A QUASI-NILPOTENT OPERATOR WITH REFLEXIVE COMMUTANT, II

V. MÜLler, M. Zajac

Abstract

. A new example of a non-zero quasi-nilpotent operator T with reflexive commutant is presented. Norms $\left\|T^{n}\right\|$ converge to zero arbitrarily fast.

Let H be a complex separable Hilbert space and let $\mathcal{B}(H)$ denote the algebra of all continuous linear operator on H. If $T \in \mathcal{B}(H)$ then $\{T\}^{\prime}=$ $\{A \in \mathcal{B}(H): A T=T A\}$ is called the commutant of T. By a subspace we always mean a closed linear subspace. If $\mathcal{A} \subset \mathcal{B}(H)$ then $\operatorname{Alg} \mathcal{A}$ denotes the smallest weakly closed subalgebra of $\mathcal{B}(H)$ containing the identity I and \mathcal{A}, and Lat \mathcal{A} denotes the set of all subspaces invariant for each $A \in \mathcal{A}$. If \mathcal{L} is a set of subspaces of H, then $\operatorname{Alg} \mathcal{L}=\{T \in \mathcal{B}(H): \mathcal{L} \subset \operatorname{Lat}\{T\}\} . T$ is said to be hyperreflexive if $\{T\}^{\prime}=\operatorname{Alg} \operatorname{Lat}\{T\}^{\prime}$, i.e., if the algebra $\{T\}^{\prime}$ is reflexive.

It can be shown (see [1]) that if T is a nilpotent hyperreflexive operator on a separable Hilbert space then $T=0$. This is not true for quasinilpotent operators. An example of a non-zero quasinilpotent hyperreflexive operator was given in [5] using a modification of an idea of Wogen [4]. The powers of the example converged to zero slowly, more precisely the following inequality was true for all positive integers:

$$
\left\|T^{n}\right\|^{1 / n} \geq \frac{1}{\log n}
$$

In [6] it was shown that the convergence of powers of T to zero can be faster, namely for each $p>0$ there exists a non-zero hyperreflexive operator T for which

$$
\left\|T^{n}\right\|^{1 / n} \leq \frac{1}{n^{p}}
$$

The aim of this note is to show that the convergence $\left\|T^{n}\right\|^{1 / n} \rightarrow 0$ can be arbitrarily fast:

[^0]Theorem 1. Let $\left(\beta_{n}\right)_{n \geq 1}$ be a sequence of positive numbers. Then there exists a non-zero hyperreflexive operator T on a separable Hilbert space H such that $\left\|T^{n}\right\|^{1 / n} \leq \beta_{n}$ for all $n \geq 1$.
Proof. The set of all non-negative integers will be denoted by N. Set formally $\beta_{0}=1$. Without loss of generality we can assume that $1=\beta_{0} \geq$ $\beta_{1} \geq \beta_{2} \geq \cdots$ (if necessary, we can replace β_{n} by $\min \left\{\beta_{j}: 0 \leq j \leq n\right\}$).

For $k=0,1, \ldots$ set $m_{k}=3 k(k+1)$. For $n \in N$ let
$f(n)=\min \left\{k: m_{k}>n\right\}$. Thus $f(n)=k$ if and only if $m_{k-1} \leq n<m_{k}$.
Finally, set $s_{0}=1$ and, for $k, j \in N, j^{2}<k \leq(j+1)^{2}$ set

$$
s_{k}=\min \left\{\frac{1}{f(n)} \frac{\beta_{n+f(n)}^{n+f(n)}}{\beta_{n}^{n}}: 0 \leq n \leq m_{(j+1)^{2}}\right\} .
$$

Clearly $1=s_{0} \geq s_{1} \geq s_{2} \geq \cdots$. Further $s_{j^{2}+1}=s_{j^{2}+2}=\cdots=s_{(j+1)^{2}}$ so that the sequence $\left(s_{n}\right)$ contains constant subsequences of arbitrary length.

If $n \in N, f(n)=k$ and $j^{2}<k \leq(j+1)^{2}$ then $m_{k-1} \leq n<m_{k} \leq$ $m_{(j+1)^{2}}$ so that

$$
s_{f(n)} \leq \frac{1}{f(n)} \frac{\beta_{n+f(n)}^{n+f(n)}}{\beta_{n}^{n}} \quad(n \in N)
$$

Now let \mathcal{R} be a complex Hilbert space $\operatorname{with} \operatorname{dim} \mathcal{R}=2$. Let $\{a, b\}$ be its orthonormal basis and let $c=\frac{1}{\sqrt{2}}(a+b), d=\frac{1}{\sqrt{2}}(a-b)$. Note that $\{c, d\}$ is also an orthonormal basis of \mathcal{R}.

For $x \in \mathcal{R}, x \neq 0$ we denote by P_{x} the orthogonal projection in $\mathcal{B}(\mathcal{R})$ onto the one-dimensional space spanned by $\{x\}$. For any integer $n \geq 0$ write

$$
\begin{aligned}
& A_{n}=\left(I-P_{a}\right)+s_{0} s_{1} \ldots s_{n} P_{a}=P_{b}+s_{0} s_{1} \ldots s_{n} P_{a}, \\
& B_{n}=\left(I-P_{b}\right)+s_{0} s_{1} \ldots s_{n} P_{b}=P_{a}+s_{0} s_{1} \ldots s_{n} P_{b}, \\
& C_{n}=\left(I-P_{c}\right)+s_{0} s_{1} \ldots s_{n} P_{c}=P_{d}+s_{0} s_{1} \ldots s_{n} P_{c} .
\end{aligned}
$$

Note that $A_{0}=B_{0}=C_{0}=I$. Define the sequence $\left\{R_{n}\right\}_{n \geq 0}$ of operators in $\mathcal{B}(\mathcal{R})$ as follows:
$I, A_{1}, I, B_{1}, I, C_{1}, I, A_{1}, A_{2}, A_{1}, I, B_{1}, B_{2}, B_{1}, I, C_{1}, C_{2}, C_{1}$, $I, A_{1}, A_{2}, A_{3}, A_{2}, \ldots$

More precisely, if $i, k \in N$ then

$$
R_{n}=\left\{\begin{array}{lll}
A_{i} & \text { if } n=m_{k}+i, & 0 \leq i \leq k+1 \\
A_{i} & \text { if } n=m_{k}+2(k+1)-i, & 1 \leq i \leq k \\
B_{i} & \text { if } n=m_{k}+2(k+1)+i, & 0 \leq i \leq k+1, \\
B_{i} & \text { if } n=m_{k}+4(k+1)-i, & 1 \leq i \leq k \\
C_{i} & \text { if } n=m_{k}+4(k+1)+i, & 0 \leq i \leq k+1 \\
C_{i} & \text { if } n=m_{k+1}-i, & 1 \leq i \leq k
\end{array}\right.
$$

For $n \in N$ set $g(n)=i$ if and only if $R_{n} \in\left\{A_{i}, B_{i}, C_{i}\right\}$. By the definition of $f(n)$ we have $g(n) \leq f(n)$ for all $n \geq 0$.

Note that R_{n} is invertible, $\left\|R_{n}\right\|=1$ and

$$
\left\|R_{n+1} R_{n}^{-1}\right\|=\max \left\{1, \frac{s_{0} s_{1} \cdots s_{g(n+1)}}{s_{0} s_{1} \cdots s_{g(n)}}\right\}
$$

where $|g(n+1)-g(n)|=1$. If $g(n+1)>g(n)$ then $\left\|R_{n+1} R_{n}^{-1}\right\| \leq 1$. If $g(n+1)<g(n)$ then $\left\|R_{n+1} R_{n}^{-1}\right\|=\frac{1}{s_{g(n)}} \leq \frac{1}{s_{f(n)}}$. Thus $\left\|R_{n+1} R_{n}^{-1}\right\| \leq$ $\frac{1}{s_{f(n)}} \quad(n \in N)$. For $0 \leq i<j$ we have

$$
\begin{aligned}
\left\|R_{j} R_{i}^{-1}\right\| \leq\left\|R_{j} R_{j-1}^{-1}\right\| \cdot\left\|R_{j-1} R_{j-2}^{-1}\right\| \cdots \| R_{i+1} & R_{i}^{-1} \| \\
& \leq \frac{1}{s_{f(j-1)} s_{f(j-2)} \cdots s_{f(i)}}
\end{aligned}
$$

Let H be the orthogonal sum of infinitely many copies of \mathcal{R}

$$
\begin{equation*}
H=R \oplus R \oplus \cdots \tag{1}
\end{equation*}
$$

For $n \geq 0$ set

$$
\alpha_{n}=s_{f(n)} \frac{\beta_{n+1}^{n+1}}{\beta_{n}^{n}} \quad \text { and } \quad T_{n}=\alpha_{n} R_{n+1} R_{n}^{-1}
$$

Let $T \in \mathcal{B}(H)$ be the weighted shift with weights T_{n},

$$
T\left(x_{0} \oplus x_{1} \oplus \cdots\right)=0 \oplus T_{0} x_{0} \oplus T_{1} x_{1} \oplus \cdots
$$

We show that T satisfies the required conditions.
Let $n \geq 1$. Then

$$
T^{n}\left(\bigoplus_{i=0}^{\infty} x_{i}\right)=\underbrace{0 \oplus \cdots \oplus 0}_{n} \oplus \bigoplus_{i=0}^{\infty} \alpha_{i} \alpha_{i+1} \cdots \alpha_{i+n-1} R_{n+i} R_{i}^{-1} x_{i} .
$$

Thus

$$
\begin{aligned}
& \left\|T^{n}\right\|=\sup _{i} \alpha_{i} \alpha_{i+1} \ldots \alpha_{i+n-1}\left\|R_{n+i} R_{i}^{-1}\right\| \\
& \leq \sup _{i} \frac{s_{f(i)} s_{f(i+1)} \ldots s_{f(i+n-1)}}{s_{f(i+n-1)} \cdots s_{f(i)}} \frac{\beta_{i+1}^{i+1}}{\beta_{i}^{i}} \frac{\beta_{i+2}^{i+2}}{\beta_{i+1}^{i+1}} \cdots \frac{\beta_{i+n}^{i+n}}{\beta_{i+n-1}^{i+n-1}} \\
& \leq \sup _{i} \frac{\beta_{i+n}^{i+n}}{\beta_{i}^{i}} \leq \sup _{i} \frac{\beta_{i+n}^{i+n}}{\beta_{i+n}^{i}}=\sup _{i} \beta_{i+n}^{n} \leq \beta_{n}^{n} .
\end{aligned}
$$

Hence

$$
\left\|T^{n}\right\|^{1 / n} \leq \beta_{n} \quad(n \geq 1)
$$

The above defined operator-weighted shift T is reflexive since it has injective weights of dimension 2 [2, Corollary 3.5]. We shall show that $\{T\}^{\prime}=\operatorname{Alg} T$ and then T is also hyperreflexive. Similarly as in [5, p. 281] let $\left(U_{i j}\right)_{i, j \geq 0}$ be the matrix of an operator $U \in\{T\}^{\prime}$ in the decomposition (1). Then
$0=T U-U T=\left(\begin{array}{cccc}-U_{01} T_{0} & -U_{02} T_{1} & -U_{03} T_{2} & \ldots \\ T_{0} U_{00}-U_{11} T_{0} & T_{0} U_{01}-U_{12} T_{1} & T_{0} U_{02}-U_{13} T_{2} & \ldots \\ T_{1} U_{10}-U_{21} T_{0} & T_{1} U_{11}-U_{22} T_{1} & T_{1} U_{12}-U_{23} T_{2} & \ldots \\ T_{2} U_{20}-U_{31} T_{0} & T_{2} U_{21}-U_{32} T_{1} & T_{2} U_{22}-U_{33} T_{2} & \ldots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)$.
Since T_{n} 's are invertible we obtain from the first row $U_{0 i}=0$ for all $i \geq 1$. Similarly we obtain by induction $U_{i j}=0$ if $i<j$, i.e., the matrix U is lower triangular.

Further, for $i \geq j \geq 1$, we have $T_{i-1} U_{i-1, j-1}-U_{i j} T_{j-1}=0$ so that

$$
U_{i j}=T_{i-1} U_{i-1, j-1} T_{j-1}^{-1} .
$$

Thus for $i, n \geq 0$ we have by induction

$$
\begin{aligned}
& U_{n+i, n}=T_{n+i-1} T_{n+i-2} \cdots T_{i} U_{i 0} T_{0}^{-1} \cdots T_{n-1}^{-1} \\
&=\left(T_{n+i-1} T_{n+i-2} \cdots T_{0}\right) S_{i}\left(T_{n-1} T_{n-2} \cdots T_{0}\right)^{-1} \\
&=\alpha_{n} \alpha_{n+1} \cdots \alpha_{n+i-1} R_{n+i} S_{i} R_{n}^{-1}
\end{aligned}
$$

where $S_{i}=\left(T_{i-1} T_{i-2} \ldots T_{0}\right)^{-1} U_{i 0}$.
We are going to show now that each S_{i} is a scalar multiple of identity. Fix $i \geq 0$. Suppose that $S_{i} a=\lambda_{i} a+\mu_{i} b$. To show that $\mu_{i}=0$ find $k \in N, k>i$ such that $s_{k}=s_{k-1}=\cdots=s_{k-i}$. Let $n=m_{k-1}+k$. Then $R_{n}=A_{k}, R_{n+i}=A_{k-i}, f(n)=f(n+1)=\cdots=f(n+i)=k$ and we have

$$
\begin{aligned}
\|U\| & \geq\left\|U_{n+i, n}\right\| \geq\left\|U_{n+i, n} a\right\|=\alpha_{n} \alpha_{n+1} \ldots \alpha_{n+i-1}\left\|R_{n+i} S_{i} R_{n}^{-1} a\right\| \\
& =\frac{\alpha_{n} \alpha_{n+1} \ldots \alpha_{n+i-1}}{s_{0} s_{1} \ldots s_{k}}\left\|A_{k-i}\left(\lambda_{i} a+\mu_{i} b\right)\right\| \\
& =\frac{\alpha_{n} \alpha_{n+1} \ldots \alpha_{n+i-1}}{s_{0} s_{1} \ldots s_{k}}\left\|s_{0} s_{1} \ldots s_{k-i} \lambda_{i} a+\mu_{i} b\right\| \\
& \geq\left|\mu_{i}\right| \frac{\alpha_{n} \alpha_{n+1} \ldots \alpha_{n+i-1}}{s_{0} s_{1} \ldots s_{k}}=\left|\mu_{i}\right| \frac{s_{k}^{i}}{s_{0} \ldots s_{k}} \frac{\beta_{n+i}^{n+i}}{\beta_{n}^{n}} \\
& \geq\left|\mu_{i}\right| \frac{s_{k}^{i}}{s_{k-i} \ldots s_{k}} \frac{\beta_{n+i}^{n+i}}{\beta_{n}^{n}}=\left|\mu_{i}\right| \frac{1}{s_{k}} \frac{\beta_{n+i}^{n+i}}{\beta_{n}^{n}} \\
& \geq\left|\mu_{i}\right| k \frac{\beta_{n}^{n}}{\beta_{n+k}^{n+k}} \frac{\beta_{n+i}^{n+i}}{\beta_{n}^{n}}=\left|\mu_{i}\right| k\left(\frac{\beta_{n+i}}{\beta_{n+k}}\right)^{n+i} \frac{1}{\beta_{n+k}^{k-i}} \geq\left|\mu_{i}\right| k .
\end{aligned}
$$

Since k could have been chosen arbitrarily large, we conclude that $\mu_{i}=0$. Thus $S_{i} a=\lambda_{i} a$. Similarly (for $n=m_{k-1}+3 k$ and $n=m_{k-1}+5 k$, respectively) we can prove that $S_{i} b=\lambda_{i}^{\prime} b$ and that $S_{i} c=\lambda_{i}^{\prime \prime} c$ for some complex numbers $\lambda_{i}^{\prime}, \lambda_{i}^{\prime \prime}$. Thus

$$
\frac{1}{\sqrt{2}} \lambda_{i}^{\prime \prime}(a+b)=\lambda_{i}^{\prime \prime} c=S_{i} c=S_{i}\left(\frac{1}{\sqrt{2}}(a+b)\right)=\frac{1}{\sqrt{2}} \lambda_{i} a+\frac{1}{\sqrt{2}} \lambda_{i}^{\prime} b .
$$

Thus $\lambda_{i}=\lambda_{i}^{\prime \prime}=\lambda_{i}^{\prime}$, i.e., $S_{i}=\lambda_{i} I$. Hence $U_{n+i, n}=\lambda_{i} T_{n+i-1} T_{n+i-2} \ldots T_{n}$ for all $i, n \geq 0$.

Observe that the only non-zero entries of the matrix of the operator T^{i} are $\left(T^{i}\right)_{n+i, n}=T_{n+i-1} T_{n+i-2} \ldots T_{n}$ for $n=0,1,2, \ldots$ and so formally $U=\sum \lambda_{i} T^{i}$.

The rest of the proof is exactly the same as that of Lemma 2.3 in [3]. The operator U can be written as a formal power series $\sum \lambda_{i} T^{i}$. The series need not converge but its Cesaro means converge to U strongly. So the commutant of T coincides with $\mathrm{Alg} T$ and therefore it is reflexive. This finishes the proof of Theorem 1.

References

[1] Š. Drahovský, M. Zajac, Hyperreflexive operators on finite dimensional Hilbert spaces, Math. Bohemica (1993), 249-254.
[2] D. Hadwin, Eric A. Nordgren, Reflexivity and direct sums, Acta Sci. Math. (Szeged) 55 (1991), 181-197.
[3] Domingo A. Herrero, A dense set of operators with tiny commutants, Trans. Amer. Math. Soc. 327 (1991), no. 1, 159-183.
[4] Warren R. Wogen, On cyclicity of commutants, Integral Equations Operator Theory 5 (1982), 141-143.
[5] M. Zajac, A Quasi-nilpotent Operator with reflexive commutant, Studia Math. 118 (1996), 277-283.
[6] Zajac, M., Rate of Convergence to Zero of Powers of an Hyper-Reflexive Operator, Proceedings of Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control, September 10-14, 1997, Nemecká, Slovak Republic.

Vladimír MÜller
Institute of Mathematics
Czech Academy of Sciences
Žitná 25
11567 Praha 1
Czech Republic

E-mail address: muller@math.cas.cz

Michal Zajac
Department of Mathematics
Faculty of Electrical Engineering
Slovak University of Technology
Ilkovičova 3
81219 Bratislava
Slovak Republic
zajac@kmat.elf.stuba.sk

[^0]: 1991 Mathematics Subject Classification. 47A10, 47A15.
 Key words and phrases. quasinilpotent operator, commutant, reflexivity.
 The first author was supported by the grant No. 201/96/0411 of GA CR. The second author was supported by grant 1/4297/97 of the Grant Agency of Slovak Republic.

