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Abstract

It is known that retarded functional differential equations (RFDEs) can be re-
garded as generalized ordinary differential equations (we write GODEs). See [1, 5, 6].
In this paper, we prove the equivalence between RFDEs with pre-assigned moments
of impulse effects and a certain class of GODEs introduced in [7] using some ideas of
[1, 5, 6]. We state results on the existence, uniqueness and continuous dependence of
solutions for this class of GODEs and we use them to obtain fine results concerning
the corresponding impulsive RFDEs.

1 Introduction

The beginning of the theory of impulsive ordinary differential equations (ODE) goes back
to 1960 in a paper by V. D. Mil’man and A. D. Myshkis [4]. The difficulties and peculiari-
ties encountered in this theory such as “beating”, “dying”, “merging”, noncontinuation of
solutions, etc., were slowly overcome. In recent years, the qualitative analysis of impulsive
ODEs has been studied extensively and even a significant progress has been made in the
theory of impulsive retarded functional differential equations (RFDEs).

In order to generalize certain results on continuous dependence of solutions of ODEs
with respect to parameters, J. Kurzweil introduced, in 1957, what he called generalized
ordinary differential equations (GODE) for euclidean and Banach space-valued functions.
See [3]. The theory of GODEs is extensively described in [7].

The correspondence between GODEs and RFDEs without impulses was first investi-
gated in 1966 by C. Imaz and Z. Vorel and by F. Oliva and Z. Vorel under rather technical
assumptions. See [5] and [6]. Later, M. Federson and P. Z. Táboas proved the same results
in a setting more close to [7]. Also the theory of GODE’s was useful in the investigation
of topological dynamics of RFDEs. See [1].

In the present paper, we are mainly concerned with embedding impulsive RFDEs in
a space of GODEs. Here we prove that under pre-assigned moments of impulse effects,
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a RFDE can still be related to a GODE with values in a Banach space and there is
a one-to-one relation between the solutions of an impulsive RFDE and the solutions of
the corresponding GODE. We also explore some results for impulsive RFDEs concerning
existence, uniqueness and continuous dependence.

One of the advantages of treating RFDEs with or without impulses by means of the
theory of GODEs is that the theory of GODE is developed to a great extent. The assump-
tions usually concern the indefinite integral, in some sense, of the functions involved in
the equations instead of functions themselves. This leads to very fine and general results.
Also, because impulsive RFDEs can be regarded as GODEs, it is possible to obtain good
results with short proofs.

The paper is organized as follows. In Section 2 we present the basic knowledge con-
cerning GODEs on the basis of [7]. In Section 3 the relation between impulsive RFDEs
and GODEs is studied under relatively weak conditions on the entries of the impulsive
RFDEs. A continuous dependence result for GODEs from [7] is used to get a result of
this type for RFDEs in Section 4. Since the results from Sections 3 and 4 are presented
for solutions on compact intervals and have a local character, in Section 5 the elements
of studying global (maximal) solutions of RFDEs are shortly described.

2 Generalized ordinary differential equations

A tagged division of a compact interval [a, b] ⊂ R is a finite collection of point-interval pairs
(τi, [si−1, si]), where a = s0 ≤ s1 ≤ . . . ≤ sk = b is a division of [a, b] and τi ∈ [si−1, si],
i = 1, 2, . . . , k.

A gauge on a set E ⊂ [a, b] is any function δ : E → (0, +∞).
Given a gauge δ on [a, b], a tagged division d = (τi, [si−1, si]) is δ-fine if, for every i,

[si−1, si] ⊂ {t ∈ [a, b] ; |t− τi| < δ (τi)} .

Let X be a Banach space. In the sequel we will use integration specified by the
following definition.

Definition 2.1. A function U (τ, t) : [a, b] × [a, b] → X is Kurzweil integrable over the

interval [a, b] if there is a unique element I ∈ X (I =
∫ b

a
DU (τ, t)) such that given ε > 0,

there is a gauge δ of [a, b] such that for every δ-fine tagged division d = (τi, [si−1, si]) of
[a, b], we have

‖S (U, d)− I‖ < ε,

where S (U, d) =
∑

i

[U (τi, si)− U (τi, si−1)].

This type of integration belongs to Jaroslav Kurzweil and it was described extensively
in Chapter I of [7] for the case X = Rn (see Definition 1.2n in [7]).

Checking the results concerning this integration in [7] it can be easily seen that the
results presented there can be transferred without any changes to the case of X-valued
functions U (τ, t) : [a, b]× [a, b] → X. Let us mention a few of them. The integral has the
usual properties of linearity, additivity with respect to adjacent intervals, etc.
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An important result which will be used latter concerns the integrability on subintervals
and is stated next (see Theorem 1.10 in [7]).

Lemma 2.2. Let U (τ, t) : [a, b] × [a, b] → X be integrable over [a, b]. Then
∫ d

c
DU(τ, t)

exists, for each interval [c, d] ⊂ [a, b].

The following result is known as the Saks-Henstock Lemma (see Lemma 1.13 in [7]).

Proposition 2.3 (Saks-Henstock Lemma). Let U (τ, t) : [a, b] × [a, b] → X. If for
every ε > 0, δ is a gauge of [a, b] such that for every δ-fine tagged division d = (τi, si) of
[a, b], ∥∥∥∥∥

∑
i

[U (τi, si)− U (τi, si−1)]−
∫

[a,b]

DU (τ, t)

∥∥∥∥∥ < ε

then, for a ≤ c1 ≤ η1 ≤ d1 ≤ c2 ≤ η2 ≤ d2 ≤ . . . ≤ cl ≤ ηl ≤ dl ≤ b, with ηj ∈ [cj, dj] ⊂
[ηj − δ (ηj) , ηj + δ (ηj)], j = 1, 2, . . . , l,

∥∥∥∥∥
∑

j

[
U (ηj, dj)− U (ηj, cj)−

∫

[cj ,dj ]

DU (τ, t)

]∥∥∥∥∥ < ε.

The following result is an important Hake type theorem (see Theorem 1.14 in [7]).

Lemma 2.4. Let a function U : [a, b]× [a, b] → X be given such that U is integrable over
[a, c] for every c ∈ [a, b) and let the limit

lim
c→b−

[∫ c

a

DU(τ, t)− U(b, c) + U(b, b)

]
= I ∈ X

exist. Then the function U is integrable over [a, b] and

∫ b

a

DU(τ, t) = I.

Similarly, if the function U is integrable over [c, b] for every c ∈ (a, b] and the limit

lim
c→a+

[∫ b

c

DU(τ, t) + U(a, c)− U(a, a)

]
= I ∈ X

exists, then the function U is integrable over [a, b] and

∫ b

a

DU(τ, t) = I.

This leads to the following (see Theorem 1.16 in [7]).

Lemma 2.5. Let U : [a, b]× [a, b] → X be integrable over [a, b] and c ∈ [a, b]. Then

lim
s→c

[∫ s

a

DU(τ, t)− U(c, s) + U(c, c)

]
=

∫ c

a

DU(τ, t).



4

Remark 2.6. Lemma 2.5 shows that the function given by

s ∈ [a, b] 7→
∫ s

a

DU(τ, t) ∈ X,

i.e. the indefinite integral of U may not be continuous in general. The indefinite integral is
continuous at a point c ∈ [a, b] if and only if the function U(c, ·) : [a, b] → X is continuous
at the point c.

Note that if U : [a, b] × [a, b] → X is integrable over [a, b], then by Lemma 2.2 the
indefinite integral of the function U is well defined on the whole interval [a, b].

Having the concept of Kurzweil integrability of a function U : [a, b] × [a, b] → X, we
are able to define the notion of a generalized ordinary differential equation.

Let an open set Ω ⊂ X × R be given. Assume that G : Ω → X is a given X-valued
function G(x, t) defined for (x, t) ∈ Ω.

Definition 2.7. A function x : [α, β] → X is called a solution of the generalized ordinary
differential equation

dx

dτ
= DG(x, t) (2.1)

on the interval [α, β] ⊂ R if (x(t), t) ∈ Ω for all t ∈ [α, β] and if the equality

x(v)− x(γ) =

∫ v

γ

DG(x(τ), t) (2.2)

holds for every γ, v ∈ [α, β].
The integral on the righthand side of (2.2) has to be understood as the Kurzweil

integral introduced by Definition 2.1.

Given an initial condition (z0, t0) ∈ Ω the following definition of the solution of the
initial value problem for the equation (2.1) will be used.

Definition 2.8. A function x : [α, β] → X is a solution of the generalized ordinary
differential equation (2.1) with the initial condition x(t0) = z0 on the interval [α, β] ⊂ R
if t0 ∈ [α, β], (x(t), t) ∈ Ω for all t ∈ [α, β] and if the equality

x(v)− z0 =

∫ v

t0

DG(x(τ), t) (2.3)

holds for every v ∈ [α, β].

Remark 2.9. Let U (τ, t) = G (x (τ) , t). In the definition of
∫
[a,b]

DG (x (τ) , t) there are

only differences as

U (τi, si)− U (τi, si−1) = G (x (τi) , si)−G (x (τi) , si−1) .

Thus, adding to G (x(τ), t) a function varying only in x, the solutions of (2.1) do not
change. In particular, subtracting G (x(τ), t0) from G (x(τ), t), we obtain a normalized
representation G1 of G fulfilling G1 (z, t0) = 0 for every z.
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Definitions 2.7 or 2.8 do not provide too much information about the properties of the
function x : [α, β] → X which is a solution of (2.1). The only fact we know implicitly is
that the integral

∫ v

γ
DG(x(τ), t) exists for every γ, v ∈ [α, β]. Nevertheless, using Lemma

2.5 the following can be derived (see Proposition 3.6 in [7]).

Lemma 2.10. If x : [α, β] → X is a solution of the generalized ordinary differential
equation (2.1) on [α, β], then

lim
s→σ

[x(s)−G(x(σ), s) + G(x(σ), σ)] = x(σ)

for every σ ∈ [α, β].

This Lemma shows that if x : [α, β] → X is a solution of (2.1), then for every fixed
σ ∈ [α, β] the value of x(s) can be approximated by x(σ)+G(x(σ), s)−G(x(σ), σ) provided
s ∈ [α, β] is sufficiently close to σ.

Now we introduce a class of functions G : Ω → X for which it is possible to get more
specific information about the solutions of (2.1).

Let (a, b) ⊂ R be an interval with −∞ < a < b < ∞ and let us set

Ω = O × [a, b],

where O ⊂ X is an open set (e.g. O = Bc = {x ∈ X; ‖x‖ < c} for some c > 0). We will
use the set Ω ⊂ X ×R in our subsequent study of generalized differential equations (2.1).
Assume that h : [a, b] → R is a nondecreasing function defined on [a, b].

Definition 2.11. A function G : Ω → X belongs to the class F(Ω, h) if

‖G(x, s2)−G(x, s1)‖ ≤ |h(s2)− h(s1)| (2.4)

for all (x, s2), (x, s1) ∈ Ω and

‖G(x, s2)−G(x, s1)−G(y, s2) + G(y, s1)‖ ≤ ‖x− y‖|h(s2)− h(s1)| (2.5)

for all (x, s2), (x, s1), (y, s2), (y, s1) ∈ Ω.

For functions G ∈ F(Ω, h) we are coming to more specific information about solutions
of the generalized differential equation (2.1). We have the following (see Lemma 3.10 in
[7]).

Lemma 2.12. Assume that G : Ω → X satisfies the condition (2.4). If [α, β] ⊂ [a, b] and
x : [α, β] → X is a solution of (2.1), then the inequality

‖x(s1)− x(s2)‖ ≤ |h(s2)− h(s1)|

holds for every s1, s2 ∈ [α, β].

Let varβ
α x be the variation of a function x : [α, β] → X and let BV ([α, β]) be the space

of functions x : [α, β] → X of bounded variation. Lemma 2.12 gives easily the following
property of solutions of (2.1).



6

Corollary 2.13. Assume that G : Ω → X × R satisfies the condition (2.4). If [α, β] ⊂
(a, b) and x : [α, β] → X is a solution of (2.1), then x is of bounded variation on [α, β]
and

varβ
α x ≤ h(β)− h(α) < +∞.

Every point in [α, β] at which the function h is continuous is a continuity point of the
solution x : [α, β] → X.

Moreover, we have the following (see Lemma 3.12 in [7]).

Lemma 2.14. If x : [α, β] → X is a solution of (2.1) and G : Ω → X × R satisfies the
condition (2.4), then

x(σ+)− x(σ) = lim
s→σ+

x(s)− x(σ) = G(x(σ), σ+)−G(x(σ), σ)

for σ ∈ [α, β) and

x(σ)− x(σ−) = x(σ)− lim
s→σ−

x(s) = G(x(σ), σ)−G(x(σ), σ−)

for σ ∈ (α, β], where

G(x, σ+) = lim
s→σ+

G(x, s) for σ ∈ [α, β)

and
G(x, σ−) = lim

s→σ−
G(x, s) for σ ∈ (α, β].

Up to this moment we do not have any information about the existence of a solution
of (2.1). The following result gives us an answer.

Theorem 2.15. Let G : Ω → X belong to the class F(Ω, h), where the function h is
continuous from the left (h(t−) = h(t) for t ∈ (a, b]). Then for every (x̃, t0) ∈ Ω such
that for x̃+ = x̃+G(x̃, t0+)−G(x̃, t0) we have (x̃+, t0) ∈ Ω and there exists a ∆ > 0 such
that on the interval [t0, t0 + ∆] there exists a unique solution x : [t0, t0 + ∆] → X of the
generalized ordinary differential equation (2.1) for which x(t0) = x̃.

A sketch of the proof. At first, let t0 be a point of continuity of the function h, i.e.
h(t0+) = h(t0). Assume that ∆ > 0 is such that [t0, t0 +∆] ⊂ (a, b), h(t0 +∆)−h(t0) < 1

2

and that ‖x− x̃‖ ≤ h(t0 + ∆)− h(t0) implies x ∈ O.
Let Q be the set of functions z : [t0, t0 + ∆] → X such that z ∈ BV ([t0, t0 + ∆]) and

‖z(t)− x̃‖ ≤ h(t)− h(t0) for t ∈ [t0, t0 + ∆].
It is easy to show that the set Q ⊂ BV ([t0, t0 + ∆]) is closed.
For s ∈ [t0, t0 + ∆] and z ∈ Q, define

Tz(s) = x̃ +

∫ s

t0

DG(z(τ), t).

The integral on the righthand side exists (see Corollary 3.16 in [7]) and for s ∈ [t0, t0 +∆],
(2.4) implies

‖Tz(s)− x̃‖ =

∥∥∥∥
∫ s

t0

DG(z(τ), t)

∥∥∥∥ ≤ h(s)− h(t0)



7

and it follows that T maps Q into itself.
Take t0 ≤ s1 < s2 ≤ t0 + ∆ and z1, z2 ∈ Q. Then using (2.5), we obtain

‖Tz2(s2)− Tz1(s2)− [Tz2(s1)− Tz1(s1)]‖ =

=

∥∥∥∥
∫ s2

s1

D[G(z2(τ), t)−G(z1(τ), t)]

∥∥∥∥ ≤
∥∥∥∥
∫ s2

s1

D‖z2(τ)− z1(τ)‖h(t)

∥∥∥∥ ≤ sup
τ∈[s1,s2]

‖z2(τ)− z1(τ)‖ · (h(s2)− h(s1)) ≤

sup
τ∈[t0,t0+∆]

‖z2(τ)− z1(τ)‖ · (h(s2)− h(s1)) ≤ ‖z2 − z1‖BV ([t0,t0+∆]) · (h(s2)− h(s1)).

Note that ‖z‖BV ([t0,t0+∆]) = ‖z(t0)‖+ vart0+∆
t0 z defines a norm in BV ([t0, t0 + ∆]).

Hence

‖Tz2 − Tz1‖BV ([t0,t0+∆]) ≤ ‖z2 − z1‖BV ([t0,t0+∆]) · (h(t0 + ∆)− h(t0)) <

<
1

2
‖z2 − z1‖BV ([t0,t0+∆])

and T is a contraction. By the Banach fixed point theorem the result follows.
Now we consider that t0 is not a point of continuity of h. Take h̃(t) = h(t) for

t ≤ t0 and h̃(t) = h(t) − h(t0+) for t > t0. Then the function h̃ is continuous at t0,

continuous from the left and nondecreasing. Defining G̃(x, t) = G(x, t) for t ≤ t0 and

G̃(x, t) = G(x, t) − [G(x̃, t0+) − G(x̃, t0)] for t > t0 it is easy to check that G̃ ∈ F(Ω, h̃)

and, as above, a solution z of
dz

dτ
= DG̃(z, t) with z(t0) = x̃+ exists. Defining x(t0) = x̃

and x(t) = z(t) for t > t0 we have a solution of (2.1) for which x(t0) = x̃.

Remark 2.16. The assumption of the continuity from the left of the function h in The-
orem 2.15 shows that the solutions of (2.1) are also continuous from the left (cf. Lemma
2.12). Given a solution x of (2.1), the limit x(σ−) exists for every σ in the domain of x.
This follows again by Lemma 2.12 and, by Lemma 2.14, we have the relation

x(σ) = x(σ−) + G(x(σ), σ)−G(x(σ), σ−)

which describes the discontinuity of the given solution.

We close the short survey of results on generalized differential equations by the fol-
lowing simple convergence result (see Theorem 8.2 in [7]).

Theorem 2.17. Assume that Gp : Ω → X belongs to the class F(Ω, h) for p = 0, 1, . . .
and that

lim
p→∞

Gp(x, t) = G0(x, t)

for (x, t) ∈ Ω. Let xp : [α, β] → X, p = 1, 2, . . . be solutions of the generalized differential
equation

dx

dτ
= DGp(x, t)
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on [α, β] ⊂ (a, b) such that

lim
p→∞

xp(s) = x(s), s ∈ [α, β],

and (x(s), s) ∈ Ω for s ∈ [α, β]. Then x : [α, β] → X is of bounded variation on [α, β]
and it is a solution of the generalized differential equation

dx

dτ
= DG0(x, t)

on [α, β].

3 Impulsive retarded differential equations in the frame

of generalized ordinary differential equations

Consider the following initial value problem for a retarded functional differential equation
with impulses: 




ẏ (t) = f (yt, t) , t 6= tk

∆y (tk) = Ik (y (tk)) , k = 1, . . . , m

yt0 = φ,

(3.1)

where tk, k = 1, . . . , m with t0 < t1 < . . . < tk < . . . < tm ≤ t0 + σ, σ > 0, are
pre-assigned moments of impulse, y 7→ Ik (y) maps Rn into itself and

∆y (tk) := y (tk+)− y (tk−) = y (tk+)− y (tk) , k = 1, 2, . . . , m,

that is, we suppose y is left continuous at t = tk and that the lateral limit y(tk+) exists,
k = 1, 2, . . . , m.

We write PC([a, b], X) to denote the space of piecewise continuous functions from an
interval [a, b] ⊂ R to a Banach space X. We consider PC([a, b], X) equipped with the
usual supremum norm, ‖ · ‖, and we assume φ ∈ PC([−r, 0],Rn), r ≥ 0, and that f(φ, t)
maps some open subset of PC

(
[−r, 0], X

)× [t0, t0 + σ] to Rn.
Given a function y : [t0 − r, t0 + σ] → Rn, we consider yt : [−r, 0] → Rn given by

yt (θ) = y (t + θ) , θ ∈ [−r, 0], t ∈ [t0, t0 + σ] .

Now we introduce some notation. Let PCt0 be the set of all functions y : [t0, t0 + σ] → Rn

such that for k = 1, 2, . . . , m, y is continuous at t 6= tk, y is left continuous at t = tk and
the right limit y (tk+) exists. Given φ ∈ PC ([−r, 0],Rn), we also define

PCφ,t0 =
{

y : [t0 − r, t0 + σ] → Rn ; yt0 = φ, y|[t0,t0+σ] ∈ PCt0

}

These two spaces are complete under the norm induced by PC([t0 − r, t0 + σ],Rn).
Let us recall the concept of a solution to the problem (3.1).

Definition 3.1. A function y ∈ PCφ,t0 such that (yt, t) ∈ PC ([−r, 0],Rn) × [t0, t0 + σ]
for t0 ≤ t < t0 + σ and moreover
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(i) ẏ (t) = f (yt, t), t 6= tk,

(ii) y (tk+) = y (tk) + Ik (y (tk)), k = 1, 2, . . . , m.

is called a solution of (3.1) in [t0, t0 + σ] (or sometimes also in [t0 − r, t0 + σ]) with the
initial condition (φ, t0).

The impulsive system (3.1) is known to be equivalent to the ”integral” equation





y (t) = y(t0) +

∫ t

t0

f (ys, s) ds +
∑

t0< tk≤ t

Ik(y(tk)), t ∈ [t0, t0 + σ]

yt0 = φ,

when the integral exists in the Lebesgue sense (cf. [2]).
For T ∈ (t0,∞) define the left continuous Heaviside function concentrated at T as

follows:

HT (t) =

{
0 for t0 ≤ t ≤ T

1 for T < t.

Then ∑
t0< tk≤ t

Ik(y(tk)) =
m∑

k=1

Ik(y(tk))Htk(t)

and the system (3.1) is equivalent to





y (t) = y(t0) +

∫ t

t0

f (ys, s) ds +
m∑

k=1

Ik(y(tk))Htk(t), t ∈ [t0, t0 + σ],

yt0 = φ.

(3.2)

Let PC1 ⊂ PCφ,t0 be an open set (in the topology of PC([t0 − r, t0 + σ] ,Rn)) with
the following property: if y = y (t), t ∈ [t0 − r, t0 + σ], is an element of PC1 and
t̄ ∈ [t0 − r, t0 + σ], then ȳ given by

ȳ (t) =

{
y (t) , t0 − r ≤ t ≤ t̄

y (t̄+) , t̄ < t ≤ t0 + σ

also belongs to PC1.
Denote by | · | a norm in Rn.
We consider f (φ, t) : PC ([−r, 0],Rn) × [t0, t0 + σ] → Rn, t 7→ f (yt, t) is Lebesgue

integrable and the following conditions are fulfilled:

(A) there is a Lebesgue integrable function M : [t0, t0+σ] → R such that for all x ∈ PC1

and all u1, u2 ∈ [t0, t0 + σ],

∣∣∣∣
∫ u2

u1

f (xs, s) ds

∣∣∣∣ ≤
∫ u2

u1

M (s) ds;
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(B) there is a Lebesgue integrable function L : [t0, t0+σ] → R such that for all x, y ∈ PC1

and all u1, u2 ∈ [t0, t0 + σ],
∣∣∣∣
∫ u2

u1

[f (xs, s)− f (ys, s)] ds

∣∣∣∣ ≤
∫ u2

u1

L (s) ‖xs − ys‖ ds.

Concerning the impulse functions Ik : Rn → Rn, k = 1, . . . , m, we assume the following
conditions:

(A’) there is a constant K1 > 0 such that for all k = 1, . . . ,m and all x ∈ Rn

|Ik(x)| ≤ K1;

(B’) there is a constant K2 > 0 such that for all k = 1, . . . ,m and all x, y ∈ Rn

|Ik(x)− Ik(y)| ≤ K2|x− y|.

Suppose f (φ, t) : H1×[t0, t0 + σ] → Rn and for each y ∈ PC1 the mapping t 7→ f (yt, t)
is integrable in the Lebesgue sense. For y ∈ PC1, let

F (y, t) (ϑ) =





0, t0 − r ≤ ϑ ≤ t0 or t0 − r ≤ t ≤ t0∫ ϑ

t0
f (ys, s) ds, t0 ≤ ϑ ≤ t ≤ t0 + σ;∫ t

t0
f (ys, s) ds, t0 ≤ t ≤ ϑ ≤ t0 + σ.

(3.3)

Then given (y, t) ∈ PC1 × [t0 − r, t0 + σ], equation (3.3) defines an element F (y, t)
of C ([t0 − r, t0 + σ],Rn) and F (y, t) (τ) ∈ Rn is the value of F (y, t) at a point τ ∈
[t0 − r, t0 + σ], that is,

F : PC1 × [t0 − r, t0 + σ] → C([t0 − r, t0 + σ],Rn),

where C([a, b],Rn) denotes the Banach space of continuous functions from [a, b] to Rn

with the supremum norm. (A proof of this fact is a straightforward adaptation of [1],
Proposition 2.1.)

The idea of defining the function F by (3.3) comes from the pioneering work of Z.
Vorel, C. Imaz and F. Oliva ([5], [6]) where RFDEs have been related to GODEs for the
first time.

Assume that conditions (A) and (B) are satisfied for the map f (φ, t) : PC ([−r, 0],Rn)×
[t0, t0 + σ] → Rn.

Given x ∈ PC1 and t0 ≤ s1 < s2 < t0 + σ we have for F : PC1 × [t0 − r, t0 + σ] →
C([t0 − r, t0 + σ],Rn) given by (3.3) the following:

F (x, s2) (ϑ)− F (x, s1) (ϑ) =





0, ϑ ∈ [t0 − r, s1],∫ ϑ

s1
f (xs, s) ds, ϑ ∈ [s1, s2],∫ s2

s1
f (xs, s) ds, ϑ ∈ [s2, t0 + σ].

(3.4)

Hence for an arbitrary x ∈ PC1 and for t0 ≤ s1 < s2 < t0 + σ, we have by (A)

‖F (x, s2)− F (x, s1) ‖ = sup
ϑ∈[t0−r,t0+σ]

|F (x, s2) (ϑ)− F (x, s1) (ϑ)| = (3.5)
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= sup
ϑ∈[s1,s2]

|F (x, s2) (ϑ)− F (x, s1) (ϑ)| = sup
ϑ∈[s1,s2]

∣∣∣∣
∫ ϑ

s1

f (xs, s) ds

∣∣∣∣ ≤

≤ sup
ϑ∈[s1,s2]

∫ ϑ

s1

M(s)ds =

∫ s2

s1

M(s)ds.

Similarly, using (3.4) and (B), we get that if x, y ∈ PC1 and t0 ≤ s1 < s2 < t0 + σ then

‖F (x, s2)− F (x, s1)− F (y, s2) + F (y, s1) ‖ = (3.6)

= sup
ϑ∈[s1,s2]

|
∫ ϑ

s1

[f (xs, s)− f (ys, s) ds]| ≤
∫ s2

s1

L(s)‖xs − ys‖ds ≤

≤ sup
ϑ∈[s1−r,s2]

|x(ϑ)− y(ϑ)|
∫ s2

s1

L(s)ds ≤ ‖x− y‖
∫ s2

s1

L(s)ds.

Define h1 : [t0, t0 + σ] → R by

h1(t) =

∫ t

t0

[M(s) + L(s)]ds, t ∈ [t0, t0 + σ].

The function h1 is (absolutely) continuous and nondecreasing since M,L : [t0, t0 +σ] → R
are nonnegative a.e.

According to (3.5) and (3.6) we have

‖F (x, s2)− F (x, s1)‖ ≤ |h1(s2)− h1(s1)| (3.7)

for all (x, s2), (x, s1) ∈ PC1 × [t0, t0 + σ] and

‖F (x, s2)− F (x, s1)− F (y, s2) + F (y, s1)‖ ≤ ‖x− y‖|h1(s2)− h1(s1)| (3.8)

for all (x, s2), (x, s1), (y, s2), (y, s1) ∈ PC1 × [t0, t0 + σ].
Let us consider the impulsive terms of the problem (3.1).
Given an arbitrary y ∈ PC1, let

J(y, t)(ϑ) =
m∑

k=1

Htk(t)Htk(ϑ)Ik(y(tk)) (3.9)

for ϑ ∈ [t0 − r, t0 + σ] and t ∈ [t0, t0 + σ]. (Htk is the left continuous Heaviside function
concentrated at tk.)

If t0 ≤ s1 < s2 ≤ t0 + σ, we have

J(y, s2)(ϑ)− J(y, s1)(ϑ) =
m∑

k=1

[Htk(s2)−Htk(s1)]Htk(ϑ)Ik(y(tk)) (3.10)

for ϑ ∈ [t0 − r, t0 + σ]. So for t0 ≤ s1 < s2 ≤ t0 + σ and x ∈ PC1 we have

‖J(x, s2)− J(x, s1)‖ = sup
ϑ∈[t0−r,t0+σ]

m∑

k=1

[Htk(s2)−Htk(s1)]Htk(ϑ)|Ik(x(tk))| ≤ (3.11)
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≤
m∑

k=1

[Htk(s2)−Htk(s1)]K1

and, similarly, if x, y ∈ PC1 we get

‖J(x, s2)− J(x, s1)− J(y, s2) + J(x, s1)‖ ≤
m∑

k=1

[Htk(s2)−Htk(s1)]K2‖x− y‖PC . (3.12)

Define h2 : [t0, t0 + σ] → R by

h2(t) = max(K1, K2) ·
m∑

k=1

Htk(t).

Then h2 is left continuous and nondecreasing while by (3.11) and (3.12) we get

‖J(x, s2)− J(x, s1)‖ ≤ h2(s2)− h2(s1) (3.13)

and

‖J(x, s2)− J(x, s1)− J(y, s2) + J(x, s1)‖ ≤ ‖x− y‖(h2(s2)− h2(s1)) (3.14)

provided x, y ∈ PC1 and t0 ≤ s1 < s2 ≤ t0 + σ.
Now, consider F (y, t) from (3.3) and J(y, t) from (3.9) and let

G(y, t) = F (y, t) + J(y, t) (3.15)

for y ∈ PC1 and t ∈ [t0 − r, t0 + σ]. Then G(y, t) belongs to PC([t0 − r, t0 + σ],Rn), that
is,

G : PC1 × [t0 − r, t0 + σ] → PC([t0 − r, t0 + σ],Rn).

By (3.7) and (3.13), we have

‖G(x, s2)−G(x, s1)‖ ≤ ‖F (x, s2)− F (x, s1)‖+ ‖J(x, s2)− J(x, s1)‖ ≤ (3.16)

≤ h1(s2)− h1(s1) + h2(s2)− h2(s1) = h(s2)− h(s1),

where h(t) = h1(t) + h2(t) is nondecreasing and continuous from the left.
Similarly, (3.8) and (3.14) yields

‖G(x, s2)−G(x, s1)−G(y, s2) + G(y, s1)‖ ≤ ‖x− y‖(h(s2)− h(s1)). (3.17)

The inequalities (3.16) and (3.17) show the following.

Proposition 3.2. If the conditions (A), (B), (A’), (B’) are satisfied then function G given
by (3.15) belongs to the class F(Ω, h), where Ω = PC1 × [a, b] for any [a, b] ⊂ [t0, t0 + σ].

Consider the generalized ordinary differential equation

dx

dτ
= DG (x, t) . (3.18)
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We will work now with a specific initial value problem for the equation (3.18).
Let φ ∈ PC ([−r, 0],Rn) be given.
A function x (t) defined on the interval [t0 − r, t0 + σ] and taking values in PC1 is a

solution of the generalized ordinary differential equation (3.18) in the interval [t0, t0 + σ],
with initial condition x (t0) ∈ PC1 given for φ ∈ PC ([−r, 0],Rn) by

x(t0)(ϑ) =

{
φ(ϑ− t0) for ϑ ∈ [t0 − r, t0],

x(t0)(t0) for ϑ ∈ [t0, t0 + σ]

if for every v ∈ [t0, t0 + σ], we have

x (v) = x (t0) +

∫ v

t0

DG (x (τ) , t) =

= x (t0) +

∫ v

t0

DF (x (τ) , t) +

∫ v

t0

DJ(x(τ), t).

Lemma 3.3. Let x (t) be a solution of (3.18) in the interval [t0, t0 + σ], with G given by
(3.15) and with initial condition x (t0) ∈ PC1 given by x(t0)(ϑ) = φ(ϑ) for ϑ ∈ [t0− r, t0],
x(t0)(ϑ) = x(t0)(t0) for ϑ ∈ [t0, t0 + σ] . Then if v ∈ [t0, t0 + σ] we have

x (v) (ϑ) = x (v) (v) , ϑ ≥ v, ϑ ∈ [t0 − r, t0 + σ] (3.19)

and
x (v) (ϑ) = x (ϑ) (ϑ) , v ≥ ϑ, ϑ ∈ [t0 − r, t0 + σ] . (3.20)

Proof. Assume that ϑ ≥ v. Since x is a solution of (3.18), we have

x(v)(v) = x(t0)(v) +

∫ v

t0

DG(x(τ), t)(v)

and similarly

x(v)(ϑ) = x(t0)(ϑ) +

∫ v

t0

DG(x(τ), t)(ϑ).

Since x(t0)(ϑ) = x(t0)(v) by the properties of the initial condition, we have

x(v)(ϑ)− x(v)(v) =

∫ v

t0

DG(x(τ), t)(ϑ)−
∫ v

t0

DG(x(τ), t)(v).

Since the integral
∫ v

t0
DG(x(τ), t) exists, for every ε > 0 there is a gauge δ on [t0, t0 + σ]

such that if (τi, [si−1, si]) is a δ-fine division of [t0, v], then

∥∥∥∥∥
∑

i

[G(x(τi), si)−G(x(τi), si−1)]−
∫ v

t0

DG(x(τ), t)

∥∥∥∥∥ < ε.

Therefore we have
|x(v)(ϑ)− x(v)(v)| < 2ε+
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+

∣∣∣∣∣
∑

i

[G(x(τi), si)−G(x(τi), si−1)](ϑ)−
∑

i

[G(x(τi), si)−G(x(τi), si−1)](v)

∣∣∣∣∣ .

By the definition of G in (3.15), the form of F given in (3.3) and of J in (3.9), it is a
matter of routine to check that for every i we have

G(x(τi), si)(ϑ)−G(x(τi), si−1)(ϑ) = G(x(τi), si)(v)−G(x(τi), si−1)(v)

and this implies by the last inequality above that

|x(v)(ϑ)− x(v)(v)| < 2ε.

Since this holds for an arbitrary ε > 0 the relation (3.19) is satisfied.
For the second relation assume that ϑ ≤ v.
By the definition of a solution of (3.18), we have similarly as in the first part of the

proof

x(v)(ϑ) = x(t0)(ϑ) +

∫ v

t0

DG(x(τ), t)(ϑ)

and

x(ϑ)(ϑ) = x(t0)(ϑ) +

∫ ϑ

t0

DG(x(τ), t)(ϑ).

Hence

x(v)(ϑ)− x(ϑ)(ϑ) =

∫ v

ϑ

DG(x(τ), t)(ϑ).

If now (τi, [si−1, si]) is an arbitrary tagged division of [ϑ, v], it is again straightforward to
check by (3.3) and (3.9) that for every i we have

G(x(τi), si)(ϑ)−G(x(τi), si−1)(ϑ) = 0.

But this means that
∫ v

ϑ
DG(x(τ), t)(ϑ) = 0 and that x(v)(ϑ) = x(ϑ)(ϑ) holds. Hence

(3.20) is proved.

For a similar Lemma, see [6], Lemma 2.1.
Let us now study the relation between the impulsive retarded differential equation

(3.1) and the generalized ordinary differential equation (3.18) provided the conditions
(A), (B), (A’) and (B’) are fulfilled.

Theorem 3.4. Consider equation (3.1), where f : PC ([−r, 0],Rn) × [t0, t0 + σ] → Rn,
t 7→ f (yt, t) is Lebesgue integrable over [t0, t0+σ] and (A), (B), (A’), (B’) are fulfilled. Let
y (t) be a solution of the problem (3.1) in the interval [t0, t0 + σ]. Given t ∈ [t0 − r, t0 + σ],
let

x (t) (ϑ) =

{
y (ϑ) , ϑ ∈ [t0 − r, t]

y (t) , ϑ ∈ [t, t0 + σ] .
(3.21)

Then x (t) ∈ PC ([t0 − r, t0 + σ],Rn) is a solution of (3.18) in [t0 − r, t0 + σ].
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Proof. We will show that for every v ∈ [t0, t0 + σ], the integral
∫ v

t0
DG (x (τ) , t) exists and

x (v)− x (t0) =

∫ v

t0

DG (x (τ) , t) .

Let an arbitrary ε > 0 be given.
Since y is a solution of (3.1), the relations (3.2) concerning the equivalent ”integral”

form are satisfied and it is easy to see that the function y : [t0, t0 + σ] → Rn is the sum of
an absolutely continuous function and of a simple left continuous step function.

Therefore for every τ ∈ [t0, t0 + σ] there is a δ(τ) > 0 such that

|y(ρ)− y(τ)| < ε for every ρ ∈ [τ − δ(τ), τ ] (3.22)

and
|y(ρ)− y(τ+)| < ε for every ρ ∈ (τ, τ + δ(τ)]. (3.23)

We write y(τ+) = limρ→τ+ y(ρ). In this way a gauge δ on [t0, t0 + σ] is given.
Further, let the gauge δ be such that if τ ∈ [t0, t0 + σ], then

∣∣∣∣
∫ v

u

L(s)ds

∣∣∣∣ <
ε

(m + 1)(K1 + 1)
, for every [u, v] ⊂ (τ − δ(τ), τ + δ(τ)), (3.24)

where m is the number of impulse points and K1 is the constant from (A’). Such a choice
is possible because the function L : [t0, t0 + σ] → R from (B) is assumed to be Lebesgue
integrable.

Moreover, assume that the gauge δ satisfies

0 < δ(τ) < min

{
tk − tk−1

2
; k = 1, . . . , m

}
(3.25)

and
0 < δ(τ) < min {d(τ, tk), d(τ, tk−1); τ ∈ (tk−1, tk), k = 1, . . . ,m} , (3.26)

where d(τ, tk) denotes the distance of τ to tk and similarly for d(τ, tk−1).
The condition (3.25) assures that if a point-interval pair (T, [s1, s2]) is δ-fine, then the

interval [s1, s2] contains at most one of the points tk, k = 1, . . . , m, while (3.26) implies
T = tk whenever tk ∈ [s1, s2].

Assume now that (τi, [si−1, si]) is a δ-fine division of the interval [t0, v].
Using the definition (3.21) of x and (3.2) it can be easily shown that

[x (si)− x (si−1)] (ϑ) =

=





0, ϑ ∈ [t0 − r, si−1]∫ ϑ

si−1
f (ys, s) ds +

∑m
k=1 Ik(y(tk))[Htk(ϑ)−Htk(si−1)], ϑ ∈ [si−1, si]∫ si

si−1
f (ys, s) ds +

∑m
k=1 Ik(y(tk))[Htk(si)−Htk(si−1)], ϑ ∈ [si, t0 + σ] .

(3.27)
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Using the definition of G from (3.15), (3.3) and (3.9) we obtain

[G(x(τi), si)−G(x(τi), si−1)](ϑ) =

= [F (x(τi), si)− F (x(τi), si−1)](ϑ)+

+
∑m

k=1[Htk(si)−Htk(si−1)]Htk(ϑ)Ik(x(τi)(tk)) =

=





0, ϑ ∈ [t0 − r, si−1]∫ ϑ

si−1
f (x (τi)s , s) ds, ϑ ∈ [si−1, si]∫ si

si−1
f (x (τi)s , s) ds, ϑ ∈ [si, t0 + σ]





+

+
∑m

k=1[Htk(si)−Htk(si−1)]Htk(ϑ)Ik(x(τi)(tk)).

(3.28)

Using the properties (3.25) and (3.26) of the gauge δ and the corresponding properties
of the division (τi, [si−1, si]), there are two possibilities for a given point-interval pair
(τi, [si−1, si]):

(i) there is exactly one tl ∈ [si−1, si),

(ii) [si−1, si) does not contain any point of impulse, i.e. [si−1, si) ∩ {t1, . . . , tm} = ∅.
In case (i), we have

m∑

k=1

Ik(y(tk))[Htk(ϑ)−Htk(si−1)] = Il(y(tl))Htl(ϑ)

and, since τi = tl, we get by the definition of x

m∑

k=1

[Htk(si)−Htk(si−1)]Htk(ϑ)Ik(x(τi)(tk)) = Il(x(τi)(tl))Htl(ϑ) =

= Il(y(tl))Htl(ϑ).

By (3.27) and (3.28), we have

[x (si)− x (si−1)] (ϑ)− [G(x(τi), si)−G(x(τi), si−1)](ϑ) =

=





0, ϑ ∈ [t0 − r, si−1]∫ ϑ

si−1
f (ys, s) ds− ∫ ϑ

si−1
f (x (τi)s , s) ds, ϑ ∈ [si−1, si]∫ si

si−1
f (ys, s) ds− ∫ si

si−1
f (x (τi)s , s) ds, ϑ ∈ [si, t0 + σ]

=

=





0, ϑ ∈ [t0 − r, si−1]∫ ϑ

si−1
[f (ys, s)− f (x (τi)s , s)]ds, ϑ ∈ [si−1, si]∫ si

si−1
[f (ys, s)− f (x (τi)s , s)]ds, ϑ ∈ [si, t0 + σ] .

(3.29)

In case (ii), we have
m∑

k=1

Ik(y(tk))[Htk(ϑ)−Htk(si−1)] = 0
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and also
m∑

k=1

[Htk(si)−Htk(si−1)]Htk(ϑ)Ik(x(τi)(tk)) = 0.

By (3.27) and (3.28) we again obtain the relation (3.29).
Using (3.29), consider now

‖x (si)− x (si−1)− [G(x(τi), si)−G(x(τi), si−1)]‖ =

= sup
ϑ∈[t0−r,t0+σ]

| [x (si)− x (si−1)] (ϑ)− [G(x(τi), si)−G(x(τi), si−1)](ϑ)| =

= sup
ϑ∈[t0−r,t0+σ]

{
| ∫ ϑ

si−1
[f (ys, s)− f (x (τi)s , s)]ds|, ϑ ∈ [si−1, si]

| ∫ si

si−1
[f (ys, s)− f (x (τi)s , s)]ds|, ϑ ∈ [si, t0 + σ]

= sup
ϑ∈[si−1,si]

|
∫ ϑ

si−1

[f (ys, s)− f (x (τi)s , s)]ds|.

By the definition of x from (3.21), we have for the case (i)

∫ ϑ

si−1

[f (ys, s)− f (x (τi)s , s)]ds =

∫ ϑ

tl

[f (ys, s)− f (x (tl)s , s)]ds

for ϑ ∈ [tl, si], and ∫ ϑ

si−1

[f (ys, s)− f (x (τi)s , s)]ds = 0

for ϑ ∈ [si−1, tl]. By condition (B) we have

∣∣∣∣
∫ ϑ

tl

[f (ys, s)− f (x (tl)s , s)]ds

∣∣∣∣ ≤
∫ ϑ

tl

L(s)‖ys − x (tl)s ‖ds.

Using (3.22) and (B’) we have

‖ys − x (tl)s ‖ = sup
ρ∈[−r,0]

|y(s + ρ)− x(tl)(s + ρ)| =

= sup
ρ∈[tl,s]

|y(ρ)− y(tl)| = sup
ρ∈[tl,s]

|y(ρ)− y(tl+) + y(tl+)− y(tl)| =

= sup
ρ∈[tl,s]

|y(ρ)− y(tl+) + Ily(tl)| ≤ ε + K1.

Therefore by the property (3.24) of the gauge we get

‖x (si)− x (si−1)− [G(x(τi), si)−G(x(τi), si−1)]‖ ≤ (ε + K1)

∫ si

tl

L(s)ds ≤

≤ ε

∫ si

tl

L(s)ds + K1
ε

(m + 1)(K1 + 1)
< ε

∫ si

tl

L(s)ds +
ε

(m + 1)
.
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Similarly for the case (ii) we have

∫ ϑ

si−1

[f (ys, s)− f (x (τi)s , s)]ds =

∫ ϑ

τi

[f (ys, s)− f (x (τi)s , s)]ds

for ϑ ∈ [τi, si] and ∫ ϑ

si−1

[f (ys, s)− f (x (τi)s , s)]ds = 0

for ϑ ∈ [si−1, τi].
Condition (B) also implies

∣∣∣∣
∫ ϑ

τi

[f (ys, s)− f (x (τi)s , s)]ds

∣∣∣∣ ≤
∫ ϑ

τi

L(s)‖ys − x (τi)s ‖ds,

where
‖ys − x (τi)s ‖ = sup

ρ∈[τi,s]

|y(ρ)− y(τi)| ≤ ε

by the property (3.23) of the gauge δ.
Hence

‖x (si)− x (si−1)− [G(x(τi), si)−G(x(τi), si−1)]‖ ≤ ε

∫ si

τi

L(s)ds.

Using the results obtained above and the fact that the case (i) occurs in at most m
intervals, we get

∥∥∥∥∥x (v)− x (t0)−
∑

i

[G(x(τi), si)−G(x(τi), si−1)]

∥∥∥∥∥ =

=

∥∥∥∥∥
∑

i

{x (si)− x (si−1)− [G(x(τi), si)−G(x(τi), si−1)]}
∥∥∥∥∥ ≤

≤
∑

i

‖x (si)− x (si−1)− [G(x(τi), si)−G(x(τi), si−1)]‖ ≤

≤
∑

i;tl∈[si−1,si)

ε

∫ si

tl

L(s)ds +
ε

(m + 1)
+

∑
i

ε

∫ si

τi

L(s)ds <

< 2ε

∫ t0+σ

t0

L(s)ds + m
ε

(m + 1)
< 2ε

∫ t0+σ

t0

L(s)ds + ε

Hence for every v ∈ [t0, t0 + σ] the integral
∫ v

t0
DG (x (τ) , t) exists and

x (v)− x (t0) =

∫ v

t0

DG (x (τ) , t) .

This proves the result.
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Theorem 3.4 improves Theorem 2.1 presented in [1] with a different proof.

Theorem 3.5. Let x (t) be a solution of (3.18), with G given by (3.15), in the interval
[t0 − r, t0 + σ] satisfying the initial condition

x(t0)(ϑ) =

{
φ(ϑ− t0), t0 − r ≤ ϑ ≤ t0,

x(t0)(t0), t0 ≤ ϑ ≤ t0 + σ

For every ϑ ∈ [t0 − r, t0 + σ], let

y (ϑ) =

{
x (t0) (ϑ) , t0 − r ≤ ϑ ≤ t0

x (ϑ) (ϑ) , t0 ≤ ϑ ≤ t0 + σ.
(3.30)

Then y (ϑ) is a solution of the problem (3.1) in [t0 − r, t0 + σ] and y (ϑ) = x (t0 + σ) (ϑ),
ϑ ∈ [t0 − r, t0 + σ].

Proof. According to (3.2) it suffices to prove that for every η > 0 and any v ∈ [t0, t0 + σ],
we have ∣∣∣∣∣y (v)− y (t0)−

∫ v

t0

f (ys, s) ds−
m∑

k=1

Ik(y(tk))Htk(v)

∣∣∣∣∣ < η (3.31)

and
yt0 = φ.

The last equality is clear by (3.30).
Assume that a gauge δ : [t0, t0 +σ] → (0, +∞) satisfies for τ ∈ [t0, t0 +σ] the following:

0 < δ(τ) < min

{
tk − tk−1

2
; k = 1, . . . , m

}
(3.32)

and

0 < δ(τ) < min {d(τ, tk), d(τ, tk−1) for τ ∈ (tk−1, tk), k = 1, . . . , m} , (3.33)

where d(τ, tk) is the distance of τ to tk and similarly for d(τ, tk−1).
As in the proof of Theorem 3.4, the requirement (3.32) assures that if a point-interval

pair (T, [s1, s2]) is δ-fine, then the interval [s1, s2] contains at most one of the points
tk, k = 1, . . . , m, while (3.33) implies T = tk for tk ∈ [s1, s2].

If (τi, [si−1, si]) is an arbitrary δ-fine division of [t0, v], then by (3.10), when tl ∈
[si−1, si), we have

J(x(τi), si)(ϑ)− J(x(τi), si−1)(ϑ) =
m∑

k=1

[Htk(s2)−Htk(s1)]Htk(ϑ)Ik(x(τi)(tk)) =

= Htl(ϑ)Ik(x(tl)(tl)) = Htl(ϑ)Ik(y(tl))

for ϑ ∈ [t0 − r, t0 + σ], and if [si−1, si) does not contain any of the points t1, . . . , tm, then

J(x(τi), si)(ϑ)− J(x(τi), si−1)(ϑ) =
m∑

k=1

[Htk(s2)−Htk(s1)]Htk(ϑ)Ik(x(τi)(tk)) = 0.
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This implies that the integral
∫ v

t0
DJ(x(τ), t) exists and

(∫ v

t0

DJ(x(τ), t)

)
(v) =

m∑

k=1

Htk(v)Ik(y(tk)). (3.34)

By (3.30), (3.19) and the fact that x is a solution of (3.18) we get

y(v)− y(t0) = x(v)(v)− x(t0)(t0) = x(v)(v)− x(t0)(v) = (3.35)

=

(∫ v

t0

DG(x(τ), t)

)
(v) =

(∫ v

t0

DF (x(τ), t)

)
(v) +

(∫ v

t0

DJ(x(τ), t)

)
(v).

for v ∈ [t0, t0 + σ].
Using this and (3.34), we have

y (v)− y (t0)−
∫ v

t0

f (ys, s) ds−
m∑

k=1

Ik(y(tk))Htk(v) = (3.36)

=

(∫ v

t0

DF (x(τ), t)

)
(v) +

(∫ v

t0

DJ(x(τ), t)

)
(v)−

−
∫ v

t0

f (ys, s) ds−
m∑

k=1

Ik(y(tk))Htk(v) =

=

(∫ v

t0

DF (x(τ), t)

)
(v)−

∫ v

t0

f (ys, s) ds.

The existence of the integrals
∫ v

t0
DG(x(τ), t) and

∫ v

t0
DJ(x(τ), t) implies the existence of∫ v

t0
DF (x(τ), t) .
Let ε > 0 be given.
Assume the gauge δ(τ) > 0 satisfies (3.32), (3.33) and also

|h(ρ)− h(τ)| < ε for every ρ ∈ [τ − δ(τ), τ ], (3.37)

and
|h(ρ)− h(τ+)| < ε for every ρ ∈ (τ, τ + δ(τ)]. (3.38)

where h(t) = h1(t) + h2(t) is the nondecreasing, left continuous function described as in
(3.16) and (3.17).

Further, let the gauge δ be such that if τ ∈ [t0, t0 + σ], then

∣∣∣∣
∫ v

u

L(s)ds

∣∣∣∣ <
ε

(m + 1)(K1 + 1)
for every [u, v] ⊂ [τ − δ(τ), τ + δ(τ)], (3.39)

where m is the number of impulse points and K1 is the constant from (A’). Such a choice
is possible because the function L : [t0, t0 + σ] → R from (B) is assumed to be Lebesgue
integrable.
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Moreover, for the gauge δ we have (by the existence of the integral
∫ v

t0
DF (x(τ), t))

the inequality
∥∥∥∥∥
∫ v

t0

DF (x(τ), t)−
∑

i

[F (x(τi), si)− F (x(τi), si−1)]

∥∥∥∥∥ < ε (3.40)

for every δ-fine division (τi, [si−1, si]) of the interval [t0, v]. Hence
∣∣∣∣∣
∫ v

t0

DF (x(τ), t)(v)−
∑

i

[F (x(τi), si)− F (x(τi), si−1)] (v)

∣∣∣∣∣ < ε (3.41)

for every δ-fine division (τi, [si−1, si]) of the interval [t0, v].
By (3.36) and (3.41), we have

∣∣∣∣∣y (v)− y (t0)−
∫ v

t0

f (ys, s) ds−
m∑

k=1

Ik(y(tk))Htk(v)

∣∣∣∣∣ = (3.42)

=

∣∣∣∣
(∫ v

t0

DF (x(τ), t)

)
(v)−

∫ v

t0

f (ys, s) ds

∣∣∣∣ <

< ε +

∣∣∣∣∣
∑

i

[F (x(τi), si)− F (x(τi), si−1)]] (v)−
∫ v

t0

f (ys, s) ds

∣∣∣∣∣ =

= ε +

∣∣∣∣∣
∑

i

{
[F (x(τi), si)− F (x(τi), si−1)] (v)−

∫ si

si−1

f (ys, s) ds

}∣∣∣∣∣
The definition of F given in (3.3) yields

[F (x(τi), si)− F (x(τi), si−1)] (v) =

∫ si

si−1

f (x(τi)s, s) ds.

By (3.20), we have x(τi)(ϑ) = x(ϑ)(ϑ) = y(ϑ) provided ϑ ≤ τi. Therefore
∫ si

si−1

f (x(τi)s, s) ds−
∫ si

si−1

f (ys, s) ds =

∫ si

si−1

[f (x(τi)s, s)− f (ys, s)]ds =

=

∫ si

τi

[f (x(τi)s, s)− f (ys, s)]ds.

For ϑ ∈ [τi, si] we have again by (3.20) the equality y(ϑ) = x(ϑ)(ϑ) = x(si)(ϑ) and
therefore

∫ si

τi

[f (x(τi)s, s)− f (ys, s)]ds =

∫ si

τi

[f (x(τi)s, s)− f (x(si)s, s)]ds.

Using the relations above and the assumption (B), we obtain
∣∣∣∣[F (x(τi), si)− F (x(τi), si−1)] (v)−

∫ si

si−1

f (ys, s) ds

∣∣∣∣ = (3.43)
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=

∣∣∣∣
∫ si

τi

[f (x(τi)s, s)− f (x(si)s, s)]ds

∣∣∣∣ ≤

≤
∫ si

τi

L(s)‖x(τi)s − x(si)s‖ds.

Let us look now to ‖x(τi)s − x(si)s‖. By definition and by the fact that x(si)(τi) =
x(τi)(τi) (see (3.20)), we have for every i the following:

‖x(τi)s − x(si)s‖ = sup
ϑ∈[−r,0]

|x(si)(s + ϑ)− x(τi)(s + ϑ)| =

= sup
ρ∈[τi,si]

|x(si)(ρ)− x(τi)(ρ)| = sup
ρ∈(τi,si]

|x(si)(ρ)− x(τi)(ρ)| =

= sup
ρ∈(τi,si]

|x(si)(ρ)− x(τi+)(ρ) + x(τi+)(ρ)− x(τi)(ρ)| ≤

≤ sup
ρ∈(τi,si]

{|x(si)(ρ)− x(τi+)(ρ)|+ |x(τi+)(ρ)− x(τi)(ρ)|} ≤

≤ ‖x(si)− x(τi+)‖+ ‖G(x(τi), τi+)−G(x(τi), τi)‖ ≤ h(si)− h(τi+) + K1 < ε + K1

where the last inequalities come from Lemma 2.12 and from the definition of G in (3.15).
Hence by (3.43) we get for every i the inequality

∣∣∣∣[F (x(τi), si)− F (x(τi), si−1)] (v)−
∫ si

si−1

f (ys, s) ds

∣∣∣∣ ≤ (3.44)

≤
∫ si

τi

L(s)‖x(τi)s − x(si)s‖ds < (ε + K1)

∫ si

τi

L(s)ds.

Now by (3.42) and (3.44) we obtain
∣∣∣∣∣y (v)− y (t0)−

∫ v

t0

f (ys, s) ds−
m∑

k=1

Ik(y(tk))Htk(v)

∣∣∣∣∣ < (3.45)

< ε +
∑

i

∣∣∣∣[F (x(τi), si)− F (x(τi), si−1)] (v)−
∫ si

si−1

f (ys, s) ds

∣∣∣∣ <

< ε + (ε + K1)
∑

i

∫ si

τi

L(s)ds ≤

≤ ε + ε

∫ v

t0

L(s)ds + K1

∑

i;[si−1,si)∩{t1,...,tm}6=∅

∫ si

τi

L(s)ds ≤

≤ ε(1 +

∫ v

t0

L(s)ds) + m ·K1
ε

(m + 1)(K1 + 1)
≤ ε(1 +

∫ v

t0

L(s)ds) + ε

by the property (3.39) of the gauge. Taking ε > 0 such that

ε(2 +

∫ v

t0

L(s)ds) < η

we obtain (3.31) and the theorem is proved.
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4 Continuous dependence

Consider the following sequence of initial value problems for impulsive RFDEs :




ẏ (t) = fp (yt, t) , t 6= tk

∆y (tk) = Ip
k (y (tk)) , k = 1, . . . , m

yt0 = φp,

(4.1)

where p = 0, 1, 2, . . . .
As in the introduction to Section 3, for every p = 0, 1, . . . the system (4.1) is equivalent

to




y (t) = y(t0) +

∫ t

t0

fp (ys, s) ds +
m∑

k=1

Ip
k(y(tk))Htk(t), t ∈ [t0, t0 + σ],

yt0 = φp.

(4.2)

Let us assume that for p = 0, 1, . . . we have φp ∈ PC([−r, 0],Rn) and the entries fp,
IP
k satisfy conditions (A), (B), (A’) and (B’) from Section 3 with the same M, L,K1, K2

for all p = 0, 1, . . . .
Defining for p = 0, 1, . . . and y ∈ PC1 the functions

Fp (y, t) (ϑ) =





0, t0 − r ≤ ϑ ≤ t0 or t0 − r ≤ t ≤ t0∫ ϑ

t0
fp (ys, s) ds, t0 ≤ ϑ ≤ t ≤ t0 + σ;∫ t

t0
fp (ys, s) ds, t0 ≤ t ≤ ϑ ≤ t0 + σ.

(4.3)

and

Jp(y, t)(ϑ) =
m∑

k=1

Htk(t)Htk(ϑ)Ip
k(y(tk)) (4.4)

for ϑ ∈ [t0− r, t0 + σ] and t ∈ [t0, t0 + σ], we obtain by Proposition 3.2 that the functions

Gp(y, t) = Fp(y, t) + Jp(y, t) (4.5)

belong to the same class F(Ω, h) with

h(t) =

∫ t

t0

[M(s) + L(s)]ds + max(K1, K2)
m∑

k=1

Htk(t), t ∈ [t0, t0 + σ],

where Ω = PC1 × [t0, t0 + σ].
According to the results given in Theorems 3.4 and 3.5 for every p = 0, 1, . . . there is

a one-to-one correspondence between solutions of the problem (4.1) and the solutions of
the initial value problem for the generalized differential equation

dx

dτ
= DGp (x, t) (4.6)

in the sense presented in Section 3 after equation (3.18).
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Theorem 4.1. Assume that for p = 0, 1, . . . we have φp ∈ PC([−r, 0],Rn) and fp, IP
k

satisfy conditions (A), (B), (A’) and (B’) from Section 3 with the same M, L, K1, K2 for
all p = 0, 1, . . . . Let the relations

lim
p→∞

sup
ϑ∈[t0,t0+σ]

∣∣∣∣
∫ ϑ

t0

[fp (xs, s)− f0 (xs, s)]ds

∣∣∣∣ = 0 (4.7)

for every x ∈ PC1 and
lim
p→∞

Ip
k(x) = I0

k(x) (4.8)

for every x ∈ Rn, k = 1, . . . , m be satisfied. Assume that yp : [t0, t0 + σ] → Rn for
p = 1, 2, . . . is a solution of problem (4.1) on [t0, t0 + σ] such that

lim
p→∞

yp(s) = y(s) uniformly on [t0, t0 + σ]. (4.9)

Then y : [t0, t0 + σ] → Rn is a solution of the problem





ẏ (t) = f0 (yt, t) , t 6= tk

∆y (tk) = I0
k (y (tk)) , k = 1, . . . , m

yt0 = φ0.

(4.10)

Proof. Given t ∈ [t0 − r, t0 + σ], let

xp (t) (τ) =

{
yp (ϑ) , ϑ ∈ [t0 − r, t]

yp (t) , ϑ ∈ [t, t0 + σ]
(4.11)

for p = 1, 2, . . . and

x (t) (τ) =

{
y (ϑ) , ϑ ∈ [t0 − r, t]

y (t) , ϑ ∈ [t, t0 + σ] .
(4.12)

Then xp (t) ∈ PC ([t0 − r, t0 + σ],Rn) is a solution of (4.6) in [t0, t0 + σ] for p = 1, 2, . . .
by Theorem 3.4.

By (4.9), it is easy to check that for s ∈ [t0, t0 + σ] we have

lim
p→∞

xp (s) = x (s) (4.13)

in PC ([t0 − r, t0 + σ],Rn) and x(s) ∈ PC1 for s ∈ [t0, t0 + σ].
By (4.7) and (4.8), it can be shown that

lim
p→∞

Gp(x, t) = G(x, t) (4.14)

for (x, t) ∈ PC1 × [t0 − r, t0 + σ].
Theorem 2.17 shows now that x : [t0, t0 + σ] → PC1 is a solution of

dx

dτ
= DG0 (x, t) (4.15)

and Theorem 3.5 yields that the function y : [t0, t0 + σ] → Rn is a solution of problem
(4.10).



25

5 Towards a global theory

Assume that [a,∞) ⊂ R is given and consider functions f(φ, t) mapping PC([−r, 0],Rn)×
[a,∞) to Rn.

Assume further that a sequence (tl) is given with a ≤ t1 < t2 < . . . < tl < . . . and
tl →∞ as l →∞.

We will consider functions y : [a − r,∞) → Rn which are continuous from the left
in their domain of definition, admit the right limits y(t+) at every point and are such
that y(t+) 6= y(t) only for t = tl, l = 1, 2, . . . and y|[a−r,a] ∈ PC ([a− r, a],Rn). Denote
this family of functions by PC([a − r,∞)) = PC([a − r,∞),Rn). It is clear that for a
function y having these properties, we have yt ∈ PC ([−r, 0],Rn) for t ∈ [a,∞). Therefore
f(yt, t) : [a,∞) → Rn is well defined for t ∈ [a,∞) and y : [a − r,∞) → Rn belongs to
the class PC([a− r,∞)) of functions presented above.

In accordance with the properties required in Section 3, we will assume the following:
if y ∈ PC([a− r,∞)), then the function f(yt, t) : [a,∞) → Rn is Lebesgue integrable and
moreover

(A*) there is a locally Lebesgue integrable function M (t) : [a,∞) → R such that for all
x ∈ PC1 and all u1, u2 ∈ [a, +∞),

∣∣∣∣
∫ u2

u1

f (xs, s) ds

∣∣∣∣ ≤
∫ u2

u1

M (s) ds;

(B*) there is a locally Lebesgue integrable function L : [a,∞) → R such that for all
x, y ∈ PC1 and all u1, u2 ∈ [a, +∞),

∣∣∣∣
∫ u2

u1

[f (xs, s)− f (ys, s)] ds

∣∣∣∣ ≤
∫ u2

u1

L (s) ‖xs − ys‖ ds.

Concerning the impulse functions Il : Rn → Rn, l = 1, 2, . . . we assume the following
conditions:

(A’*) there is a constant K1 > 0 such that for all l = 1, 2, . . . and all x ∈ Rn,

|Il(x)| ≤ K1;

(B’*) there is a constant K2 > 0 such that for all l = 1, 2, . . . and all x, y ∈ Rn,

|Il(x)− Il(y)| ≤ K2|x− y|.

Let PC1 ⊂ PC([a − r,∞)) be an open set (in the topology of locally uniform con-
vergence in PC([a − r,∞))) with the following property: if y is an element of PC1 and
t̄ ∈ [a,∞), then ȳ given by

ȳ (t) =

{
y (t) , a− r ≤ t ≤ t̄

y (t̄+) , t̄ < t ≤ ∞
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is also an element of PC1.
Similarly as in Section 3, define for y ∈ PC([a− r,∞))

F (y, t) (ϑ) =





0, a− r ≤ ϑ ≤ a or a− r ≤ t ≤ a,∫ ϑ

a
f (ys, s) ds, a ≤ ϑ ≤ t < ∞,∫ t

a
f (ys, s) ds, a ≤ t ≤ ϑ < ∞

(5.1)

and

J(y, t)(ϑ) =
∞∑

l=1

Htl(t)Htl(ϑ)Il(y(tl)) (5.2)

for ϑ ∈ [a − r,∞), t ∈ [a − r,∞) and an arbitrary y ∈ PC([a − r,∞)). (Htk is the left
continuous Heaviside function concentrated at tk.)

Taking F (y, t) from (5.1) and J(y, t) from (5.2), let

G(y, t)(ϑ) = F (y, t)(ϑ) + J(y, t)(ϑ) (5.3)

for y ∈ PC([a − r,∞)), t ∈ [a − r,∞) and ϑ ∈ [a − r,∞). The values of the function
G(y, t) belongs clearly to PC([a− r,∞)), that is

G : PC1 × [a− r,∞) → PC([a− r,∞)).

Analogously as in Section 3, it can be checked out that for s1, s2 ∈ [a,∞) and x, y ∈
PC1 we have

‖G(x, s2)−G(x, s1)‖loc ≤ h(s2)− h(s1) (5.4)

and

‖G(x, s2)−G(x, s1)−G(y, s2) + G(y, s1)‖loc ≤ ‖x− y‖(h(s2)− h(s1)), (5.5)

where

h(t) =

∫ t

a

[M(s) + L(s)]ds + max(K1, K2)
∞∑

k=1

Htk(t), t ∈ [a,∞).

is a nondecreasing real function which is continuous from the left at every point, continuous
for all t 6= tl and h(tl+) exists for every l and ‖ · ‖loc is any local norm of elements in
PC([a− r,∞)), i.e. if z ∈ PC([a− r,∞)) then ‖z‖loc = supϑ∈[α,β] |z(ϑ)| for an arbitrary
compact interval [α, β] ⊂ [a− r,∞).

According to (5.4) and (5.5), it can be easily seen that the function G defined by (5.3)
belongs to the class F(Ω, h), where Ω = PC1× [c, d] and [c, d] is any compact subinterval
of [a,∞).

Consider the generalized ordinary differential equation

dx

dτ
= DG (x, t) . (5.6)

Assume that t0 ∈ [a,∞) and φ ∈ PC ([−r, 0],Rn) are given. Define a function x̃ ∈
PC([a− r,∞)) by

x̃(ϑ) =





φ(ϑ− t0) for ϑ ∈ [t0 − r, t0],

x̃(t0 − r) = φ(−r) for ϑ ∈ [a, t0 − r],

x̃(t0) = φ(0) for ϑ ∈ [t0,∞)

(5.7)
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Looking at the initial value problem for (5.6), with x(t0) = x̃, the local existence and
uniqueness Theorem 2.15, together with the equivalence result given in Theorem 3.5, can
be used to obtain the following.

Theorem 5.1. If the conditions (A*), (B*), (A’*) and (B’*) are fulfilled and if x̃ ∈ PC1

from (5.7) is such that
x̃(ϑ) + Htl(ϑ)Il(x̃(t0)) ∈ PC1 (5.8)

when t0 = tl for some l = 1, 2, . . . , then there is a ∆ > 0 such that on the interval
[t0, t0 + ∆] there exists a unique solution y : [t0, t0 + ∆] → Rn of the problem (3.1) for
which yt0 = φ.

By Theorem 2.15 for x̃ ∈ PC1 the relation

x̃+ = x̃ + G(x̃, t0+)−G(x̃, t0) ∈ PC1,

is needed. This condition assures that the solution of the initial value problem for the
generalized ordinary differential equation (5.6) does not jump off the set PC1 immediately
at the moment t0. Note that in our situation of the function G given by (5.3), we
have G(x̃, t0+) − G(x̃, t0) = 0 if t0 6= tl, l = 1, 2, . . . and [G(x̃, t0+) − G(x̃, t0)](ϑ) =
Htl(ϑ)Il(x̃(t0)) if t0 = tl for some l = 1, 2, . . . . This gives then the condition (5.8) from
Theorem 5.1.

By Theorem 3.4 we have also the opposite, i.e. we have a one to one correspondence
between the solutions of the problem (3.1) and the solutions of the initial value problem
for (5.6) with x(t0) = x̃.

Having the result of Theorem 5.1, the concept of a maximal solution to the problem
(3.1) can be introduced by taking σ = sup ∆ > 0, where ∆ > 0 is such that there is a
unique solution y : [t0, t0 + ∆] → Rn of the problem (3.1) for which yt0 = φ. Hence we
have a function y : [t0, t0 +σ) → Rn which is the maximal solution to the problem (3.1) on
every closed interval [t0, t0 + ∆] with 0 < ∆ < σ, but there is no solution to the problem
(3.1) on closed intervals [t0, t0 + ∆] with σ ≤ ∆.
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