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Abstract. Integration by parts results concerning Stieltjes integrals for functions with
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Bilinear triples

Assume that X , Y and Z are Banach spaces and that there is a bilinear mapping

B : X×Y → Z. We use the short notation xy = B(x, y) for the value of the bilinear

form B for x ∈ X , y ∈ Y and assume that

‖B(x, y)‖Z = ‖xy‖Z 6 ‖x‖X‖y‖Y .

By ‖ · ‖X the norm in the Banach space X is denoted (and similarly for the other

ones).

Triples of Banach spaces X , Y , Z with these properties are called bilinear triples

and are denoted by B = (X, Y, Z) or shortly B.

This work was supported by the grant 201/97/0218 of the Grant Agency of the Czech
Republic
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Variation of functions with values in a Banach space

Assume that [a, b] ⊂
�
is a bounded interval and that X is a Banach space. Given

x : [a, b]→ X , the function x is of bounded variation on [a, b] if

varba(x) = sup

{ k
∑

j=1

‖x(αj)− x(αj−1)‖X

}

< ∞,

where the supremum is taken over all finite partitions

D : a = α0 < α1 < . . . < αk−1 < αk = b

of the interval [a, b]. The set of all functions x : [a, b] → X with varba(x) < ∞ will

be denoted by BV ([a, b], X) or shortly BV ([a, b]) if it is clear which Banach space

X we have in mind.

Assume now that B = (X, Y, Z) is a bilinear triple of Banach spaces.

For x : [a, b]→ X and a partition D of the interval [a, b] define

V b
a (x, D) = sup

{∥

∥

∥

∥

k
∑

j=1

[x(αj)− x(αj−1)]yj

∥

∥

∥

∥

Z

}

,

where the supremum is taken over all possible choices of yj ∈ Y , j = 1, . . . , k with

‖yj‖ 6 1, and set

(B)varba(x) = supV b
a (x, D),

where the supremum is taken over all finite partitions

D : a = α0 < α1 < . . . < αk−1 < αk = b

of the interval [a, b].

A function x : [a, b] → X with (B)varba(x) < ∞ is called a function with bounded

B-variation on [a, b] (sometimes also a function of bounded semi-variation [2], [3]).

The set of all functions x : [a, b] → X with (B)varba(x) < ∞ will be denoted

by (B)BV ([a, b], X) or shortly by (B)BV ([a, b]) if it is clear which bilinear triple

(X, Y, Z) we have in mind.

1. Proposition. If B = (X, Y, Z) is a bilinear triple then

(1) BV ([a, b], X) ⊂ (B)BV ([a, b], X)
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and if x ∈ BV ([a, b], X), then

(B)varba(x) 6 varba(x).

�����
. For a given function x : [a, b] → X with x ∈ BV ([a, b], X), a partition

D of [a, b] and arbitrary yj ∈ Y , j = 1, . . . , k with ‖yj‖ 6 1 we have

∥

∥

∥

∥

k
∑

j=1

(x(αj)− x(αj−1))yj

∥

∥

∥

∥

Z

6

k
∑

j=1

‖x(αj)− x(αj−1)‖X‖yj‖Y

6

k
∑

j=1

‖x(αj)− x(αj−1)‖X 6 varba(x).

Passing to the suprema corresponding to the definition of (B)varba(x) in this inequal-

ity we immediately obtain the inclusion as well as the inequality claimed in the

statement. �

������
. It is easy to show that if x : [a, b] →

�
and B = (

�
,
�
,
�
) with the

multiplication of reals as the corresponding bilinear form, then x ∈ (B)BV ([a, b]) if

and only if x ∈ BV ([a, b]).

Indeed, in this case we have

V b
a (x, D) = sup

{∣

∣

∣

∣

k
∑

j=1

[x(αj)− x(αj−1)]yj

∣

∣

∣

∣

}

=

k
∑

j=1

|x(αj)− x(αj−1)|

because we can take yj = 1 if x(αj)−x(αj−1) > 0 and yj = −1 if x(αj)−x(αj−1) < 0.

The same is true also if x : [a, b]→ X and B = (X,
�
, X), where the Banach space

X is finite-dimensional.

This shows that the concept of B-variation of a function x : [a, b]→ X is relevant

only for infinite-dimensional Banach spaces X .

Regulated functions and step functions with values in a Banach space

Assume that [a, b] ⊂
�
is a bounded interval and that X is a Banach space. Given

x : [a, b]→ X , the function x is called regulated on [a, b] if it has one-sided limits at

every point of [a, b], i.e. if for every s ∈ [a, b) there is a value x(s+) ∈ X such that

lim
t→s+

‖x(t)− x(s+)‖X = 0
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and if for every s ∈ (a, b] there is a value x(s−) ∈ X such that

lim
t→s−

‖x(t)− x(s−)‖X = 0.

The set of all regulated functions x : [a, b]→ X will be denoted by G([a, b], X) or

shortly G([a, b]) if it is clear which Banach space X we have in mind.

If C([a, b], X) is the set of continuous functions x : [a, b]→ X then evidently

(2) C([a, b], X) ⊂ G([a, b], X).

Assume now that B = (X, Y, Z) is a bilinear triple of Banach spaces.

A function x : [a, b]→ X is called B-regulated on [a, b] if for every y ∈ Y , ‖y‖Y 6 1

the function xy : [a, b] → Z given by t 7→ x(t)y ∈ Z for t ∈ [a, b] is regulated,

i.e.xy ∈ G([a, b], Z) for every y ∈ Y, ‖y‖Y 6 1.

Similarly y : [a, b]→ Y is called B-regulated on [a, b] if for every x ∈ X, ‖x‖X 6 1

the function xy : [a, b] → Z given by t 7→ xy(t) ∈ Z for t ∈ [a, b] is regulated,

i.e.xy ∈ G([a, b], Z) for every x ∈ X, ‖x‖X 6 1.

For a given bilinear triple B = (X, Y, Z) the set of all B-regulated functions x :

[a, b] → X will be denoted by (B)G([a, b], X) or shortly by (B)G([a, b]) if it is clear

which bilinear triple (X, Y, Z) we have in mind.

A function x : [a, b]→ X is called a (finite) step function on [a, b] if there exists a

finite partition

D : a = α0 < α1 < . . . < αk−1 < αk = b

of the interval [a, b] such that x has a constant value on (αj−1, αj) for every j =

1, . . . , k.

The following results are well known for regulated functions.

2. Proposition. x ∈ G([a, b], X) if and only if x is the uniform limit of step

functions. (See e.g. [2, Theorem 3.1, p. 16].)

If x ∈ G([a, b], X) then:

a) x is bounded, i.e. there exists K > 0 such that ‖x(s)‖X 6 K for every s ∈ [a, b],

b) for every ε > 0 the sets

{s ∈ [a, b); ‖x(s+)− x(s)‖ > ε}, {s ∈ (a, b]; ‖x(s)− x(s−)‖ > ε}

are finite,

c) the set

S = {s ∈ [a, b];x(s) 6= x(s+) or x(s) 6= x(s−)}

is at most countable (see e.g. [2, Corollary 3.2, p. 17]),
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d) G([a, b], X) equipped with the norm ‖x‖G([a,b],X) = sup
s∈[a,b]

‖x(s)‖X for x ∈

G([a, b], X) is a Banach space.

3. Proposition. If B = (X, Y, Z) is a bilinear triple and x ∈ G([a, b], X) then

x ∈ (B)G([a, b], X), i.e. G([a, b], X) ⊂ (B)G([a, b], X).

�����
. For any y ∈ Y with ‖y‖Y 6 1 and s, t ∈ [a, b] we have

‖x(t)y − x(s)y‖Z 6 ‖x(t)− x(s)‖X‖y‖Y 6 ‖x(t)− x(s)‖X

and this implies the statement (e.g. by the Bolzano-Cauchy condition for the existence

of onesided limits of the function x). �

In addition to this we also have

4. Proposition. If x ∈ BV ([a, b], X) then x ∈ G([a, b], X), i.e.

(3) BV ([a, b], X) ⊂ G([a, b], X) ⊂ (B)G([a, b], X).

�����
. For s, t ∈ [a, b], s 6 t we have

‖x(t)− x(s)‖X 6 var[s,t](x) = var[a,t](x)− var[a,s](x)

and this implies (e.g. by the Bolzano-Cauchy condition for the existence of onesided

limits of the nondecreasing bounded real function var[a,t](x)) that the onesided limits

of the function x : [a, b]→ X exist at any point of [a, b], i.e. that A ∈ G([a, b], X). �

������
. If the Banach space X is finite dimensional, then it is easy to check

that a function x : [a, b]→ X is B-regulated if and only if it is regulated.

Stieltjes integration of vector valued functions

A finite system of points

{α0, τ1, α1, τ2, . . . , αk−1, τk, αk}

such that

a = α0 < α1 < . . . < αk−1 < αk = b

and

τj ∈ [αj−1, αj ] for j = 1, . . . , k

is called a P -partition of the interval [a, b].
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A function δ : [a, b]→ (0,∞) is called a gauge on [a, b].

For a given gauge δ on [a, b] a P -partition {α0, τ1, α1, τ2, . . . , αk−1, τk, αk} of [a, b]

is called δ-fine if

[αj−1, αj ] ⊂ (τj − δ(τj), τj + δ(τj)) for j = 1, . . . , k.

5. Cousin’s Lemma. Given an arbitrary gauge δ on [a, b] there is a δ-fine

P -partition of [a, b].

(See e.g. [4] and many other books on Henstock-Kurzweil integration.)

6. Definition. Assume that B = (X, Y, Z) is a bilinear triple and that functions

x : [a, b]→ X and y : [a, b]→ Y are given.

We say that the Stieltjes integral
∫ b

a d[x(s)]y(s) exists if there is an element I ∈ Z

such that for every ε > 0 there is a gauge δ on [a, b] such that for

S(dx, y, D) =

k
∑

j=1

[

x(αj)− x(αj−1)
]

y(τj)

we have
∥

∥S(dx, y, D)− I
∥

∥

Z
< ε

provided D is a δ-fine P -partition of [a, b]. We denote I =
∫ b

a
d[x(s)]y(s). For the

case a = b it is convenient to set
∫ b

a d[x(s)]y(s) = 0 and if b < a, then
∫ b

a d[x(s)]y(s) =

−
∫ a

b
d[x(s)]y(s).

Similarly we can define the Stieltjes integral
∫ b

a x(s)d[y(s)] using Stieltjes integral

sums of the form

S(x, dy, D) =
k

∑

j=1

x(τj)
[

y(αj)− y(αj−1)
]

.

������
. Note that Cousin’s Lemma 5 is essential for this definition. The Stielt-

jes integral introduced in this way is determined uniquely and has all the necessary

elementary properties, see [5].

7. Proposition. Assume that B = (X, Y, Z) is a bilinear triple, that

x ∈ (B)G([a, b], X) ∩ (B)BV ([a, b], X)

and y ∈ G([a, b], Y ).

Then the integral
∫ b

a
d[x(s)]y(s) exists.
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Symmetrically, if x ∈ G([a, b], X) and

y ∈ (B)G([a, b], Y ) ∩ (B)BV ([a, b], Y )

then the integral
∫ b

a x(s)d[y(s)] exists.

See [5, Proposition 15].

Taking into account Proposition 3 we obtain the following

8. Corollary. If B = (X, Y, Z) is a bilinear triple such that

x ∈ G([a, b], X) ∩ (B)BV ([a, b], X) and y ∈ G([a, b], Y ) ∩ (B)BV ([a, b], Y )

then both integrals
∫ b

a

d[x(s)]y(s) and

∫ b

a

d[x(s)]y(s)

exist.

Integration by parts

Assume that B = (X, Y, Z) is a bilinear triple and that x : [a, b]→ X , y : [a, b]→

Y . For a P -partition D = {α0, τ1, α1, τ2, . . . , αk−1, τk, αk} of the interval [a, b] define

∆(x, y, D) =

k
∑

j=1

[(x(αj)−x(τj))(y(αj)−y(τj))− (x(αj−1)−x(τj))(y(αj−1)−y(τj))].

9. Definition. We say that ∆b
a(x, y) exists if there is an element J ∈ Z such

that for every ε > 0 there is a gauge δ on [a, b] such that

‖∆(x, y, D)− J‖Z < ε

if D is a δ-fine P -partition of [a, b]. We then denote J = ∆b
a(x, y).

������
. The definition of the quantity ∆b

a(x, y) is an integral-like definition

when compared with the Definition 6.

The basic result is the following.

10. Theorem (Integration by parts). Assume that B = (X, Y, Z) is a bilinear

triple and that x : [a, b]→ X , y : [a, b]→ Y .
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If two of the quantities

∫ b

a

d[x(s)]y(s),

∫ b

a

x(s)d[y(s)], ∆b
a(x, y)

exist then the third exists as well and the equality

(4)

∫ b

a

d[x(s)]y(s) +

∫ b

a

x(s)d[y(s)] = x(b)y(b)− x(a)y(a) −∆b
a(x, y)

holds.
�����

. First of all let us show that for every P -partition

D = {α0, τ1, α1, τ2, . . . , αk−1, τk, αk}

of the interval [a, b] we have

(5) S(dx, y, D) + S(x, dy, D) + ∆(x, y, D) = x(b)y(b)− x(a)y(a).

Indeed, by a simple algebraic manipulation we have

k
∑

j=1

[x(αj)− x(αj−1)]y(τj) +
k

∑

j=1

x(τj)[y(αj)− y(αj−1)]

+

k
∑

j=1

[(x(αj)− x(τj))(y(αj)− y(τj))− (x(αj−1)− x(τj))(y(αj−1)− y(τj))]

=

k
∑

j=1

[x(αj)y(τj)− x(αj−1)y(τj) + x(τj)y(αj)− x(τj)y(αj−1) + x(αj)y(αj)

− x(τj)y(αj)− x(αj)y(τj) + x(τj)y(τj)− x(αj−1)y(αj−1) + x(τj)y(αj−1)

+ x(αj−1)y(τj)− x(τj)y(τj)]

=

k
∑

j=1

[x(αj)y(αj)− x(αj−1)y(αj−1)]

= x(αk)y(αk)− x(α0)y(α0) = x(b)y(b)− x(a)y(a)

because αk = b and α0 = a for the P -partition D.

Suppose e.g. that the integrals
∫ b

a
d[x(s)]y(s),

∫ b

a
x(s)d[y(s)] exist. Then by their

definition for every ε > 0 there is a gauge δ on [a, b] such that for any δ-fine P -

partition D of [a, b] we have

(6)

∥

∥

∥

∥

∫ b

a

d[x(s)]y(s) − S(dx, y, D)

∥

∥

∥

∥

Z

<
ε

2
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and

(7)

∥

∥

∥

∥

∫ b

a

x(s)d[y(s)]− S(x, dy, D)

∥

∥

∥

∥

Z

<
ε

2
.

Then for any δ-fine P -partition D of [a, b] we have by (5), (6) and (7)

∥

∥

∥

∥

∆b
a(x, y)− x(b)y(b) + x(a)y(a) +

∫ b

a

d[x(s)]y(s) +

∫ b

a

x(s)d[y(s)]

∥

∥

∥

∥

Z

6 ‖∆b
a(x, y) + S(dx, y, D) + S(x, dy, D)− x(b)y(b) + x(a)y(a)‖Z

+

∥

∥

∥

∥

∫ b

a

d[x(s)]y(s) − S(dx, y, D)

∥

∥

∥

∥

Z

+

∥

∥

∥

∥

∫ b

a

x(s)d[y(s)] − S(x, dy, D)

∥

∥

∥

∥

Z

<
ε

2
+

ε

2
= ε

and this inequality shows that by definition ∆b
a(x, y) exists and its value is

∆b
a(x, y) = x(b)y(b)− x(a)y(a) −

∫ b

a

d[x(s)]y(s) −

∫ b

a

x(s)d[y(s)],

i.e. that (4) is satisfied.

The remaining cases when ∆b
a(x, y),

∫ b

a
d[x(s)]y(s) or ∆b

a(x, y),
∫ b

a
x(s)d[y(s)] exist

can be proved similarly. �

������
. The proof of Theorem is based on purely algebraic manipulation of

integral sums for the integral. This approach to integration by parts goes back to

the paper [3] of J. Kurzweil.

If x ∈ G([a, b], X) then define

∆+x(τ) = x(τ+) − x(τ) = lim
σ→τ+

x(σ) − x(τ)

and

∆−x(τ) = x(τ) − x(τ−) = x(τ) − lim
σ→τ−

x(σ).

Now our aim is to give some corollaries to Theorem 10 which will present the

Stieltjes form of integration by parts formula in a more conventional form.

If B = (X, Y, Z) is a bilinear triple such that x ∈ G([a, b], X) ∩ (B)BV ([a, b], X)

and y ∈ G([a, b], Y ) ∩ (B)BV ([a, b], Y ) then both integrals

∫ b

a

d[x(s)]y(s) and

∫ b

a

d[x(s)]y(s)

exist as was stated in Corollary 8.
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First of all let us prove some auxiliary statements.

11. Lemma. If B = (X, Y, Z) is a bilinear triple,

x ∈ G([a, b], X) ∩ (B)BV ([a, b], X) and y ∈ G([a, b], Y )

or

x ∈ G([a, b], X) and y ∈ G([a, b], Y ) ∩ (B)BV ([a, b], Y )

then the series

∑

τ∈[a,b)

∆+x(τ)∆+y(τ),
∑

τ∈(a,b]

∆−x(τ)∆−y(τ)

converge in Z.
�����

. Let us consider the first possibility.

Since x ∈ G([a, b], X) the set S of τ ∈ [a, b) for which ∆+x(τ) 6= 0 is at most

countable by c) in Proposition 2, i.e.S = {σk ∈ [a, b); k ∈ �} and therefore we can
write

∑

τ∈[a,b)

∆+x(τ)∆+y(τ) =

∞
∑

k=1

∆+x(σk)∆
+y(σk).

Denote
m

∑

k=1

∆+x(σk)∆
+y(σk) = Sm ∈ Z

for m ∈ � and assume that ε > 0 is given.

Since the sets

{s ∈ [a, b); ‖∆+x(s)‖ = ‖x(s+)− x(s)‖ > ε},

{s ∈ [a, b); ‖∆+y(s)‖ = ‖y(s+)− y(s)‖ > ε}

are finite by b) from Proposition 2, there exists Mε ∈ � such that for k ∈ � , k > Mε

we have ‖∆+x(σk)‖ < ε and ‖∆+y(σk)‖ < ε

Assume that m > n > Mε, m, n ∈ � . Then

Sm − Sn =

m
∑

k=n+1

∆+x(σk)∆
+y(σk).

Since the limits x(σk+) ∈ X exist for every k = n + 1, . . . , m, there exist values

ak ∈ [a, b), k = n+ 1, . . . , m such that

[σk, σk + ak] ∩ {σn+1, . . . , σm} = {σk}
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and

‖x(σk + ak)− x(σk+)‖ <
ε

m − n
.

Using this we get

‖Sm − Sn‖Z =

∥

∥

∥

∥

m
∑

k=n+1

∆+x(σk)∆
+y(σk)

∥

∥

∥

∥

Z

6

∥

∥

∥

∥

m
∑

k=n+1

[x(σk+)− x(σk + ak)]∆
+y(σk)

∥

∥

∥

∥

Z

+

∥

∥

∥

∥

m
∑

k=n+1

[x(σk + ak)− x(σk)]∆
+y(σk)

∥

∥

∥

∥

Z

6 ε

∥

∥

∥

∥

m
∑

k=n+1

[x(σk + ak)− x(σk)]
∆+y(σk)

ε

∥

∥

∥

∥

Z

+

m
∑

k=n+1

‖x(σk+)− x(σk + ak)‖X‖∆+y(σk)‖Y

< ε(B)varbax+ ε

m
∑

k=n+1

ε

m − n

= ε(B)varbax+ ε2
m − n

m − n
= ε(B)varbax+ ε2.

Hence Sm ∈ Z, m ∈ � is a Cauchy sequence in the Banach space Z and therefore

the series
∞
∑

k=1

∆+x(σk)∆
+y(σk) =

∑

τ∈[a,b)

∆+x(τ)∆+y(τ) converges in Z.

The convergence of
∑

τ∈(a,b]

∆−x(τ)∆−y(τ) can be shown analogously.

The second possibility when x ∈ G([a, b], X) and y ∈ G([a, b], Y )∩(B)BV ([a, b], Y )

is symmetric and can be treated in the same way as the former. �

12. Lemma. If B = (X, Y, Z) is a bilinear triple, x ∈ G([a, b], X) ∩

(B)BV ([a, b], X) and y ∈ G([a, b], Y ) ∩ (B)BV ([a, b], Y ) then

(8) ∆b
a(x, y) =

∑

τ∈[a,b)

∆+x(τ)∆+y(τ) −
∑

τ∈(a,b]

∆−x(τ)∆−y(τ).

�����
. By Corollary 8 both the integrals

∫ b

a x(s)d[y(s)],
∫ b

a d[x(s)]y(s) exist

and therefore by Theorem 10 ∆b
a(x, y) ∈ Z also exists.
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Since x ∈ G([a, b], X) the set S of τ ∈ [a, b) for which ∆+x(τ) 6= 0 or ∆−x(τ) 6= 0

is at most countable by c) in Proposition 2, i.e.S = {σk ∈ [a, b); k ∈ �} and
∑

τ∈[a,b)

∆+x(τ)∆+y(τ)−
∑

τ∈(a,b]

∆−x(τ)∆−y(τ)(9)

=

∞
∑

k=1

∆+x(σk)∆
+y(σk)−

∞
∑

k=1

∆−x(σk)∆
−y(σk).

Assume that ε > 0 is given.

Since the series
∞
∑

k=1

∆+x(σk)∆
+y(σk),

∞
∑

k=1

∆−x(σk)∆
−y(σk) converge in Z by

Lemma 11, there exists Lε ∈ � such that

(10)

∥

∥

∥

∥

∞
∑

k=Lε+1

∆+x(σk)∆
+y(σk)

∥

∥

∥

∥

Z

< ε,

∥

∥

∥

∥

∞
∑

k=Lε+1

∆−x(σk)∆
−y(σk)

∥

∥

∥

∥

Z

< ε.

By Definition 9 there exists a gauge δ0 on [a, b] such that

(11) ‖∆b
a(x, y)−∆(x, y, D)‖Z < ε

for any δ0-fine P -partition D of [a, b].

Further, for every τ ∈ [a, b] there is δ1(τ) > 0 such that

(12)
|x(s) − x(τ+)| < ε, |y(s)− y(τ+)| < ε for s ∈ (τ, τ + δ1(τ)),

|x(s) − x(τ−)| < ε, |y(s)− y(τ−)| < ε for s ∈ (τ − δ1(τ), τ).

This is clear because x, y being regulated, the onesided limits for the functions x,

y exist at every point in [a, b] (at the endpoints only the corresponding ones). The

function δ1 evidently represents a gauge on [a, b].

Finally, let us define

δ2(τ) = dist(τ, {σ1, . . . , σLε
})

for τ /∈ {σ1, . . . , σLε
} (dist(τ, M) denotes the distance of the point τ from the set

M) and δ2(τ) > 0 for τ ∈ {σ1, . . . , σLε
}.

Let us put

δ(τ) = min(δ0(τ), δ1(τ), δ2(τ))

for τ ∈ [a, b]. Then δ is a gauge on [a, b] and every δ-fine P -partition

D = {α0, τ1, α1, τ2, . . . , αk−1, τk, αk}

of the interval [a, b] has the property that {σ1, . . . , σLε
} ⊂ {τ1, . . . , τk} (this is the

consequence of the fact that D is δ2-fine) and (11) holds because D is δ0-fine.
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Assume now that D is an arbitrary δ-fine P -partition of [a, b]. Then using (9) we

have

∥

∥

∥

∥

∆b
a(x, y)−

∑

τ∈[a,b)

∆+x(τ)∆+y(τ) +
∑

τ∈(a,b]

∆−x(τ)∆−y(τ)

∥

∥

∥

∥

Z

(13)

=

∥

∥

∥

∥

∆b
a(x, y)−

∞
∑

k=1

∆+x(σk)∆
+y(σk) +

∞
∑

k=1

∆−x(σk)∆
−y(σk)

∥

∥

∥

∥

Z

6 ‖∆b
a(x, y)−∆(x, y, D)‖Z

+

∥

∥

∥

∥

∆(x, y, D)−

∞
∑

k=1

∆+x(σk)∆
+y(σk) +

∞
∑

k=1

∆−x(σk)∆
−y(σk)

∥

∥

∥

∥

Z

< ε+

∥

∥

∥

∥

∆(x, y, D) −

∞
∑

k=1

∆+x(σk)∆
+y(σk) +

∞
∑

k=1

∆−x(σk)∆
−y(σk)

∥

∥

∥

∥

Z

,

where (11) was taken into account. Further, by (10) we have

∥

∥

∥

∥

∆(x, y, D)−

∞
∑

k=1

∆+x(σk)∆
+y(σk) +

∞
∑

k=1

∆−x(σk)∆
−y(σk)

∥

∥

∥

∥

Z

(14)

< 2ε+

∥

∥

∥

∥

∆(x, y, D)−

Lε
∑

l=1

∆+x(σl)∆
+y(σl) +

Lε
∑

l=1

∆−x(σl)∆
−y(σl)

∥

∥

∥

∥

Z

.

Now let us consider the last term on the right hand side of (14):

∥

∥

∥

∥

∆(x, y, D)−

Lε
∑

l=1

∆+x(σl)∆
+y(σl) +

Lε
∑

l=1

∆−x(σl)∆
−y(σl)

∥

∥

∥

∥

Z

(15)

=

∥

∥

∥

∥

k
∑

j=1

[(x(αj)− x(τj))(y(αj)− y(τj))− (x(αj−1)− x(τj))(y(αj−1)− y(τj))]

−

Lε
∑

l=1

∆+x(σl)∆
+y(σl) +

Lε
∑

l=1

∆−x(σl)∆
−y(σl)

∥

∥

∥

∥

Z

6

∥

∥

∥

∥

∥

k
∑

j=1
τj∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))

− (x(αj−1)− x(τj))(y(αj−1)− y(τj))]

−

Lε
∑

l=1

∆+x(σl)∆
+y(σl) +

Lε
∑

l=1

∆−x(σl)∆
−y(σl)

∥

∥

∥

∥

∥

Z

+

∥

∥

∥

∥

∥

k
∑

j=1
τj /∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))

− (x(αj−1)− x(τj))(y(αj−1)− y(τj))]

∥

∥

∥

∥

∥

Z

.
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If τj /∈ {σ1, . . . , σLε
} then ‖∆+y(τj)‖Z < ε, ‖∆−y(τj)‖Z < ε and by (12) also

‖y(αj)− y(τj+)‖Y < ε, ‖y(αj−1)− y(τj−)‖Y < ε.

This yields

‖y(αj)− y(τj)‖Y = ‖y(αj)− y(τj+) +∆
+y(τj)‖Y < 2ε

and

‖y(αj−1)− y(τj)‖Y < 2ε

in this case, and we have

∥

∥

∥

∥

∥

k
∑

j=1
τj /∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))(16)

−(x(αj−1)− x(τj))(y(αj−1)− y(τj))]

∥

∥

∥

∥

∥

Z

6 2ε(B)varbax.

If τj ∈ {σ1, . . . , σLε
} then

(17)
∥

∥

∥

∥

∥

k
∑

j=1
τj∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))− (x(αj−1)− x(τj))(y(αj−1)− y(τj))]

−

Lε
∑

l=1

∆+x(σl)∆
+y(σl) +

Lε
∑

l=1

∆−x(σl)∆
−y(σl)

∥

∥

∥

∥

∥

Z

=

∥

∥

∥

∥

∥

k
∑

j=1
τj∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))− (x(αj−1)− x(τj))(y(αj−1)− y(τj))]

−
k

∑

j=1
τj∈{σ1,...,σLε}

∆+x(τj)∆
+y(τj) +

k
∑

j=1
τj∈{σ1,...,σLε}

∆−x(τj)∆
−y(τj)

∥

∥

∥

∥

∥

Z

6

∥

∥

∥

∥

∥

k
∑

j=1
τj∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))−∆
+x(τj)∆

+y(τj)]

∥

∥

∥

∥

∥

Z

+

∥

∥

∥

∥

∥

k
∑

j=1
τj∈{σ1,...,σLε}

[(x(αj−1)− x(τj))(y(αj−1)− y(τj))−∆
−x(τj)∆

−y(τj)]

∥

∥

∥

∥

∥

Z

.
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We have

(x(αj)− x(τj))(y(αj)− y(τj))−∆
+x(τj)∆

+y(τj)

=
(

x(αj)− x(τj)
)

(y(αj)− y(τj+)) +
(

x(αj)− x(τj+)
)

∆+y(τj)

and therefore
∥

∥

∥

∥

∥

k
∑

j=1
τj∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))−∆
+x(τj)∆

+y(τj)]

∥

∥

∥

∥

∥

Z

6

∥

∥

∥

∥

∥

k
∑

j=1
τj∈{σ1,...,σLε}

(x(αj)− x(τj)(y(αj)− y(τj+))

∥

∥

∥

∥

∥

Z

+

∥

∥

∥

∥

∥

k
∑

j=1
τj∈{σ1,...,σLε}

(

x(αj)− x(τj+)
)

∆+y(τj)

∥

∥

∥

∥

∥

Z

6 ε(B)varbax+ ε(B)varbay = ε((B)varbax+ (B)varbay)

and similarly also

∥

∥

∥

∥

∥

k
∑

j=1
τj∈{σ1,...,σLε}

[(x(αj−1)− x(τj))(y(αj−1)− y(τj))−∆
−x(τj)∆

−y(τj)]

∥

∥

∥

∥

∥

Z

6 ε((B)varbax+ (B)varbay).

Hence by (17) we get

∥

∥

∥

∥

k
∑

j=1
τj∈{σ1,...,σLε}

[(x(αj)− x(τj))(y(αj)− y(τj))− (x(αj−1)− x(τj))(y(αj−1)− y(τj))]

−

Lε
∑

k=1

∆+x(σk)∆
+y(σk) +

Lε
∑

k=1

∆−x(σk)∆
−y(σk)

∥

∥

∥

∥

Z

6 2ε((B)varbax+ (B)varbay).

This inequality together with (15) and (16) leads to

∥

∥

∥

∥

∆(x, y, D)−

Lε
∑

k=1

∆+x(σk)∆
+y(σk) +

Lε
∑

k=1

∆−x(σk)∆
−y(σk)

∥

∥

∥

∥

Z

< 2ε((B)varbax+ (B)varbay) + 2ε(B)varbax = ε(4(B)varbax+ 2(B)varbay)

and this with (9) implies (8) because ε > 0 can be taken arbitrarily small. �
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13. Theorem. If B = (X, Y, Z) is a bilinear triple such that x ∈ G([a, b], X) ∩

(B)BV ([a, b], X) and y ∈ G([a, b], Y ) ∩ (B)BV ([a, b], Y ) then

(18)

∫ b

a

x(s)d[y(s)] +

∫ b

a

d[x(s)]y(s) = x(b)y(b)− x(a)y(a)

−
∑

a6τ<b

∆+x(τ)∆+y(τ) +
∑

a<τ6b

∆−x(τ)∆−y(τ).

�����
. By the assumption the integrals

∫ b

a
x(s)d[y(s)],

∫ b

a
d[x(s)]y(s) exist (see

Corollary 8) and by the integration by parts Theorem 10 we have

∫ b

a

x(s)d[y(s)] +

∫ b

a

d[x(s)]y(s) = x(b)y(b)− x(a)y(a)−∆b
a(x, y).

Using (8) from Lemma 12 we immediately obtain (18). �

14. Corollary. If x ∈ BV ([a, b], X) and y ∈ BV ([a, b], Y ) then the integrals

∫ b

a

x(s)d[y(s)],

∫ b

a

d[x(s)]y(s)

exist and (18) holds.
�����

. By (1) and (3) we have x ∈ G([a, b], X) ∩ (B)BV ([a, b], X), y ∈

G([a, b], Y ) ∩ (B)BV ([a, b], Y ) and the result follows from Theorem 13. �

������
. This form of integration by parts result was derived e.g. in [6], [7] for

the case of finite dimensional spaces.

15. Theorem. If

x ∈ C([a, b], X) ∩ (B)BV ([a, b], X) and y ∈ G([a, b], Y ) ∩ (B)BV ([a, b], Y )

or if

x ∈ G([a, b], X) ∩ (B)BV ([a, b], X) and y ∈ C([a, b], Y ) ∩ (B)BV ([a, b], Y )

then

(19)

∫ b

a

x(s)d[y(s)] +

∫ b

a

d[x(s)]y(s) = x(b)y(b)− x(a)y(a).

�����
. Since C([a, b], X) ⊂ G([a, b], X) we have ∆+x(τ) = 0, ∆−x(τ) = 0 for

τ ∈ [a, b], and the assumptions of Theorem 13 being satisfied the equality (18) holds.

Moreover,
∑

a6τ<b

∆+x(τ)∆+y(τ) +
∑

a<τ6b

∆−x(τ)∆−y(τ) = 0

and therefore (19) holds in the first case. The second can be proved analogously. �
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