can find integers k_{j}, l_{j} such that $\left|\frac{k_{j} \varepsilon}{2 n}-t_{j}\right| \leqslant \frac{\varepsilon}{4 n}$ and $\left|\frac{l_{j \varepsilon}}{2 n}-s_{j}\right| \leqslant \frac{\varepsilon}{4 n}$. Thus

$$
\left\|u-\sum_{j=1}^{n}\left(\frac{k_{j} \varepsilon}{2 n}+i \frac{l_{j} \varepsilon}{2 n}\right) x_{j}\right\| \leqslant \sum_{j=1}^{n}\left(\left|\frac{k_{j} \varepsilon}{2 n}-t_{j}\right|+\left|\frac{l_{j} \varepsilon}{2 n}-s_{j}\right|\right) \leqslant \frac{\varepsilon}{2} .
$$

So $\operatorname{dist}(u, Z) \leqslant \frac{\varepsilon}{2}$. For $z \in Z$ choose $z^{*} \in X^{*}$ such that $\left\|z^{*}\right\|=1$ and $\left\langle z, z^{*}\right\rangle=\|z\|$. Let $M=\bigcap_{z \in Z} \operatorname{ker} z^{*}$. Clearly $\operatorname{codim} M \leqslant \operatorname{card} Z \leqslant$ $\left(4 n \varepsilon^{-1}+3\right)^{2 n}$.

Let $f \in F,\|f\|=1$ and $m \in M$. Then there exists $z \in Z$ such that $\|z-f\| \leqslant \frac{\varepsilon}{2}$. Thus $\|z\| \geqslant 1-\frac{\varepsilon}{2}$. Let $z^{*} \in X^{*}$ be the functional considered above. Then we have

$$
\begin{aligned}
& \|f+m\| \geqslant\left|\left\langle f+m, z^{*}\right\rangle\right|=\left|\left\langle f, z^{*}\right\rangle\right| \\
& \\
& \geqslant\left|\left\langle z, z^{*}\right\rangle\right|-\left|\left\langle f-z, z^{*}\right\rangle\right| \geqslant\|z\|-\frac{\varepsilon}{2} \geqslant 1-\varepsilon .
\end{aligned}
$$

Hence $\|f+m\| \geqslant(1-\varepsilon)\|f\|$ for all $f \in F, m \in M$.
Furthermore,

$$
\begin{array}{r}
\|f+m\| \geqslant \frac{1}{2}(1-\varepsilon) \frac{2-\varepsilon}{1-\varepsilon}\|f+m\|=\frac{1}{2}(1-\varepsilon)\left(\|f+m\|+\frac{1}{1-\varepsilon}\|f+m\|\right) \\
\geqslant \frac{1}{2}(1-\varepsilon)(\|m\|-\|f\|+\|f\|)=\frac{1}{2}(1-\varepsilon)\|m\| .
\end{array}
$$

In particular, for $\varepsilon=\frac{1}{3}$ we get that there exists a subspace $M_{0} \subset X$ with codim $M_{0} \leqslant(12 n+3)^{2 n}$ such that

$$
\|f+m\| \geqslant \frac{1}{3} \max \{\|f\|,\|m\|\}
$$

for all $f \in F$ and $m \in M_{0}$.

For simplicity we write $r(n)=(12 n+3)^{2 n}$ for the codimension of the space M_{0} in the previous lemma.

Theorem 2.3. There are increasing sequences of nonnegative integers $h(n), g(n)$ and sequences of positive numbers c_{n}, c_{n}^{\prime} with the following properties:
(a) if $A_{1}, \ldots, A_{n} \in B(X, Y)$ satisfy $\left\|A_{j}\right\| \leqslant 1$ for $j=1, \ldots, n$ and no non-trivial linear combination of A_{1}, \ldots, A_{n} belongs to $F(X, Y)$, then there exists a unit vector $u \in X$ such that

$$
\left\|\sum_{i=1}^{n} \lambda_{i} A_{i} u\right\| \geqslant c_{n} s_{h(n)}^{n}\left(A_{1}, \ldots, A_{n}\right) \cdot \max \left\{\left|\lambda_{i}\right|: i=1, \ldots, n\right\}
$$

for all $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$;
(b) if $T, A_{1}, \ldots, A_{n} \in B(X, Y)$ satisfy $\left\|A_{1}\right\| \leqslant 1$ for $j=1, \ldots, n$ and no non-trivial linear combination of A_{1}, \ldots, A_{n} belongs to $F(X, Y)$, then

$$
\begin{aligned}
\alpha\left(T, \operatorname{span}\left\{A_{1}, \ldots,\right.\right. & \left.\left.A_{n}\right\}\right) \\
& \geqslant c_{n}^{\prime} s_{g(n)}^{n}\left(A_{1}, \ldots, A_{n}\right) \cdot \operatorname{dist}\left(T, \operatorname{span}\left\{A_{1}, \ldots, A_{n}\right\}\right)
\end{aligned}
$$

Proof. We prove both statements by induction on n.
Let $n=1$ and let $A_{1} \in B(X, Y)$ satisfy $\left\|A_{1}\right\| \leqslant 1$. Set $c_{1}=\frac{1}{2}$ and $h(1)=0$. There is a vector $u \in X$ such that $\|u\|=1$ and $\left\|A_{1} u\right\| \geqslant \frac{1}{2}\left\|A_{1}\right\|$. Thus $\left\|\lambda_{1} A_{1} u\right\| \geqslant \frac{1}{2}\left|\lambda_{1}\right| \cdot\left\|A_{1}\right\|=\frac{1}{2}\left|\lambda_{1}\right| s_{0}\left(A_{1}\right)$ for all $\lambda_{1} \in \mathbb{C}$. This proves statement (a) for $n=1$.

$$
(a)_{n} \Rightarrow(b)_{n}: \text { Let } g(n)=h(n)+2 n+2+(n+1) r((2 n+2)(n+1))
$$

and $c_{n}^{\prime}=\left(\frac{12 n}{c_{n}}+6\right)^{-1}$.
Let $T \in B(X, Y)$. Write for short $\varepsilon=\alpha\left(T, \operatorname{span}\left\{A_{1}, \ldots, A_{n}\right\}\right)$ and $\varepsilon^{\prime}=\frac{\varepsilon}{c_{n}^{\prime} s_{g(n)}^{n}\left(A_{1}, \ldots, A_{n}\right)}$. For $x \in X$ with $\|x\|=1$ and $\delta>0$ set

$$
D_{x, \delta}=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{C}^{n}:\left\|T x-\sum_{j=1}^{n} \lambda_{j} A_{j} x\right\| \leqslant \delta\right\} .
$$

Clearly $D_{x, \delta}$ is a closed convex set. By the definition of the distance α, $D_{x, \varepsilon} \neq \emptyset$ for all $x \in X,\|x\|=1$.

To show property $(b)_{n}$, we must prove that

$$
\begin{equation*}
\bigcap_{x \in S_{X}} D_{x, \varepsilon^{\prime}} \neq \emptyset \tag{4}
\end{equation*}
$$

Indeed, for $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \bigcap_{x \in S_{X}} D_{x, \varepsilon^{\prime}}$ we have $\left\|T x-\sum_{j=1}^{n} \gamma_{j} A_{j} x\right\| \leqslant \varepsilon^{\prime}$ for all $x \in X,\|x\|=1$, and so $\left\|T-\sum_{j=1}^{n} \gamma_{j} A_{j}\right\| \leqslant \varepsilon^{\prime}$. Therefore $\operatorname{dist}\left(T, \operatorname{span}\left\{A_{1}, \ldots, A_{n}\right\}\right) \leqslant \varepsilon^{\prime}$, and so statement (b) for n is fulfilled.

By $(a)_{n}$ and Lemma 2.1(9), there exists a vector $x_{0} \in X$ with $\left\|x_{0}\right\|=$ 1 and a constant $c>0$ such that $\left\|\sum_{i=1}^{n} \lambda_{i} A_{i} x_{0}\right\| \geq c \max \left|\lambda_{i}\right|$ for all $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{C}^{n}$. Therefore the set $D_{x_{0}, \varepsilon^{\prime}}$ is bounded. Thus (4) is equivalent to

$$
\begin{equation*}
\bigcap_{x \in S_{X}}\left(D_{x, \varepsilon^{\prime}} \cap D_{x_{0}, \varepsilon^{\prime}}\right) \neq \emptyset \tag{5}
\end{equation*}
$$

where the sets $D_{x, \varepsilon^{\prime}} \cap D_{x_{0}, \varepsilon^{\prime}}$ are convex compact subsets of $\mathbb{C}^{n} \sim \mathbb{R}^{2 n}$. By the classical Helly theorem (see [7]), it is sufficient to show that

$$
\bigcap_{i=0}^{2 n+1} D_{x_{i}, \varepsilon^{\prime}} \neq \emptyset
$$

for all $(2 n+1)$-tuples of unit vectors $x_{1}, \ldots, x_{2 n+1} \in X$.
Fix $x_{1}, \ldots, x_{2 n+1} \in X$ of norm one. Let $F_{1}=\operatorname{span}\left\{x_{i}: i=\right.$ $0, \ldots, 2 n+1\}$ and let $M_{1} \subset X$ be a subspace such that $X=F_{1} \oplus M_{1}$. Then codim $M_{1} \leq 2 n+2$ and $F_{1} \cap M_{1}=\emptyset$. Let

$$
F_{2}=\operatorname{span}\left\{T x_{i}, A_{j} x_{i}: i=0, \ldots, 2 n+1, j=1, \ldots, n\right\}
$$

Then $\operatorname{dim} F_{2} \leqslant(2 n+2)(n+2)$. By Lemma 2.2, there is a subspace $M_{2} \subset Y$ with codim $M_{2} \leqslant r((2 n+2)(n+1))$ such that $\|f+m\| \geqslant$ $\frac{1}{3} \max \{\|f\|,\|m\|\}$ for all $f \in F_{2}, m \in M_{2}$.

Let $M=M_{1} \cap T^{-1} M_{2} \cap \bigcap_{j=1}^{n} A_{j}^{-1} M_{2}$. Then $\operatorname{codim} M \leqslant \operatorname{codim} M_{1}+$ $(n+1) \operatorname{codim} M_{2}$, and so $h(n)+\operatorname{codim} M \leqslant g(n)$. By the induction assumption $(a)_{n}$ and by Lemma $2.1(7)$, (5), there exists a vector $u \in M$, $\|u\|=1$ such that

$$
\begin{align*}
\left\|\sum_{i=j}^{n} \lambda_{j} A_{j} u\right\| \geqslant c_{n} s_{h(n)}^{n}\left(\left.A_{1}\right|_{M}, \ldots,\right. & \left.\left.A_{n}\right|_{M}\right) \cdot \max _{j}\left|\lambda_{j}\right| \tag{6}\\
& \geqslant c_{n} s_{g(n)}^{n}\left(A_{1}, \ldots, A_{n}\right) \cdot \max _{j}\left|\lambda_{j}\right|
\end{align*}
$$

for all $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$.
Claim 1. $D_{x_{i}, 6 \varepsilon} \cap D_{u, 6 \varepsilon} \neq \emptyset$ for $i=0,1, \ldots, 2 n+1$.
Proof. Fix $i \in\{0,1, \ldots, 2 n+1\}$. Note that $x_{i} \in F_{1}, u \in M \subset M_{1}$, and so $x_{i}+u \neq 0$. Set $v=\frac{x_{i}+u}{\left\|x_{i}+u\right\|}$. Suppose on the contrary that
$D_{x_{i}, 6 \varepsilon} \cap D_{u, 6 \varepsilon}=\emptyset$. For $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ we have

$$
\begin{gathered}
\left\|T v-\sum_{j=1}^{n} \lambda_{j} A_{j} v\right\|=\frac{1}{\left\|x_{i}+u\right\|}\left\|T x_{i}-\sum_{j=1}^{n} \lambda_{j} A_{j} x_{i}+T u-\sum_{j=1}^{n} \lambda_{j} A_{j} u\right\| \\
\geqslant \frac{1}{6} \max \left\{\left\|T x_{i}-\sum_{j=1}^{n} \lambda_{j} A_{j} x_{i}\right\|,\left\|T u-\sum_{j=1}^{n} \lambda_{j} A_{j} u\right\|\right\}
\end{gathered}
$$

since $T x_{i}-\sum_{j=1}^{n} \lambda_{j} A_{j} x_{i} \in F_{2}$ and $T u-\sum_{j=1}^{n} \lambda_{j} A_{j} u \in M_{2}$.
Since either $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \notin D_{x_{i}, 6 \varepsilon}$ or $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \notin D_{u, 6 \varepsilon}$, at least one of the two terms is greater than 6ε. Thus

$$
\left\|T v-\sum_{j=1}^{n} \lambda_{j} A_{j} v\right\|>\varepsilon
$$

for all $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$. Hence $D_{v, \varepsilon}=\emptyset$, a contradiction.
Claim 2. Let $\left(\lambda_{1}, \ldots, \lambda_{n}\right),\left(\mu_{1}, \ldots, \mu_{n}\right) \in D_{u, 6 \varepsilon}$. Then

$$
\max _{j}\left|\lambda_{j}-\mu_{j}\right| \leqslant \frac{12 \varepsilon}{c_{n} s_{g(n)}^{n}\left(A_{1}, \ldots, A_{n}\right)}
$$

Proof. Let $\left(\lambda_{1}, \ldots, \lambda_{n}\right),\left(\mu_{1}, \ldots, \mu_{n}\right) \in D_{u, 6 \varepsilon}$. Then

$$
\left\|T u-\sum_{j=1}^{n} \lambda_{j} A_{j} u\right\| \leqslant 6 \varepsilon \quad \text { and } \quad\left\|T u-\sum_{j=1}^{n} \mu_{j} A_{j} u\right\| \leqslant 6 \varepsilon .
$$

Hence

$$
\left\|\sum_{j=1}^{n}\left(\lambda_{j}-\mu_{j}\right) A_{j} u\right\| \leqslant 12 \varepsilon,
$$

and so, by (6) we have

$$
\max _{j}\left|\lambda_{j}-\mu_{j}\right| \leqslant \frac{\left\|\sum_{j=1}^{n}\left(\lambda_{j}-\mu_{j}\right) A_{j} u\right\|}{c_{n} s_{g(n)}^{n}\left(A_{1}, \ldots, A_{n}\right)} \leqslant \frac{12 \varepsilon}{c_{n} s_{g(n)}^{n}\left(A_{1}, \ldots, A_{n}\right)}
$$

Claim 3. Let $i \in\{0,1, \ldots, 2 n+1\}$. Then $D_{x_{i}, \varepsilon^{\prime}} \supset D_{u, 6 \varepsilon}$.

Proof. Let $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in D_{u, 6 \varepsilon} \cap D_{x_{i}, 6 \varepsilon}$. Let $\left(\mu_{1}, \ldots, \mu_{n}\right) \in D_{u, 6 \varepsilon}$ be arbitrary. Then $\max _{j}\left|\lambda_{j}-\mu_{j}\right| \leqslant \frac{12 \varepsilon}{c_{n} s_{g(n)}^{n}\left(A_{1}, \ldots, A_{n}\right)}$ and

$$
\begin{aligned}
\| T x_{i}- & \sum_{j=1}^{n} \mu_{j} A_{j} x_{i}\|\leqslant\| T x_{i}-\sum_{j=1}^{n} \lambda_{j} A_{j} x_{i}\|+\| \sum_{j=1}^{n}\left(\lambda_{j}-\mu_{j}\right) A_{j} x_{i} \| \\
& \leqslant 6 \varepsilon+\frac{12 \varepsilon n}{c_{n} s_{g(n)}^{n}\left(A_{1}, \ldots, A_{n}\right)} \leqslant \frac{\varepsilon}{s_{g(n)}^{n}\left(A_{1}, \ldots, A_{n}\right)}\left(6+\frac{12 n}{c_{n}}\right) \varepsilon^{\prime}
\end{aligned}
$$

Thus $\left(\mu_{1}, \ldots, \mu_{n}\right) \in D_{x_{i}, \varepsilon^{\prime}}$.
Hence $\bigcap_{i=0}^{2 n+1} D_{x_{i}, \varepsilon^{\prime}} \supset D_{u, 6 \varepsilon} \neq \emptyset$, and (4) is fulfilled. This proves statement (b) for n.
$(b)_{n-1} \Rightarrow(a)_{n}$: Let $n \geqslant 2$ and suppose that property (b) holds for $n-1$. Set $c_{n}=\frac{c_{n-1}^{\prime}}{18 n}$ and $h(n)=g(n-1)+n^{2} \cdot r(n(n-1))$.

We construct inductively vectors $u_{1}, \ldots, u_{n} \in X$ of norm one in the following way. Let $k \in\{1, \ldots, n\}$ and suppose that the vectors $u_{j}, j=1, \ldots, k-1$ have already been constructed. Let

$$
F_{k}=\operatorname{span}\left\{A_{i} u_{j}: i=1, \ldots, n, j=1, \ldots, k-1\right\} .
$$

Then $\operatorname{dim} F_{k} \leqslant n(k-1) \leqslant n(n-1)$. By Lemma 2.2, there is a subspace $M_{k} \subset Y$ such that $\operatorname{codim} M_{k} \leqslant r(n(n-1))$ and $\|f+m\| \geqslant$ $\frac{1}{3} \max \{\|f\|,\|m\|\}$ for all $f \in F_{k}, m \in M_{k}$. Let $M_{k}^{\prime}=\bigcap_{j=1}^{k} \bigcap_{i=1}^{n} A_{i}^{-1} M_{j}$. Then $\operatorname{codim} M_{k}^{\prime} \leqslant n^{2} \cdot \operatorname{codim} M_{k}$, and so $g(n-1)+\operatorname{codim} M_{k}^{\prime} \leqslant h(n)$. By property $(b)_{n-1}$, there is a vector $u_{k} \in M_{k}^{\prime}$ of norm one such that

$$
\begin{aligned}
& \operatorname{dist}\left(A_{k} u_{k}, \operatorname{span}\left\{A_{i} u_{k}: i \neq k\right\}\right) \\
& \geqslant \frac{1}{2} c_{n-1}^{\prime} s_{g(n-1)}^{n-1}\left(\left.A_{1}\right|_{M_{k}^{\prime}}, \ldots, \widehat{\left.A_{k}\right|_{M_{k}^{\prime}}}, \ldots,\left.A_{n}\right|_{M_{k}^{\prime}}\right) \\
& \quad \cdot \operatorname{dist}\left(\left.A_{k}\right|_{M_{k}^{\prime}}, \operatorname{span}\left\{\left.A_{i}\right|_{M_{k}^{\prime}}: i \neq k\right\}\right) \\
& \geqslant \frac{1}{2} c_{n-1}^{\prime} s_{h(n)}^{n-1}\left(A_{1}, \ldots, A_{n}\right) \cdot s_{0}\left(\left.A_{1}\right|_{M_{k}^{\prime}}, \ldots,\left.A_{n}\right|_{M_{k}^{\prime}}\right) \\
& \\
& \geqslant \frac{11}{2} c_{n-1}^{\prime} s_{h(n)}^{n}\left(A_{1}, \ldots, A_{n}\right),
\end{aligned}
$$

where the hat denotes the omitted term; in the estimates we used Lemma 2.1(6),(8) and (5).

Let $u_{1}, \ldots, u_{n} \in S_{X}$ be constructed in the above described way. Set $v=\sum_{j=1}^{n} u_{j}$. For $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ and $k \in\{1, \ldots, n\}$, since $\sum_{j=1}^{k} \sum_{i=1}^{n} \lambda_{i} A_{i} u_{j} \in$ $F_{k+1}, \sum_{j=k+1}^{n} \sum_{i=1}^{n} \lambda_{i} A_{i} u_{j} \in M_{k+1}, \sum_{j=1}^{k-1} \sum_{i=1}^{n} \lambda_{i} A_{i} u_{j} \in F_{k}$ and $\sum_{i=1}^{n} \lambda_{i} A_{i} u_{k} \in M_{k}$,
we have

$$
\begin{aligned}
&\left\|\sum_{i=1}^{n} \lambda_{i} A_{i} v\right\|=\left\|\sum_{j=1}^{n} \sum_{i=1}^{n} \lambda_{i} A_{i} u_{j}\right\| \geqslant \frac{1}{3}\left\|\sum_{j=1}^{k} \sum_{i=1}^{n} \lambda_{i} A_{i} u_{j}\right\| \\
& \geqslant \frac{1}{9}\left\|\sum_{i=1}^{n} \lambda_{i} A_{i} u_{k}\right\| \geqslant \frac{1}{9}\left|\lambda_{k}\right| \cdot \operatorname{dist}\left(A_{k} u_{k}, \operatorname{span}\left\{A_{i} u_{k}: i \neq k\right\}\right) \\
& \geqslant \frac{1}{18} c_{n-1}^{\prime} s_{g(n)}^{n}\left(A_{1}, \ldots, A_{n}\right) \cdot\left|\lambda_{k}\right|,
\end{aligned}
$$

(if $k=n$ then the first inequality is trivial). In particular, $v \neq 0$, by Lemma 2.1(9). Hence the vector $u=\frac{v}{\|v\|}$ satisfies $\|u\|=1$ and

$$
\begin{aligned}
&\left\|\sum_{i=1}^{n} \lambda_{i} A_{i} u\right\| \geqslant \frac{1}{18\|v\|} c_{n-1}^{\prime} s_{g(n)}^{n}\left(A_{1}, \ldots, A_{n}\right) \cdot \max _{k}\left|\lambda_{k}\right| \\
& \geqslant c_{n} s_{g(n)}^{n}\left(A_{1}, \ldots, A_{n}\right) \cdot \max _{k}\left|\lambda_{k}\right| .
\end{aligned}
$$

This finishes the proof.
Corollary 2.4. Let $\mathcal{M} \subset B(X, Y)$ be a finite-dimensional subspace which contains no non-zero finite rank operators. Then \mathcal{M} is hyperreflexive.

Proof. Choose a basis A_{1}, \ldots, A_{n} of \mathcal{M}. The proof follows from the previous theorem, property (b).

Now we are ready to prove the main theorem.
Theorem 2.5. Let $\mathcal{M} \subset B(X, Y), \operatorname{dim} \mathcal{M}<\infty$. Then \mathcal{M} is hyperreflexive if and only if \mathcal{M} is reflexive.

Proof. If \mathcal{M} is hyperreflexive then \mathcal{M} is clearly reflexive. Conversely, let \mathcal{M} be reflexive. Let $\mathcal{M}_{1}=\mathcal{M} \cap F(X, Y)$ and let \mathcal{M}_{2} be any subspace of \mathcal{M} such that $\mathcal{M}=\mathcal{M}_{1} \oplus \mathcal{M}_{2}$. Choose a basis A_{1}, \ldots, A_{k} of \mathcal{M}_{1} and a basis B_{1}, \ldots, B_{l} of \mathcal{M}_{2}.

Let $M=\bigcap_{i=1}^{k} \operatorname{ker} A_{i}$. Then $\operatorname{codim} M<\infty$. By the previous result for the operators $\left.B_{i}\right|_{M}$, there is a constant $d_{1}>0$ such that

$$
\begin{equation*}
\operatorname{dist}\left(\left.T\right|_{M}, \operatorname{span}\left\{\left.B_{1}\right|_{M}, \ldots,\left.B_{l}\right|_{M}\right\}\right) \leqslant d_{1} \cdot \alpha\left(\left.T\right|_{M}, \operatorname{span}\left\{\left.B_{1}\right|_{M}, \ldots,\left.B_{l}\right|_{M}\right\}\right) \tag{7}
\end{equation*}
$$

Let $P \in B(X)$ be a projection onto M and $F=\operatorname{ker} P$. Let $F^{\prime}=$ $\operatorname{span}\{S f: S \in \mathcal{M}, f \in F\}$. Clearly $\operatorname{dim} F^{\prime}<\infty$. By Lemma 2.2, there is a subspace $M^{\prime} \subset Y$ such that codim $M^{\prime}<\infty$ and $\left\|f^{\prime}+m^{\prime}\right\| \geqslant$
$\frac{1}{3} \max \left\{\left\|f^{\prime}\right\|,\left\|m^{\prime}\right\|\right\}$ for all $f^{\prime} \in F^{\prime}$ and $m^{\prime} \in M^{\prime}$. Set $M^{\prime \prime}=M \cap$ $\bigcap_{i=1}^{l} B_{i}^{-1} M^{\prime}$. Clearly codim $M^{\prime \prime}<\infty$.
Let $u \in M^{\prime \prime}$ be a "separating vector" for the operators $\left.B_{i}\right|_{M^{\prime \prime}}$, i.e., $\|u\|=1$ and there is a constant $d_{2}>0$ such that $\left\|\sum_{i=1}^{l} \gamma_{i} B_{i} u\right\| \geqslant$ $d_{2} \max \left|\gamma_{i}\right|$ for all $\gamma_{1}, \ldots, \gamma_{l} \in \mathbb{C}$. Such a vector exists by Theorem 2.3 and Lemma 2.1(9).

It follows from [11, Corollary 2.8] that since \mathcal{M} is reflexive, \mathcal{M}_{1} is also reflexive. For the sake of completeness we include the proof of this here. Since $\mathcal{M}_{1} \subset \mathcal{M}$, we have $\operatorname{ref} \mathcal{M}_{1} \subset \operatorname{ref} \mathcal{M}$. By reflexivity of \mathcal{M}, we have $\operatorname{ref} \mathcal{M}_{1} \subset \mathcal{M}$. To show the reflexivity of $\mathcal{M}_{1}=\mathcal{M} \cap F(X, Y)$, it is enough to show that $\operatorname{ref} \mathcal{M}_{1} \subset F(X, Y)$. Let $B \in \operatorname{ref} \mathcal{M}_{1}$. Then, for all $u \in X, B u \in \operatorname{span}\left\{A_{i} x: i=1, \ldots, k, x \in X\right\}$. Hence $\operatorname{rank} B<\infty$ and $B \in F(X, Y)$.

Now, for $i=1, \ldots, k$ consider the operators $\tilde{A}_{i}: F \rightarrow \operatorname{span}\left\{A_{1} x, \ldots\right.$, $\left.A_{k} x: x \in F\right\}$ induced by A_{i}. Since the operators A_{1}, \ldots, A_{k} are equal to zero on M, it is easy to see that $\tilde{\mathcal{M}}_{1}=\operatorname{span}\left\{\tilde{A}_{1}, \ldots, \tilde{A}_{k}\right\}$ is reflexive. As it was observed in the introduction, $\tilde{\mathcal{M}}_{1}$ is hyperreflexive. Thus there exists a constant $d_{3}>0$ with the following property: if $\varepsilon>0$ and $T: F \rightarrow \operatorname{span}\left\{A_{1} x, \ldots, A_{k} x: x \in F\right\}$ satisfies $\operatorname{dist}\left(T x, \operatorname{span}\left\{A_{1} x, \ldots, A_{k} x\right\}\right) \leqslant \varepsilon$ for all $x \in F,\|x\|=1$ then there exist numbers $\gamma_{1}, \ldots, \gamma_{k} \in \mathbb{C}$ such that $\left\|T-\left.\sum_{i=1}^{n} \gamma_{i} A_{i}\right|_{F}\right\| \leqslant d_{3} \varepsilon$.

We show now that \mathcal{M} is hyperreflexive. Let $\varepsilon>0, T \in B(X, Y)$ and let

$$
\operatorname{dist}(T x, \mathcal{M} x) \leqslant \varepsilon
$$

for all $x \in X,\|x\|=1$. By (7) there exist numbers $\beta_{1}, \ldots \beta_{l} \in \mathbb{C}$ such that

$$
\begin{equation*}
\left\|\left.T\right|_{M}-\left.\sum_{j=1}^{l} \beta_{j} B_{j}\right|_{M}\right\| \leqslant d_{1} \varepsilon \tag{8}
\end{equation*}
$$

Set $S=T-\sum_{j=1}^{l} \beta_{j} B_{j}$. Thus $\left\|\left.S\right|_{M}\right\| \leqslant d_{1} \varepsilon$ and S satisfies $\operatorname{dist}(S x, \mathcal{M} x) \leqslant$ ε for all $x \in X,\|x\|=1$.

Let $x \in F,\|x\|=1$. Then there are numbers $\lambda_{1}, \ldots, \lambda_{k}, \mu_{1}, \ldots, \mu_{l} \in$ \mathbb{C} such that

$$
\left\|S x-\sum_{i=1}^{k} \lambda_{i} A_{i} x-\sum_{j=1}^{l} \mu_{j} B_{j} x\right\| \leqslant \varepsilon .
$$

Similarly, there are numbers $\lambda_{1}^{\prime}, \ldots, \lambda_{k}^{\prime}, \mu_{1}^{\prime}, \ldots, \mu_{l}^{\prime} \in \mathbb{C}$ such that

$$
\left\|S(x+u)-\sum_{i=1}^{k} \lambda_{i}^{\prime} A_{i}(x+u)-\sum_{j=1}^{l} \mu_{j}^{\prime} B_{j}(x+u)\right\| \leqslant \varepsilon\|x+u\| \leqslant 2 \varepsilon .
$$

By subtracting we have

$$
\left\|S u+\sum_{i=1}^{k}\left(\lambda_{i}-\lambda_{i}^{\prime}\right) A_{i} x-\sum_{j=1}^{l}\left(\mu_{j}-\mu_{j}^{\prime}\right) B_{j} x-\sum_{j=1}^{l} \mu_{j}^{\prime} B_{j} u\right\| \leqslant 3 \varepsilon,
$$

since $A_{i} u=0$ for all i. By the definitions of $M^{\prime \prime}$ and F^{\prime} and by (8), we have

$$
\begin{array}{r}
\left\|\sum_{j=1}^{l} \mu_{j}^{\prime} B_{j} u\right\| \leqslant 3 \| \sum_{i=1}^{k}\left(\lambda_{i}-\lambda_{i}^{\prime}\right) A_{i} x+ \\
\sum_{j=1}^{l}\left(\mu_{j}-\mu_{j}^{\prime}\right) B_{j} x-\sum_{j=1}^{l} \mu_{j}^{\prime} B_{j} u \| \\
\leqslant 3(3 \varepsilon+\|S u\|) \leqslant 3 \varepsilon\left(3+d_{1}\right)
\end{array}
$$

Since $\left\|\sum_{j=1}^{l} \mu_{j}^{\prime} B_{j} u\right\| \geqslant d_{2} \max \left|\mu_{j}^{\prime}\right|$, we have $\max \left|\mu_{j}^{\prime}\right| \leqslant 3 \varepsilon \frac{d_{1}+3}{d_{2}}$. Thus we have

$$
\begin{aligned}
& \left\|S x-\sum_{i=1}^{n} \lambda_{i}^{\prime} A_{i} x\right\| \leqslant\|S x-S(x+u)\| \\
& +\left\|S(x+u)-\sum_{i=1}^{n} \lambda_{i}^{\prime} A_{i} x-\sum_{j=1}^{l} \mu_{j}^{\prime} B_{j}(x+u)\right\|+\left\|\sum_{j=1}^{l} \mu_{j}^{\prime} B_{j}(x+u)\right\| \\
& \leqslant\|S u\|+2 \varepsilon+\sum_{j=1}^{l}\left|\mu_{j}^{\prime}\right| \cdot\left\|B_{j}\right\| \cdot 2 \leqslant d_{4} \varepsilon
\end{aligned}
$$

where $d_{4}=d_{1}+2+\frac{3 d_{1}+9}{d_{2}} \cdot 2 \sum_{j=1}^{l}\left\|B_{j}\right\|$. Thus there exist numbers $\gamma_{1}, \ldots, \gamma_{k} \in \mathbb{C}$ such that $\left\|\left.S\right|_{F}-\left.\sum_{i=1}^{k} \gamma_{i} A_{i}\right|_{F}\right\| \leqslant d_{3} d_{4} \varepsilon$.

Let $f \in F, m \in M$ and $\|f+m\|=1$. Then $\|m\|=\|P(f+m)\| \leqslant$ $\|P\|$ and $\|f\| \leqslant\|f+m\|+\|m\| \leqslant 1+\|P\|$. Since $\left.A\right|_{M}=0$, we have

$$
\begin{aligned}
&\left\|T(f+m)-\sum_{i=1}^{k} \gamma_{i} A_{i}(f+m)-\sum_{j=1}^{l} \beta_{j} B_{j}(f+m)\right\| \\
&\left\|S(f+m)-\sum_{i=1}^{k} \gamma_{i} A_{i} f\right\| \leqslant\|S m\|+\left\|S f-\sum_{i=1}^{k} \gamma_{i} A_{i} f\right\| \\
& \leqslant d_{1} \varepsilon\|m\|+d_{3} d_{4} \varepsilon\|f\| .
\end{aligned}
$$

Thus $\left\|T-\sum_{i=1}^{k} \gamma_{i} A_{i}-\sum_{j=1}^{l} \beta_{j} B_{j}\right\| \leqslant \varepsilon\left(d_{1}\|P\|+d_{3} d_{4}(\|P\|+1)\right)$, and so \mathcal{M} is hyperreflexive.

3. Examples and Corollaries

The example from [9], mentioned in the introduction shows also that there is no constant in the condition (2) for the hyperreflexivity of a finite-dimensional subspace depending only on the dimension of the subspace. Bellow we give another example of this kind.

Example 3.1. Let $H=\mathbb{C}^{3}$ with the Hilbert norm. For $\varepsilon>0$ consider the operators $A_{1, \varepsilon}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \oplus[\varepsilon]$ and $A_{2, \varepsilon}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \oplus[0]$. Let $\mathcal{M}_{\varepsilon}=$ $\operatorname{span}\left\{A_{1, \varepsilon}, A_{2, \varepsilon}\right\}$. Clearly $\operatorname{dim} \mathcal{M}_{\varepsilon}=2$. It is easy to verify that $\mathcal{M}_{\varepsilon}$ is reflexive for all ε.

Let $T\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \oplus[0]$. For $\beta, \gamma \in \mathbb{C}$ we have

$$
\left\|\beta A_{1, \varepsilon}+\gamma A_{2, \varepsilon}-T\right\|=\left\|\left[\begin{array}{cc}
\beta-1 & \gamma \\
0 & \beta
\end{array}\right] \oplus[\varepsilon \beta]\right\| \geqslant \max \{|\beta-1|,|\beta|\} \geqslant \frac{1}{2}
$$

Thus $\operatorname{dist}\left(T, \mathcal{M}_{\varepsilon}\right) \geqslant \frac{1}{2}$ for all $\varepsilon>0$.
Let $x=\left[\begin{array}{l}a \\ b\end{array}\right] \oplus[c] \in H,\|x\|=1$. If $b \neq 0$ then $\operatorname{dist}\left(T x, \mathcal{M}_{\varepsilon} x\right) \leq$ $\left\|a b^{-1} A_{2, \varepsilon} x-T x\right\|=0$. If $b=0$ then $\operatorname{dist}\left(T x, \mathcal{M}_{\varepsilon} x\right) \leq\left\|A_{1, \varepsilon} x-T x\right\|=$ $\left\|\left[\begin{array}{l}0 \\ 0\end{array}\right] \oplus[\varepsilon c]\right\| \leq \varepsilon$. Thus $\alpha\left(T, \mathcal{M}_{\varepsilon}\right) \leqslant \varepsilon$ and there is no constant $C>0$ such that

$$
\operatorname{dist}\left(T, \mathcal{M}_{\varepsilon}\right) \leqslant C \cdot \alpha\left(T, \mathcal{M}_{\varepsilon}\right)
$$

for all $\varepsilon>0$.
Now we consider finite dimensional subspaces of $B(H)$, where H is a Hilbert space. It is well known that $B(H)$ is the dual of the trace
class operators. If \mathcal{M} is a w^{*}-closed subspace of $B(H)$, in particular if $\operatorname{dim} \mathcal{M}<\infty$, then \mathcal{M} is reflexive if and only if $\mathcal{M}_{\perp} \cap F_{1}(H)$ is total in \mathcal{M}_{\perp} (see for example [2]). According to [2], a subspace \mathcal{M} is called k reflexive if $\mathcal{M}_{\perp} \cap F_{k}(H)$ is total in \mathcal{M}_{\perp}. In [12] it was shown that each n dimensional subspace is $[\sqrt{2 n}]$-reflexive ($[\cdot]$ denotes the integer part). For any subspace $\mathcal{M} \subset B(H)$ and $T \in B(H)$, as it was suggested in [8], we can consider

$$
\alpha_{k}(T, \mathcal{M})=\sup \left\{|\langle T, t\rangle|: t \in \mathcal{M}_{\perp},\|t\| \leqslant 1, \operatorname{rank} t \leqslant k\right\}
$$

(compare with (3)). As in [8] we can call the subspace $\mathcal{M} \subset B(H)$ k-hyperreflexive if there is a constant C such that

$$
\operatorname{dist}(T, \mathcal{M}) \leqslant C \alpha_{k}(T, \mathcal{M})
$$

for each operator $T \in B(H)$. We will show the following
Corollary 3.2. Let $\mathcal{M} \subset B(H)$ and $\operatorname{dim} \mathcal{M}=n$. Then \mathcal{M} is $[\sqrt{2 n}]$ hyperreflexive.
Proof. Let $k=[\sqrt{2 n}]$. By $\mathcal{M}^{(k)}$ we denote the k-th amplification of \mathcal{M}

$$
\mathcal{M}^{(k)}=\{\underbrace{S \oplus \cdots \oplus S}_{k}: S \in \mathcal{M}\} \subset B\left(H^{(k)}\right),
$$

where $H^{(k)}$ is the direct sum of k-copies of $H, H^{(k)}=\underbrace{H \oplus \cdots \oplus H}_{k}$. Since $\operatorname{dim} \mathcal{M}=n, \mathcal{M}$ is k-reflexive by [12, Theorem 12]. By [2], $\mathcal{M}^{(k)}$ is reflexive. Since $\operatorname{dim} \mathcal{M}^{(k)}=n$, it is also hyperreflexive. Hence $[8$, Theorem 3.5] implies that \mathcal{M} is k-hyperreflexive.

References

[1] N. T. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208-233.
[2] E. A. Azoff, On finite rank operators and preannihilators, Mem. Amer. Math. Soc., No. 357, 1986.
[3] J. B. Conway, A course in operator theory, American Mathematical Society, Providence, 2000.
[4] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant, V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Mathematics, Springer, New York-Berlin-Heidelberg, 2001.
[5] D. Hadwin, A general view of reflexivity, Trans. Amer. Math. Soc. 344 (1994), 325-360.
[6] D. Hadwin, Compressions, graphs, and hyperreflexivity, J. Func. Anal., 145 (1997), 1-23.
[7] E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jber. d. Dt. Math. Verein, 32 (1923), 175-176.
[8] K. Kliś and M. Ptak, k-hyperreflexive subspaces, submitted to Houston J. Math.
[9] J. Kraus and D. Larson, Some applications of technique for constructing reflexive operator algebras, J. Operator Theory 13 (1985), 227-236.
[10] J. Kraus and D. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. 53 (1986), 340-356.
[11] D. Larson, Reflexivity, algebraic reflexivity and linear interpolation, Amer. J. Math. 110 (1988), 283-299.
[12] J. Li and Z. Pan, Reflexivity of a finite dimensional subspaces of operators, J. Operator Theory 46 (2001), 381-389.
[13] W. Loginov and V. Shulman, Hereditary and intermediate reflexivity of W^{*} algebras, Math. USSR-Izv. 9 (1975), 1189-1201.
[14] B. Magajna, On the distance to finite-dimensional subspaces in operator algebras, J. London Math. Soc. 47 (1993), 516-532.
[15] V. Müller, Local behaviour of the polynomial calculus of operators, J. reine angew. Math. 430 (1992), 61-68.
[16] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517.

Vladimír MÜller, Institute of Mathematics, Academy of Sciences of Czech Republic, Žitná 25, 11567 Praha 1, Czech Republic

E-mail address: muller@math.cas.cz
Marek Ptak, Institute of Mathematics, University of Agriculture, Al.Mickiewicza 24/28, 30-059 Kraków, Poland

E-mail address: rmptak@cyf-kr.edu.pl

[^0]: 2000 Mathematics Subject Classification. Primary: 47D15; Secondary: 47D30.
 Key words and phrases. Reflexive subspaces, hyperreflexive subspace, hyperreflexive constant, k-hyperreflexive subspaces.

 The research of the first author was supported by grant No. 201/03/0041 of GA ČR.

