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A prominent Czech scientist, Jaroslav Kurzweil, chief research worker of
the Mathematical Institute of the Czechoslovak Academy of Sciences (now
the Academy of Sciences of the Czech Republic), Professor of Mathematics
at Charles University, Prague, reaches eighty years of age on May 7, 2006. 1

Before proceeding to describe the scientific activities of Professor Kurzweil,
let us give a brief survey of the main milestones of his life:

1926 - born in Prague on May 7
1945 - secondary school leaving examination
1949 - graduation from Faculty of Science, Charles University, Prague -

Assistant Professor at Department of Mathematics and Descriptive Geome-
try, Czech Technical University, Prague

1950 - receives his Doctor of Natural Science (RNDr.) degree
1951 - since July 1 a research student (aspirant) at Central Mathemati-

cal Institute, later Mathematical Institute of the Czechoslovak Academy of
Sciences

1953 - research stay in Poland
1954 - since January 1 employed in the Mathematical Institute, Czechoslo-

vak Academy of Sciences, Prague
1955 - receives the degree of Candidate of Science (CSc.) and is appointed

Head of Department of Ordinary Differential Equations of the Mathematical
Institute (till 1984)

1957 - research stay in the USSR
1958 - receives the degree of Doctor of Science (DrSc.)
1964 - appointed member of the Scientific Board for Mathematics of the

Academy; awarded the State Prize

1Twenty and ten years ago J. Kurzweil’s jubilee was mentioned among other in the
Czechoslovak Mathematical Journal (36 (1986), pp. 147-166, 46 (1996), pp. 375–386), in
Časopis pro pěstováńı matematiky (111 (1986), pp. 91-111 (in Czech)) and in Mathematica
Bohemica (121 (1996), pp. 215-222). These articles are extensively used in our present
text. The present paper was supported by the grant n. 201/04/0690 of the Grant Agency
of the Czech Republic.
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1966 - appointed full professor of mathematics
1968 - elected corresponding member of the Czechoslovak Academy of

Sciences; in the academic year 1968-1969 a visiting professor at Dynamic
Centre, Warwick, UK

1978 - elected honorary foreign member of the Royal Society of Edinburgh
1981 - awarded the Bernard Bolzano silver medal of the Czechoslovak

Academy of Sciences ”For achievements in mathematical sciences”; elected
honourable member of the Union of Czechoslovak Mathematicians and Physi-
cists

1984 - appointed Head of Division of Mathematical Analysis in the Math-
ematical Institute and Head of Department for Didactics of Mathematics

1989 - elected regular member of the Czechoslovak Academy of Sciences
1990 - elected and appointed Director of the Mathematical Institute,

Czechoslovak Academy of Sciences in Prague; he served in this position till
1996

1996 - elected foreign member of the Belgian Royal Academy of Sciences;
awarded the honorary medal ”DE SCIENTIA ET HUMANITATE OPTIME
MERITIS” of the Academy of Sciences of the Czech Republic; President of
the Union of Czech Mathematicians and Physicists (till 2002); retired but
still partially employed in the Mathematical Institute

1997 - awarded the State Decoration of the Czech Republic ”Medal of
Merit (First Grade)” for meritorious service to the state.

♣

J. Kurzweil started his scientific career as a student of Professor Vojtěch
Jarńık in the metrical theory of diophantine approximations. The influence
of V. Jarńık can be seen ever since in Kurzweil’s rigorous style and his feeling
for fine and ingenious estimates. The very first Kurzweil’s paper deals with
the properties of Hausdorff measure of the set of real numbers x that admit
no g(q) approximation, that is such that there is only a finite number of
integers p, q > 0 such that |x − p(q)| < q−2g(q), where g(q) is a positive
function defined for positive values of q.

The next paper concerning this topic [5] is of great importance. It solves
the following Steinhaus problem: if a < b are real numbers, denote

I(a, b) = {(ξ1, ξ2) ∈ R2, ξ1 = cos 2πx, ξ2 = sin 2πx, x ∈ [a, b]},

and let B be the set of all nondecreasing sequences (bk), k = 1, 2, . . . , with
positive members satisfying

∑
bk = +∞. Let

K = {(ξ1, ξ2) ∈ R2, ξ2
1 + ξ2

2 = 1},
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let µ be the Lebesgue measure on the circumference K and α(B) the set
of real numbers x ∈ [0, 1] with the property that for every sequence (bk) ∈
B, µ-almost all points y ∈ K belong to infinitely many sets of the form
I ∩ (kx − bk, kx + bk), k = 1, 2, . . . . The set α(B) contains no rational
numbers and H. Steinhaus put forward the question whether α(B) contains
all irrational numbers from the interval (0, 1). Kurzweil characterized the
set α(B) by means of the notion of approximability and his considerations
implied among other that α(B) 6= ∅ and that its Lebesgue measure is zero.
In this way he answered Steinhaus’ question in negative. The paper [5]
includes further results, in particular, the problem is modified and solved in
the moredimensional case.

In 1953 Kurzweil spent three months in Poznań (Poland) with Prof.
WÃladysÃlaw Orlicz. This contact brought new impulses to his work, con-
cerning uniform approximation of a continuous operation by an analytic one.
(Basic information on notions involved are found e.g. in the well known
monograph E. Hille, R. S. Phillips: Functional Analysis and Semigroups,
AMS, Providence 1957.)

The paper [3] was directly inspired by WÃl. Orlicz. It contains a gener-
alization of the well known theorem of S. N. Bernstein on characterization
of real analyticity of a function. Kurzweil proved an assertion of this type
for analytic operations defined in a Banach space X with values in a Ba-
nach space Y . In the next paper [4] he formulated the following problem: is
it possible to uniformly approximate continuous operations from a Banach
space X into a real Banach space Y by means of analytic operations?

The answer is given by the following assertion: Let X be a separable real
Banach space satisfying the condition

(A) there exists a real polynomial q∗ defined on X such that q∗(0) = 0
and

inf
x∈X,‖x‖=1

q∗(x) > 0.

Let F be a continuous operation defined on an open set G ⊂ X with values
in an arbitrary Banach space Y . Let ϕ be a positive continuous functional
on G. Then there exists an operation H with values in Y which is analytic
in G and satisfies

‖F (x)−H(x)‖ < ϕ(x).

Counterexamples of continuous functionals in C(0, 1), lp and Lp (p odd)
which are not uniform limits of analytic functions were presented in the
same paper.

The assumption (A) may seem rather surprising. Kurzweil resumed the
study of this problem in [11], showing that for a uniformly convex Banach
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space in which every operation F can be uniformly approximated by analytic
functions, the assumption (A) is necessarily fulfilled.

The small excursion into nonlinear functional analysis is remarkable as
concerns the depth of the results and only recently has brought its fruits in
an apparently distant field dealing with the geometry of Banach spaces.

Functional analysis is the topic also of [25], where Kurzweil, using elemen-
tary tools, elegantly proved the known theorem on spectral decomposition of
Hermitian operator. Unlike W. P. Eberlein (A note on the spectral theorem,
Bull. AMS 52 (7946), 328-331.) he started with the immediate definition of
the so called spectral function.

Also the paper [32] is closely connected with the theory of Hermitian
operators. It concerns estimates of eigenvalues of the system of integral
equations ∫

Ω

K(x, t)u(t)dµt = βu(x),

∫

Ω

K(x, t)v(t)dνt = γu(x)

and its ”attached” system

∫

Ω

K(x, t)y(t)dµt = αz(x),

∫

Ω

K(x, t)z(t)dνt = αy(x).

The result obtained by Kurzweil in this direction had been known before
only in very special cases.

Theory of stability for ordinary differential equations represents an im-
portant field which has been strongly influenced by Kurzweil’s research. Al-
though the fundament of this theory had been laid as early as in the last
decades of the l9th century (H. Poincaré, A. M. Ljapunov), many problems
remained open till the 50’s of the last century when this branch again started
to flourish.

Given a system of differential equations

ẋ = f(x, t), x ∈ R, t ≥ 0

where f(0, t) = 0, t ≥ 0, the solution x(t) ≡ 0 is called stable if for every
ε > 0 there is δ > 0 such that any solution y(t) of the system with ‖y(0)‖ < δ
satisfies ‖y(t)‖ < ε for all t ≥ 0. A. M. Ljapunov found the following sufficient
condition for stability:

4



If there exist functions V (x, t), U(x) such that V ∈ C1, U is continuous,
U(x) > 0 for x 6= 0, V (t, 0) ≡ 0, V (x, t) ≥ U(x) fox x ∈ R, t ≥ 0, and if

W (x, t) :=
∂V

∂t
+

n∑
i−1

∂V

∂xi

fi ≤ 0,

then the solution x ≡ 0 is stable.
In 1937 K. P. Persidskij showed that the conditions from this theorem are

necessary as well. Persidskij also formulated a sufficient condition for uni-
form stability in terms of a certain Ljapunov function. The problem whether
the conditions of Persidskij’s theorem are also necessary was attacked by a
number of mathematicians. It was answered in affirmative independently by
N. N. Krasovskij and J. Kurzweil under the assumption that the components
of the right hand side of the differential equation have continuous partial
derivatives. Later, T. Yoshizawa proved the conversion of these theorems for
continuous right hand sides. However, the Ljapunov functions constructed
by Yoshizawa were not necessarily continuous. This incited the paper [10]
where Kurzweil proved that stability or uniform stability can always be char-
acterized by existence of a function satisfying the assumptions of Ljapunov’s
or Persidskij’s theorems. He gave in this work additional (necessary and suf-
ficient) conditions guaranteeing the existence of a smooth Ljapunov function.
Analogous problems for the so called second Ljapunov theorem are solved in
[9]. Conversion of this theorem, which concerns asymptotic stability, was
studied by J. L. Massera for periodic right hand sides of the equation. I. G.
Malkin noticed that the assumptions of the second Ljapunov theorem yield
results stronger than the original formulation admits. The definitive solution
of the problem was given by Kurzweil in [9]. First of all, he showed that the
assumptions of the second Ljapunov theorem guarantee even strong stability
of the trivial solution x ≡ 0. Conversely, if x ≡ 0 is a strongly stable solution
of the system, he constructed smooth functions satisfying the assumptions
of the second Ljapunov theorem. In his constructions Kurzweil developed
a method of approximation of Lipschitzian functions, which enabled him to
prove that the desired functions are of class C∞ even if the right hand sides
of the equations are merely continuous.

In the fifties, in connection with problems in mechanics, Bogoljubov’s av-
eraging method for differential equations became very popular. The method
was effective in applications but it was not quite clear how to substantiate it
and give it its right place in the framework of the theory of ordinary differen-
tial equations. I. I. Gichman in 1952 was the first to notice that the basis of
this method is the continuous dependence on a parameter. Gichman’s ideas
were further developed in 1955 by M. A. Krasnoselskij and S. G. Krejn who
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pointed out that in order to have continuous dependence on a parameter a
certain ”integral continuity” of the right hand side of the differential equation
is sufficient.

Kurzweil’s paper [12] in 1957 then brought the following fundamental
result:

Let fk : G×[0, T ] → Rn, k = 0, 1, 2, . . . be a sequence of functions, G ⊂ R
an open set. Let xk(t) be a solution of the differential equation

ẋ = fk(x, t), x(0) = 0

and let x0(t) be uniquely defined on [0, T ]. If

Fk(x, t) =

∫ t

0

fk(x, τ)dτ →
∫ t

0

f0(x, τ)dτ = F0(x, t)

uniformly with k → ∞ and if the functions fk(x, t), k = 0, 1, 2, . . . are
equicontinuous in x for fixed t, then for sufficiently large k the solutions
xk(t) are defined on [0, T ] and xk(t) → x0(t) with k → ∞ uniformly on
[0, T ].

The results of [12] discovered the very core of the assertion on continuous
dependence for differential equations. When in 1975 Z. Artstein (Continuous
dependence on parameters: on the best possible results. Journal Diff. Eq.
19, 214-225) studied theorems on continuous dependence from the general
viewpoint and introduced topological criteria of comparing them he found
that there exist best possible theorems and that the quoted result of [12] is
one of them.

However, the results of [12] brought to light also some new problems. For
example, direct calculation of the solutions xk : [0, 1] → R of the sequence of
linear differential equations

ẋ = xk1−α cos kt + k1−β sin kt, x(0) = 0, k = 1, 2, . . .

shows that for 0 < α ≤ 1, 0 < β ≤ 1, α + β > 1 we have limk→∞ xk(t) = 0
uniformly on [0, 1], that is, the solutions converge to the solution of the ”limit
equation”

ẋ = 0, x(0) = 0.

Theorems on continuous dependence on a parameter which could theoreti-
cally motivate and justify this convergence phenomenon were not available
at the time. Even the above mentioned result from [12] gave a substantiation
of the convergence effect in this case only for α = 1 and 0 < β ≤ 1.

Moreover, it was apparent that the knowledge of the function f(x, t) on
the right hand side of the differential equation

ẋ = f(x, t) (1)
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is in this context needed only to provide the possibility of speaking about the
solution of the equation (1). Then all the essential facts can be expressed in
terms of the ”indefinite integral”

F (x, t) =

∫ t

t0

f(x, τ)dτ (2)

of the right hand side f(x, t) of the equation (1). A question arose how to
describe the notion of a solution of the differential equation (1) in terms of
the function F given by (2). J. Kurzweil answered this question in his work
[13] where he introduced the concept of the generalized differential equation.
Let us briefly sketch the main points of his theory.

Given a function F (x, t) : G × [0, T ] → R, a function x : [a, b] → R is a
solution of the generalized differential equation

dx

dτ
= DF (x, t) (3)

if (x(t), t) ∈ G × [0, T ] for every t ∈ [a, b], and for all s1, s2 ∈ [a, b] the
difference x(s2) − x(s1) is approximated with an arbitrary accuracy by the
sum

k∑
i=1

[F (x(τi), αi)− F (x((τi), αi−1)], (4)

where s1 = α0 < α1 < ... < αk = s2, τi ∈ [αi−1, αi] is a sufficiently fine tagged
partition of the interval [s1, s2]. In this way we express in a general form the
fact that a solution of the classical equation (1) satisfies the equality

x(s2)− x(s1) =

∫ s2

s1

f(x(t), t)dt, s1, s2 ∈ [a, b],

and the integral on the right hand side is approximated with an arbitrary
accuracy by a sum of the form

k∑
i=1

∫ αi

αi−1

f(x((τi), t)dt.

Sums of the form (4) are the starting point of Kurzweil’s concept of the
generalized Perron integral developed in [13]. Here he gave the precise inter-
pretation to the notion of arbitrarily accurate approximation of the difference
x(s2)− x(s1) by means of (4).

Let [a, b] ⊂ R be a compact interval. A finite system of real numbers

D = {α0, τ1, α1, ..., αk−1, τk, αk}
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will be called a partition of [a, b] if

a = α0 < α1 < ... < αk = b and τi ∈ [αi−1, αi], i = 1, 2, . . . , k. (5)

Given a function δ : [a, b] → (0, +∞) (a so called gauge), we say that a
partition D is δ-fine if

[αi−1, αi] ⊂ [τi − δ(τi), τi + δ(τi)], i = 1, 2, . . . , k. (6)

With a function U : [a, b] × [a, b] → Rn and a partition D we associate the
sum

S(U,D) =
k∑

i=1

[U(τi, αi)− U(τi, αi−1)].

Definition. We say that I ∈ Rn is the generalized Perron integral of the
function U over [a, b] if for every ε > 0 there is a gauge δ such that for every
δ-fine partition D of [a, b], the inequality

|S(U,D)− I| < ε

holds. The value I is denoted by the (inseparable) symbol
∫ b

a
DU(τ, t).

This definition enables us to give a precise meaning to the notion of
solution of the generalized differential equation (3):
a function x : [a, b] → Rn is a solution of (3) if (x(t), t) ∈ G× [0, T ] and

x(s2)− x(s1) =

∫ s2

s1

DF (x(τ), t)

holds for all s1, s2 ∈ [a, b].

The generalized differential equations (3) were thoroughly studied in [13],
[14], [15], [17], [20], [29], [34], in which Kurzweil obtained important new re-
sults concerning continuous dependence on a parameter for differential equa-
tions and substantiated convergence phenomena that had lacked theoretical
explanation, including for example the convergence effects for a sequence of
ordinary differential equations

ẋ = f(x, t) + g(x)ϕk(x), k = 1, 2, . . . ,

with the sequence (ϕk) converging in the usual way to the Dirac function (see
[14], [16]). In [14] Kurzweil showed that generalized differential equations ad-
mit discontinuous functions as solutions. This was a quite new phenomenon
in the theory of differential equations. Of course, its occurrence was a con-
sequence of the class of right hand sides considered.
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The methods of generalized differential equations were extended by Kurz-
weil also to the case of differential equations in a Banach space. Here he ob-
tained new results concerning partial differential equations and some types
of boundary value problems (e.g. in [27], [28], [29], [33], [34]). His contribu-
tions in this direction inspired many mathematicians working in the theory
of partial differential equations.

For the series of papers on generalized differential equations J. Kurzweil
was awarded the State Prize in 1964.

Let us return to the paper [13] and in particular to the above mentioned
definition of integral. Kurzweil gave there two equivalent definitions, one
of them in terms of majorant and minorant functions analogously to the
classical Perron’s definition, and the other via the integral sums as we have
mentioned above.

If the function U is of the form U(τ, t) = f(τ)t then the correspond-
ing integral sum is

∑k
i=1 f(τi)(αi − αi−1), thus coinciding with the classical

Riemann integral sum. In [13] Kurzweil proved that in this special case∫ b

a
D[f(τ)t] exists if and only if the Perron integral

∫ b

a
f(t)dt exists,

that is, he proved that the Perron integral can be defined by means of Rie-
mannian sums with the above mentioned modification of the ”fineness” of
a partition of the interval. In this period he contributed to the theory of
integral also by the paper [18] devoted to integration by parts.

Independently of Kurzweil’s results and with quite different motives, the
same definition of integral was later (cca 1960) introduced by R. Henstock
(see e.g. his monograph Theory of Integration, Butterworths, London 1963).

This theory of integral, besides its usefulness for the theory of differential
equations, is of considerable interest by itself. It is an illustrative summation
definition of a general, nonabsolutely convergent integral, which is also of
non-negligible didactical value. 2

2This fact was exploited for example by the Belgian mathematician J. Mawhin in his
lecture notes Introduction a l’Analyse, Louvain 1979 and in all subsequent editions of
this book, e.g. Analyse. Fondements-techniques-évolution, De Boeck Université, Paris -
Bruxelles, 1997. Other monographs devoted to Kurzweil’s integral are R. M. McLeod:
The Generalized Riemann Integral, Carus Math. Monographs 20, MAA, 1980, J. De-
Pree, Ch. Swartz: Introduction to Real Analysis, Wiley, New York, 1987, E. J. McShane:
Unified Integration, Academic Press, 1983, R. Henstock: Lectures on the Theory of In-
tegration, World Scientific, Singapore, 1988, Lee P.-Y.: Lanzhou Lectures on Henstock
Integration, World Scientific, Singapore, 1989, R. Henstock: The General Theory of In-
tegration, Clarendon Press, Oxford, 1991, W. F. Pfeffer: The Riemann approach to in-
tegration: Local geometric theory, Cambridge University Press, 1993, R.A. Gordon: The
integrals of Lebesgue, Denjoy, Perron, and Henstock, American Mathematical Society,
1994, Š. Schwabik: Integration in R (Kurzweil’s theory) (in Czech), Karolinum, Prague,
1999, Lee P.-Y. and R. Výborný: The Integral: An Easy Approach after Kurzweil and
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Kurzweil’s ideas on integration from 1957 are still alive and fruitful.
Kurzweil himself returned to his theory of integral in 1973 by papers dealing
with the change of order of two integrations [57] and an interesting problem
of multipliers for the Perron integral [58], and published an appendix [B6] to
the monograph on measure and integral of K. Jacobs. In 1980 he published
a small monograph [B5] summarizing his results and embodying his concept
of integral in the framework of the theory of integral.

The survey paper [74] then represents a brief exposition of Kurzweil’s
approach to the theory of integral based on his works from 1957. We will
come back to this topic at the end of our survey.

The years 1957-1959 were the period when principal contributions to the
mathematical theory of optimal control appeared. In particular, in 1959 a
group of Soviet mathematicians led by L. S. Pontrjagin published the now
well known monograph on this subject. J. Kurzweil reacted very soon to this
situation and inspired research in this field in Czechoslovakia. In [23] and [31]
Kurzweil studied the linear control problem and for this case obtained results
concerning especially the geometric properties of accessible sets. The paper
[26] is devoted to the linear autonomous problem with a quadratic functional.
He proved the existence theorem for the optimal solution approaching zero
when t →∞, and solved also the so called converse problem.

The problems of the optimal control theory form the background of later
Kurzweil’s papers concerning differential relations (inclusions).

The averaging method did not cease to attract the attention of Prof.
Kurzweil. He focused his interest on the application of this method in the
case of more general spaces. In [27] he proved a theorem on averaging for
differential equations in a Banach space and applied the result to the case of
oscillations of a weakly nonlinear string. In particular, he discussed the weak
nonlinearity of van der Pol’s type. Problems of this type were much more
extensively studied in [34]-[44] and [49], in which Kurzweil dealt also with
problems concerning integral manifolds for systems of differential equations
in a Banach space. He took much care to establish results applicable to the
theory of partial differential equations and functional differential equations.

Let us roughly sketch Kurzweil’s assertion on the existence of an integral
manifold (cf. [41]) for a system of ordinary differential equations in a Banach

Henstock, Cambridge Univ. Press, Cambridge, 2000, R. G. Bartle: A Modern Theory of
Integration, Amer. Math. Soc., Providence, 2001, S. Leader S: The Kurzweil-Henstock
Integral and its Differentials, Marcel Dekker, Inc., New York, 2001, R.G. Bartle and R.R.
Sherbert: Introduction to Real Analysis, Wiley, New York, 2000, W. F. Pfeffer: Derivation
and Integration, Cambridge University Press, 2001, Ch. Swartz: Introduction to Gauge
Integrals, World Scientific, Singapore, 2001, D. S. Kurtz and Ch. Swartz: Theories of
Integration, World Scientific, Singapore, 2004.
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space X = X1×X2, where X1, X2 are also Banach spaces. Let f = (f1, f2) :
G× R→ X1 ×X2 = X, where for instance,

G = {(x1, x2) ∈ X; x1 ∈ X1, |x1| < 2, x2 ∈ X2}.

For x = (x1, x2) ∈ X put |x| = |x1| + |x2|, where |x|, |x1|, |x2| are norms
of the elements x, x1, x2 in the spaces X,X1, X2, respectively. Consider the
system

ẋ = f(x, t), i.e. ẋ1 = f1(x1, x2, t), ẋ2 = f2(x1, x2, t) (7)

provided the function f : G × R → X is continuous, bounded and has a
bounded differential ∂f

∂x
uniformly continuous with respect to x and t.

Let f1(0, x2, t) = 0 for x2 ∈ X2, t ∈ R, that is, the function x1(t) = 0 is a
solution of the first equation in (7) on the whole R and the set

M = {(0, x2, t) x2 ∈ X2, t ∈ R} ⊂ X × R

is an integral manifold of the system (7). Further, for x̃1 ∈ X1, |x̃1| ≤ σ,
x2 ∈ X2, t̃ ∈ R let there exist such a solution (x1, x2) of the system (7)
defined on (t̃, +∞) that x1(t̃) = x̃1, x2(t̃) = x̃2 and

|x1(t)| ≤ κe−ν(t−et)|x1|

for t ≥ t̃.
If (x1, x2), (y1, y2) are solutions of the system (7) defined for t ∈ R and

lying in M , then let there exists µ, µ < ν, such that

|x2(t2)− y2(t2)| ≥ 1

κ
e−µ(t2−t1)|x2(t1)− y2(t1)| (8)

holds for t2 ≥ t1.
If for x ∈ C, t ∈ R and 0 ≤ λ ≤ 1 the integral

|
∫ t+λ

t

(f(x, s)− g(x, s))ds|

is sufficiently small, then there exists such a mapping p : X2 ×R→ X1 that
the set

M̃ = {(x1, x2, t); x1 = p(x2, t), x2 ∈ X2, t ∈ R} ⊂ X × R

is an integral manifold for the system

ẋ = g(x, t). (9)

11



In other words: if x̃2 ∈ X2, t̃ ∈ R, x̃1 = p(x̃2, t̃) then there exists such
a solution (x1, x2) of the system (9) defined for t ∈ R that x1(t̃) = x̃1,
x2(t̃) = x̃2 and x1(t) = p(x2(t), t) for t ∈ R.

Moreover, the integral manifold M̃ of the system (9) maintains some
properties of the manifold M of the system (7). For example, the mapping p
is bounded and Lipschitzian in the variable x2. Any solution of (9) starting

in a neighbourhood of the manifold M̃ exponentially tends for t → ∞ to a
solution of (9) which lies in M̃ , and every couple of solutions of (9) lying in

M̃ satisfies an estimate of the same type as (8).
In order not to complicate the situation too much we do not give a de-

tailed formulation of the results, in which an important role is played by the
interrelations of constants characterizing the systems (7) and (9) and their
solutions. Of course, these are essential for the result and carry important
information as well.

We have already mentioned Kurzweil’s efforts to make his results widely
applicable. They led him to general formulations as well as to the use of gen-
eral methods of elaboration. In connection with his investigation of integral
manifolds he used the notion of a flow as the basis of his conception. A flow
is a certain family of mappings satisfying conditions of axiomatic character,
which are motivated by the essential properties possessed by the whole sys-
tem of solutions of a differential equation. The axioms cover all features of
the differential equation which are crucial for the proof of existence of an
integral manifold. Kurzweil chose this approach already in the paper [34],
and continued in this way in [35]. The whole set of 122 printed pages of these
two essays contains numerous applications of the abstract results with proper
illustration by pertinent examples. The abstract approach to the problems of
existence of invariant manifolds reached its top in Kurzweil’s paper [42] where
the results are formulated for flows in a metric space. One section of [42]
is devoted to functional differential equations in a Banach space. Kurzweil
proved that if a functional differential equation is close enough to an ordi-
nary differential equation satisfying certain boundedness conditions, then all
solutions defined on the whole R (the so called global solutions) generate
an exponentially stable integral manifold. However, the boundedness condi-
tion excluded linear equations from the class for which the result was valid.
Therefore Kurzweil published in two notes [45] and [48] analogous results for
equations on manifolds, which already covered the case of linear functional
differential equations.

Together with A. Halanay, Kurzweil in [40] studied flows in Banach spaces
formed by functions defined on the whole real axis or, as the case may be,
on a certain halfline. The theory from [42] was modified so that it provided
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an abstract basis also for functional differential systems (see e.g. [39]).
The modern theory of dynamic systems has very clearly marked con-

nections with modern differential geometry, whose methods Kurzweil has
frequently used in his investigations.

As an illustration, let us present his result from [49]: let M be a sub-
manifold of a manifold N and let f : U → N, where f is a C(1) mapping
from a neighbourhood U of the manifold M, such that the partial mapping
f |M : M → M is a diffeomorphism on M. Under certain additional assump-
tions, for every g : U → N where g is a C(1) mapping close to f there exists
a submanifold Mg in N such that g|Mg : Mg → Mg is a diffeomorphism on
Mg.

This result is useful especially in the theory of differential equations with
delayed argument.

The research in invariant manifolds was followed by a series of papers
from the years 1970-1975, which dealt with global solutions of functional
differential equations and, in particular, differential equations with delayed
argument [45], [47], [50], [51], [52], [59].

Let us mention in more detail only the result from [59], where Kurzweil
substantially deepened the results of Yu. A. Ryabov. If x : [t − τ, t] → Rn,
τ > 0, then denote by xt : [−τ, 0] → Rn the function defined by the relation
xt(σ) = x(t + σ) for σ ∈ [−τ, 0]. Consider a functional differential equation

ẋ = F (t, xt), (10)

where F is continuous in both variables and Lipschitzian in the latter with
a constant L independent of t. Ryabov had shown that if the ”delay” τ is
not too large (precisely, if Lτ < e−1), then for every point (t0, x0) there is
a unique ”special” solution x̃(t) = x̃(t0, x0; t) of the equation (10) passing
through (t0, x0), which is defined on R and exponentially bounded for t →
−∞. Strengthening further the condition on τ he had shown that for every
solution x there is a (not necessarily unique) special solution x̄ such that
x(t)− x̄(t) → 0 for t → +∞.

In [59] Kurzweil showed that the validity of the original inequality Lτ <
e−1 is sufficient even for a substantially stronger assertion:

if x is a solution of (10) and we put x0 = lims→∞ x̄(s, x(s); t0) then

sup{exp

(
t

τ

)
|x(t)− x̄(t0, x0; t)|; t ≥ t0} < ∞.

Obviously, x̄(t0, x0; t) is the only special solution satisfying this inequality.
Another field in which Kurzweil started to engage himself in the 70’s of

the last century, is the theory of differential relations (inclusions) and the
problems of multifunctions connected with it.
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A differential relation is a generalization of the differential equation of
the form

ẋ ∈ F (t, x). (11)

The right hand side of this relation is a so called multifunction, that is,
a mapping defined on G ⊂ R×Rn whose values are subsets of the space Rn.
As solutions of a differential relation we usually consider locally absolutely
continuous functions u defined on an interval I, which satisfy the relation
u̇(t) ∈ F (t, u(t)) for almost all t ∈ I.

The beginnings of the theory of differential relations, which go back to the
thirties of the 20th century, are connected with the names of A. Marchaud
and S. Zaremba. Their development in the last 30-40 years has been caused
by their relations to the optimal control theory, to the study of differential
equations with discontinuous right hand sides etc. It was these relations
and in particular Filippov’s paper (Differential equations with discontinuous
right hand side, Mat. sbornik 51 (93) (1960), 99-128 (Russian); English
transl. AMS Translat. II, Ser. 92 (1964), 199-231) that incited Kurzweil’s
still lasting interest in differential relations.

When studying differential relations, Carathéodory-type conditions are
often assumed:

(i) F (t, ·) is upper semicontinuous for almost every t;
(ii) F (·, x) is measurable for every x;
(iii) F satisfies an ”integrable boundedness” condition.
Moreover, the sets F (t, x) are usually assumed to be nonempty, compact

and convex subsets of R.
In this connection a question arises whether the validity of (i), (ii) suffices

to guarantee ”reasonable” behaviour of the multifunction F in both variables.
The following condition, evidently implying (i), (ii), seems to be plausible:

(iv) for every ε > 0 there is a set Aε ⊂ R such that the measure m(R \
Aε) < ε and the restriction F |(Aε×Rn)∩G is upper semicontinuous (with respect
to the pair of variables (t, x)).

However, the converse implication, that is, (i), (ii) =⇒ (iv), does not
hold. In [64] it is proved that in spite of this fact we can restrict the study of
differential relations to right hand sides satisfying (iv). Namely, the following
theorem holds:

Let Kn be the system of all nonempty compact convex subsets of Rn. Let
F : G → K satisfy (i). Then there is a function F̃ : G → Kn ∪ {∅} satisfying
(iv),

(v) F̃ (t, x) ⊂ F (t, x) for a11 (t, x) ∈ G;
(vi) every solution of (11) is also a solution of the differential relation

ẋ ∈ F̃ (t, x).
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Kurzweil gave (iv) the name of the Scorza-Dragoni property, after the
Italian mathematician who had studied analogous problems for ordinary dif-
ferential equations.

The assertion of the above mentioned theorem makes the study of prop-
erties of solutions of differential relations easier, as is seen for example in
[65]. Here the result analogous to the following well known theorem from the
theory of ordinary differential equations was proved:

For a differential equation ẋ = f(t, x) there is a set E ⊂ R of zero measure
such that for every solution x(t) the derivative ẋ(t) exists and satisfies the
equation for all t /∈ E.

(For differential relations the term ”derivative” must be replaced by that
of ”contingent derivative”.)

In [68] it was proved that the set of solutions of the differential relation
(11) is closed with respect to a certain limiting process, which can be roughly
described as follows:

Let W be the set of functions w : Iw → Rn, Iw =
⋃k

i=1[τi−1, τi), τ0 < τ1 <
· · · < τk, for which there exist such solutions ui of the differential relation
(11) that w(t) = ui(t) for t ∈ [τi−1, τi). Denote by Jw the jump function of w
(that is, w−Jw is continuous, Jw(t) = 0 for t ∈ [τ0, τ1)). Then every function
q which is the uniform limit of a sequence of functions wj ∈ W satisfying
Jwj

→ 0 uniformly, is a solution of (11).
Conversely, every set of ”reasonable” functions closed with respect to the

limiting process described is the set of (all) solutions of a certain differential
relation. This makes it possible to construct, for a given set of functions, the
”minimal” relation for which all the given functions are solutions.

Also Kurzweil’s papers [61], [63], [66], [67], [69] and [70] were devoted to
differential relations. Let us mention just the paper [70] in which a new sum-
mation definition of the integral of a multifunction was given and a theorem
on equivalence of the differential and integral relations was proved.

The last paper indicated Kurzweil’s comeback to the theory of summa-
tion integrals, and he has indeed devoted much effort to this theory during
the last two decades. However, the principal impulse was Mawhin’s paper
(Generalized Multiple Perron Integrals and the Green-Goursat Theorem for
Differentiable Vector Fields, Czechoslovak Math. Journal 31 (106), (1981),
614-632) in which the author gave a generalization of the Perron integral in
Rn, which guarantees validity of the divergence theorem (Stokes theorem)
for all differentiable vector fields without any further assumptions.

Mawhin’s definition is based on the above mentioned Riemann-type def-
inition due to Kurzweil, Henstock and McShane, but restricts the class of
admissible partitions (of an n-dimensional interval) taking into account only
such intervals in which the ratio of the longest and shortest edges is not too
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big. Nevertheless, Mawhin himself pointed out that it is not clear whether
his integral has some natural properties, in particular the following type of
additivity: if J , K, J ∪K are intervals and if f is integrable over both J and
K, then it is also integrable over J ∪K.

In [73] an example was found that Mawhin’s integral really lacks this prop-
erty, and a modified version of Mawhin’s definition was proposed: instead
of the ratio of the longest and shortest edges, the subintervals J forming
a partition of an n-dimensional interval are characterized by the quantity
σ(J) = diam J ·m(∂J) (the product of the diameter of the interval and the
(n− 1)-dimensional Lebesgue measure of its boundary).

Define a P -partition (Perron partition) of an interval I ⊂ Rn as a finite
system Π of pairs (xj, Ij), j = 1, 2, . . . , k, where Ij are nonoverlapping com-
pact intervals whose union is I, and xj ∈ Ij. If δ : I → (0, +∞) (a gauge)
then a given P -partition is called δ-fine if Ij, j = 1, 2, . . . , k lies in a ball with
centre xj and radius δ(xj). For a function f : I → R put

S(f, Π) =
k∑

j=1

f(xj)m(Ij)

(m is the Lebesgue measure) and define:
a number γ ∈ R is the M -integral of the function f if for every ε > 0 and
C > 0 there is a gauge δ such that |γ − S(f, Π)| < ε holds for every δ-fine
P -partition Π of I satisfying

k∑
j=1

σ(Ij) ≤ C. (12)

Since the condition (12) is evidently less restrictive then Mawhin’s original
one, this definition admits a wider class of partitions and hence a narrower
class of integrable functions. In [73] the properties of the new notion of
integral were studied in detail. It turned out that it preserves those which
had led Mawhin to the new definition (in particular, the divergence theorem
or the integrability of every derivative). On the other hand, the integral has
the additivity property in the above sense and, moreover, the limit theorems
on monotone and dominated convergence hold.

A drawback of both Mawhin’s and Kurzweil’s n-dimensional integral is
that we can integrate only over intervals. The intervals are linked with the
coordinate system and do not allow even relatively simple transformations.

Therefore, the next step of Kurzweil’s research was to find a definition
that would remove this drawback. This was successfully achieved in [76].
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Here, instead of the above mentioned type of partitions, partitions based on
partition of unity were used.

Let us recall the definition. If f is a function with compact support
supp f , then any finite system ∆ of pairs (xj, θj), j = 1, 2, . . . , k is called
a PU-partition provided θj are functions of class C1 with compact supports,

0 ≤ θj(x) ≤ 1, Int{x ∈ Rn;
∑k

j=1 θj(x) = 1} ⊃ suppf . We define the integral
sum corresponding to f, ∆ by

S(f, ∆) =
k∑

j=1

f(xj)

∫
θj(x)dx (13)

and introduce the PU-integral of f as the number q such that for every ε > 0
there is a gauge δ such that

|q − S(f, ∆)| < ε

for every δ-fine PU-partition ∆. (Here a gauge is any positive function
on supp f and a PU-partition is δ-fine if supp θj ⊂ B(xj, δ(xj)) for j =
1, 2, . . . , k.) It is easy to show that the number q is uniquely determined
provided it exists.

Note that the intervals Ij in the definition of δ-fineness of a partition
are replaced by the sets supp θj and the definition of the PU -integral (PU
for partition of unity) is introduced formally in the same way as that of the
M -integral.

In order to obtain a suitable concept of integral, the family of admissible
partitions is reduced by imposing a certain analogue of the regularity con-
dition for intervals (the ratio of the shortest and the longest edge has to be
separated from zero).

Instead of the regularity condition (12) let us introduce

k∑
j=1

f(xj)

∫
‖x− xj‖

n∑
i=1

∣∣∣∣
∂θj

∂xi

(x)

∣∣∣∣ dx ≤ C (14)

(in both cases, i.e. in (13) and (14), we actually integrate only over certain
compact sets).

Roughly speaking, this condition ensures that the Stokes Theorem is valid
for differentiable vector fields without further restrictions. This makes it
possible to use the integral for integration on manifolds. Technically, it is
required that the tag xj be located so that the corresponding function θj

is not too small in its neighbourhood. The properties of each individual
concept of the integral depend on the character of the regularity condition
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introduced. In particular, the condition used in [76] guarantees the validity of
the Stokes Theorem for vector fields with discontinuities or even singularities.
The condition introduced in [90] makes it possible to prove that C(1) functions
ψ with

‖ψ‖1 = sup{|ψ(x)|+ ‖Dψ(x)‖; x ∈ G} < ∞
(G open bounded, suppf ⊂ G) are multipliers, that is, if

∫
f exists and ψ

is a function as above then
∫

fψ also exists. Moreover, there exists C =
C(f) > 0 such that ∣∣∣∣(PU)

∫
fψdx

∣∣∣∣ ≤ C‖ψ‖1.

(This makes it possible to use this integral as a starting point for developing
a theory of distributions.)

For the PU -integral the usual transformation theorem and also the Stokes
theorem for differentiable functions (or forms on manifolds) hold without any
additional assumptions. It is easy to see that among PU -integrable functions
there are also some nonabsolutely integrable ones so that the PU -integral is a
proper extension of the Lebesgue integral. It is not, however, a generalization
of the Perron integral (though there exist PU -integrable functions which do
not possess the Perron integral).

In the paper [78] it is shown that a suitable modification of the condition
(14) leads to an integral for which the Stokes Theorem can be proved for
functions for which the differentiability condition (or even the condition of
continuity or boundedness) is violated at some points.

The papers [78], [87] and [90] elaborate the basic idea from [76], namely
the idea of an integral defined via partitions of unity (hence the name PU-
integral). Two papers, [80] and [89] deal with one-dimensional generalized
Perron integrals introduced via Riemann-type sums in which the partitions
are subjected to a certain symmetry condition. Namely, the tag is required to
be ”not too far” from the centre of the interval in question. These integrals
have some interesting properties (similar to the ”valeur principale”) and in
some cases allow to establish a standard transformation theorem, which is
not possible for the classical Perron integral.

The largest number of papers since 1986 is devoted to a thorough study
of summation integrals in Rn over a compact interval. To obtain general-
ized Riemann integrals, the partitions of the integration interval are required
to consist of regular intervals, i.e. intervals whose regularity (ratio of the
shortest and the longest edge) is greater than a certain value ρ (a constant
or, more generally, a function of the tag and/or the diameter of the interval
of partition). The main problems considered are

(i) convergence theorems,
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(ii) properties of the primitive function.
Besides general results they include a number of examples or rather coun-

terexamples which clarify the relations between individual concepts of regular
integrals.

The beginnings of this line of research go back to the paper [73] from
1983, which was inspired by J. Mawhin’s paper mentioned above, and its
results have appeared in [94]–[101].

In the paper [94] Kurzweil goes back to the original Mawhin’s defini-
tion, showing that the notion of the α-regular integral really depends on
the bound for the regularity: if α < β, then there exists a function f that
is β-integrable but not α-integrable. On the other hand, the notion of α-
regular differentiability is independent of the value of α, i.e. a function f
α-regularly differentiable at a point is γ-regularly differentiable at the point
for any γ > 0 (which of course does not mean that the regularity condition
can be omitted).

Paper [95] offers a comparison of various ”regular integrals”, among other
those of W. F. Pfeffer (A Riemann type integration and the fundamental
theorem of calculus. Rendiconti Circ. Mat. Palermo, Ser. II, 36 (1987), 482–
506), and shows that the ”dangerous” points are those on the boundary of the
integration interval. This led to the introduction of the so called extensive
integral:

Let I ⊂ Int L ⊂ Rn, L a compact interval. For f : I → R define
fex : L → R by extending f from I to L by fex(x) = 0 for x ∈ L \ I. The
function f : I → R is called extensively integrable if there is L, I ⊂ Int L
such that fex is Mawhin integrable (on L).

In [96] the regularity condition is generalized in the sense that instead of
measuring the regularity of the intervals of a partitions ”uniformly”, i.e. by
a constant, it is measured by a function which may depend on the position
of the tag t of a pair (t, J) and/or on the diameter of J .

The paper [98] summarizes the properties of the regular integrals; in
particular, it contains the descriptive definition and convergence theorems.
Finally, the paper [100] deals with the problem whether the regular inte-
gral can be introduced via the Bochner approach, i.e. by extending the
elementary integration of stepfunctions (piecewise constant functions) using
a suitable limiting process. This required further modification of the concept
of integral leading to the concept of strong integration.

In [101] the strong integral is further modified by using the L-partitions
which differ from the partitions used before by omitting the condition t ∈ J
for any pair (t, J). (The partitions with t ∈ J are more specifically called
P -partitions as was mentioned above. The letters L, P stand for Lebesgue,
Perron, respectively, since the respective concepts of integral are connected
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with the classical Lebesgue and Perron integrals.)
In the common paper with J. Mawhin and W. Pfeffer [92] Kurzweil’s idea

of PU-partitions is combined with Pfeffer’s one of the BV integration (BV for
bounded variation in the sense of DeGiorgi). This makes it possible to avoid
the shortcomings and accentuate the advantages of both the approaches.

The paper [93] is devoted mainly to the study of convergence theorems for
generalized Perron integrals. The simplest assumption which (in addition to
the pointwise convergence of the sequence of functions fk to a limit function
f) is that of equiintegrability of the sequence, which of course means that the
gauge in the definition of the integral can be chosen independently of k.

Lee Peng Yee (Lanzhou Lectures on Henstock Integration, Series in Real
Analysis, Vol. 2, World Scientific Singapore, 1989) introduced the notion of
controlled convergence which involves a certain kind of generalized absolute
continuity of the primitives Fk. For the more dimensional case analogous
results are obtained by relaxing the notion of absolute continuity required
in [93]. In order to obtain results in a more general setting, an axiomatic
approach is chosen which allows to treat simultaneously various kinds of
integrals.

The above mentioned ”equiintegrability” convergence theorem reads as
follows:

Assume that [a, b] ⊂ R is a compact interval and fk, k ∈ N is a sequence
of Kurzweil integrable functions fk : [a, b] → R. Assume

(A) fi(t) → f(t) for i →∞, t ∈ I,
(B) for every ε > 0 there is a gauge δ such that the inequality

|
k∑

i=1

fk(τi)[αi − αi−1]−
∫ b

a

fk| < ε

holds for every δ-fine partition D = {α0, τ1, α1, ..., αk−1, τk, αk} of [a, b] and
k ∈ N.

Then f : [a, b] → R is integrable and

lim
k→∞

∫ b

a

fk =

∫ b

a

f.

This convergence theorem for a pointwise convergent sequence (fk) of
functions on an interval based on the concept of equiintegrability of the se-
quence (condition (B)) is interesting because, among other, it can be easily
proved using basic tools and can be presented at a very early stage of under-
graduate studies.
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The simple proof works equally for the Kurzweil integral based on P -
partitions as well as for the McShane integral based on L-partitions. The
last integral is known to be equivalent to the Lebesgue integral.

For a long time it was not precisely known what the position of the
”equiintegrability” convergence theorem is in the system of convergence re-
sults known for the Lebesgue integral. This problem was solved in [107]
where it was shown that the above mentioned theorem is equivalent to the
general Vitali convergence theorem based on uniform absolute continuity of
the primitives. In [108] it is then shown that this holds also for Banach
space valued functions and the McShane integral which is equivalent to the
Bochner integral.

In [100] and then later in [102], [103] and [104] the problem of existence
of reasonable topologies on the space P of primitives of Kurzweil integrable
functions (this is a subspace of all continuous functions on the interval [a, b])
was studied. These topologies are connected with the ”equiintegrability”
convergence theorem mentioned above.

The problem was then clearly formulated in [B8] as follows:
Let Fi ∈ P for i ∈ N, F ∈ P .

A sequence Fi, i ∈ N is called E-convergent to F , shortly Fi
E−→ F , if

there exist fi : I → R for i ∈ N, f : I → R such that
(C) Fi is the primitive of fi for i ∈ N and (A) and (B) are valid.
By the ”equiintegrability” convergence theorem F is the primitive of f

and Fi → F .
The question is:
Does there exist a topology τ on P such that

(D) Fi
E−→ F implies that Fi → F in (P, τ),

(E) (P, τ) is complete,
(F) (P, τ) is a topological vector space?
The main result stated in [B8] says that the answer to the problem is

affirmative.
If (F) is strengthened to
(G) (P, τ) is a locally convex vector space,

then the answer is negative.
In the slim and delicate book [B8] many other technical results are pre-

sented. They are interesting by themselves.
The book [B9] is closely related to [B8]. It is interesting to observe that if

in the definition of the Kurzweil integral point-interval pairs (t, J) with t ∈ J
(P -partitions) are used, we obtain the Perron integral, while not imposing
the requirement t ∈ J (L-partitions) we get the Lebesgue integral.

Scales of integrations (Y-integrations) are studied in [B9] from the point
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of view of the topological problem presented in [B8]. Roughly speaking,
these integrations differ by the partitions involved where some additional
conditions are imposed on the point-interval pairs (t, J) in the case t /∈ J .

A scale of integrations (based on integral sums) connecting the Lebesgue
integral and the Perron integral was also introduced by B. Bongiorno (Un
nuovo integrale per il problema delle primitive. Le Matematiche 51 (1996),
299-313) and B. Bongiorno and W. F. Pfeffer (A concept of absolute con-
tinuity and a Riemann type integral. Comment. Math. Univ. Carolinae
33 (1992), 189-196). On this scale we have the so called C-integral which
integrates every derivative, all Lebesgue integrable functions, is less general
than the Perron integral and minimal (B. Bongiorno, L. Di Piazza, D. Preiss:
A constructive minimal integral which includes Lebesgue integrable functions
and derivatives. J. London Math. Soc. 62 (2000), 117-126).

A very interesting contribution of J. Kurzweil is concerned with the con-
cept of the multiplicative integral. In the papers [79] and [82] the Kurzweil
approach to Perron integration is applied for defining the product integral∏b

a V (t, dt) for an n × n-matrix valued function V : [a, b] × J → L(Rn),
where J is the set of all compact subintervals of the interval [a, b] ⊂ R and
L(Rn) denotes the set of all n× n-matrices. The Perron product integral is
defined as follows:

Given a positive function δ : [a, b] → (0, +∞), called a gauge, assume
that

D = {(ti, Ji) ti ∈ Ji = [xi−1, xi] ⊂ J , i = 1, . . . , k}
is a tagged partition of [a, b], i.e.

x0 = a < x1 < x2 < · · · < xk = b,

which is δ-fine, i.e.
Ji ⊂ (ti − δ(ti), ti + δ(ti)).

For a given function V : [a, b] × J → L(Rn) and a tagged partition D =
{(ti, Ji), i = 1, . . . , k} we denote by

P (V, D) = V (tk, Jk)V (tk−1, Jk−1) . . . V (t1, J1)

the ordered product of matrices V (ti, Ji).
The function V is called Perron product integrable if there is a regular

Q ∈ L(Rn) such that for every ε > 0 there is a gauge δ on [a, b] such that

‖P (V, D)−Q‖ < ε

for every δ-fine partition D of [a, b]. Q ∈ L(Rn) is the Perron product integral∏b
a V (t, dt).
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Typical representatives of functions V are V (τ, [α, β]) = I + A(τ)(β − α)
or V (τ, [α, β]) = expA(τ)(β−α) where A : [a, b] → L(Rn) is a given matrix
valued function and [α, β] ⊂ [a, b] is an interval.

The relations to the linear system of ordinary differential equations of
the form ẋ = A(t)x are studied using the indefinite Perron product integral∏t

a V (s, ds) which is in fact the fundamental matrix of the system ẋ = A(t)x
if V (τ, [α, β]) = I + A(τ)(β − α).

Even if the idea of multiplicative integration based on Henstock-Kurzweil
δ-fine partitions of an interval can be easily transferred to the case of Banach
algebras with unity (e.g. the space of bounded linear operators on a Ba-
nach space), the more sophisticated results on the structure of the indefinite
integral

∏t
a V (s, ds) presented in [79] depend strictly on the fact that the

function V is matrix valued.
In [83] the system

ẋ = A(t)x

with a continuous n × n-matrix valued function A(t), t ∈ R is studied pro-
vided A(t) + A∗(t) = 0 and A is uniformly quasiperiodic with at most r + 1
frequencies.

The problem is as follows: Given A and η > 0, does there exist a matrix
valued function C that both C and the matrix solution XC(t) of

ẋ = C(t)x, XC(0) = I

are uniformly quasiperiodic with at most r + 1 frequencies and

‖A(t)− C(t)‖ ≤ η

for t ∈ R?
The answer to this question is affirmative for such couples (n, r) that the

manifold SO(n) of orthonormal n× n-matrices with determinant equal to 1
has the estimation property of homotopies of order 1, 2, . . . , r.

The ordinary differential equation

ẋ = f(x, t)

is considered in [88] in the integral form

x(t) = x(a) +

∫ t

a

f(x(s), s)ds

with the Perron integral on the right hand side. R. Henstock (Lectures on the
Theory of Integration. World Scientific Singapore, 1988) gave an existence
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result for this equation under some conditions on the right hand side f .
In [88] it is shown that Henstock’s conditions are satisfied if and only if
f(x, t) = g(t) + h(x, t) where g is Perron integrable and h satisfies the well
known Carathéodory conditions.

In [86] and [91] the linear difference equation

x(n + 1) = A(n)x(n), n ∈ N0 = {0, 1, . . . } (15)

is studied in the case that A(n) is a k×k invertible matrix function for n ∈ N .
In the former paper [86] it is shown that if the difference equation has an
exponential dichotomy then it is topologically equivalent to the system

xi(n + 1) = eixi(n), n ∈ N and i = 1, 2, . . . , k (16)

where ei = 1
e

or ei = e, and that the difference equation is structurally
stable if and only if it has an exponential dichotomy. In [91] these results
are completed by showing that the system (15) is topologically equivalent
to the system (16) if and only if the matrix functions A(n) and A−1(n) are
bounded on N . Moreover, it is proved in [91] that if two linear difference
equations with invertible coefficient matrices are topologically equivalent and
one of them has a bounded coefficient matrix whose inverse is bounded as
well, then the coefficient matrix of the other system has the same property.

In the papers [81], [84], [85] Kurzweil studied again certain convergence
phenomena in ordinary differential equations; these papers amend former
results on continuous dependence of solutions of ODE’s on a parameter which
date back to the fifties, cf. [12]–[14]. A model equation for these results is

ẋ =
r∑

i=1

fi(x)kσ cos(kt + θi).

It is shown that for σ = 1
2

the solutions xk tend to the solution of a ”limit
equation” which involves the Lie brackets of the functions on the righthand
sides. For the above model equation it has the form

ẋ =
1

2

∑
i<j

[fi, fj](x) sin(θj − θi),

where the Lie bracket is given by [f, g] = Dgf−Dfg = Dfg−Dgf . The case
which leads to a limit equation involving iterated Lie brackets was studied
in [84].

♣

24



The survey of Kurzweil’s results given above represents a choice which is
far from being complete. Beside, it is important to point out that Kurzweil’s
”pure” research activity does not fully cover his contribution to the develop-
ment of Czech (Czechoslovak) Mathematics.

Prof. Kurzweil has been teaching for many years at Charles University in
Prague. At first he delivered special lectures for advanced students in which
the students got acquainted with the domains of his own research. Since 1964
he was systematically lecturing the standard course of ordinary differential
equations. He created a modern curriculum of this course and prepared the
corresponding lecture notes for students ([B1], [B2], [B3]).

His teaching experience was a starting point also for his book [B4] de-
voted to the classical theory of ordinary differential equations. It is not only
a detailed and rigorous textbook in which a complete account of the ana-
lytical fundaments of the theory is given, but it also has many features of
a monograph, outlining some aspects of the modern theory of differential
equations. As an example let us mention the original exposition of the dif-
ferential relations, which is not to be found in current texts mainly devoted
to ordinary differential equations. The book carries the sign of Kurzweil’s
style consisting in rigorous elaboration of all details. It leads the reader to a
thorough study, which in view of the character of the text cannot be super-
ficial. By rearranging and amending some parts of the book [B4], Kurzweil
gave rise to its English version [B7]. For instance, the account of boundary
value problems in [B7] is really remarkable.

In 1954 prof. Kurzweil founded and led the regular Thursday Semi-
nar in Ordinary Differential Equations in the Mathematical Institute of the
Czechoslovak Academy of Sciences. It started in 1952 and is far from being
restricted only to the subject of ordinary differential equations, which is a
consequence of Kurzweil’s extraordinary scope of interest in mathematics.
The seminar has received numerous speakers from all parts of the world.

The work of the Department of Ordinary Differential Equations (now
Dept. of Real and Probabilistic Analysis) of the Mathematical Institute led
by Kurzweil from 1955 till 1984 carries the impress of his scientific personality
full of original ideas. The authors of these lines can declare from their own
experience that to work with J. Kurzweil is gratifying and extraordinarily
stimulative, and that many results of theirs would never come into existence
without his advice and support.

Prof. Kurzweil was chief editor of Časopis pro pěstováńı matematiky
(Journal for Cultivation of Mathematics, now Mathematica Bohemica) from
1956 till 1970. In various offices he took part in both the preparation and
fulfilment of the National projects of basic research. He was member of the
Scientific Board for Mathematics of the Czechoslovak Academy of Sciences,
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chairman or member of committees for scientific degrees etc.
The survey of Kurzweil’s activity in mathematics would be incomplete

without mentioning his deep interest in the problems of mathematical ed-
ucation in our (even elementary) schools. In this field he has been active
both in the Institute and in the Union of Czechoslovak Mathematicians and
Physicists. Here he has always supported approaches based on the employ-
ment of children’s natural intellect, experience and skills. Although being
confident that it is necessary to educate children and young people in accor-
dance with the present state of science, he is firmly convinced that abstract
concepts and schemes which have significantly contributed to the develop-
ment of mathematics as a branch of science lead the pupils in many cases
to formal procedures which are irrational at least to the same extent as the
old system of mathematical education. Prof. Kurzweil devoted much time
and energy to these questions till 1989 and also later in the position of the
President of the Union of Czech Mathematicians and Physicists.

The scientific activity of Jaroslav Kurzweil has been lasting for about
55 years. During this period he has created admirable work of research
that has notedly influenced Czechoslovak mathematics and enriched contem-
porary mathematical knowledge in an exceptionally broad part of its spec-
trum. He is a specialist and known and respected throughout the world, with
friends (both professional and personal) in many countries. The deep trace of
Kurzweil’s work and personality in Czech and world Mathematics is evident
and incontestible to everybody who met him either as a mathematician or
simply as a man.

All those who have met Prof. Jaroslav Kurzweil know him as a good and
wise man who does not lack the sense of humor, who loves people with all
their assets and drawbacks, and they respect and love him in return.

It would be superfluous to dilate upon Kurzweil’s role in cultivating,
fostering and developing Mathematics. The greater are his merits that his
work was done under a totalitarian regime which certainly did not create
and ensure adequate conditions for scientific work in spite of its frequent
big-mouthed declarations. So obvious was his integrity and natural author-
ity that he was respected by practically everybody, except perhaps the most
hardline party bosses, in spite of his rather openly pronouncing critical opin-
ions unwelcome to the regime. It was his merit that the microclimate in the
Department as regarded both the scientific work and the human relations
remained so exceptional even in the relatively favourable atmosphere of the
Institute generally, during all the peripetias of four decades of communist
reign. It was also a sense of humour of his own that helped him to get over
the absurdities of the period. Let us just recall the opening ceremony of
the EQUADIFF 7 Conference in 1989 (still before the ”velvet revolution” in
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Czechoslovakia) at which Kurzweil delivered an opening address. He started
quite innocently: ”Today we celebrate an extraordinary anniversary.” Nev-
ertheless, the audience (at least the Czechs and Slovaks, but many foreigners
as well) held their breath: it was August 21, the day of Soviet invasion to the
country in 1968. After a well-timed pause, Kurzweil went on: ”Exactly two
hundred years passed since the birth of one of the greatest mathematicians
of all times, Augustin Cauchy...”

Soon after the revolution in 1989 J. Kurzweil was elected Director of the
Mathematical Institute, and held this office till 1996. Since 1990 he has
been chairman of the Board for Accreditation attached to the government
of the Czech Republic which is an advisory body of the government for the
scientific and teaching level of all institutions of higher education in the Czech
Republic, approving among other their right to grant the academic degrees
of Master and Doctor.

♣

We present in the References a (hopefully) complete chronological list of
scientific publications of Jaroslav Kurzweil. Original papers are listed first,
books are at the end of the list marked in the form [Bn] where n is the
number in the chronological order of the books. Occasional articles are not
included.
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Doležal). Aplikace matematiky 4 (1959), 163-176.

28



[20] Addition to my paper ”Generalized ordinary differential equations and
continuous dependence on a parameter”. Czechoslovak Math. Journal
9 (84) 1959, 564-573.

[21] Linear differential equations with distributions as coefficients. Bull, de
l’Academie Polonaise des Sciences, Ser. des sci. math., astr. et phys.,
VII (1959), 557-560.

[22] Note on oscillatory solutions of the equation y′′ + f(x)y2n−1 = 0 (Rus-
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Int. Conf. Equadiff 82, Lecture Notes in Math. 1017, Springer Verlag
1983, 364-368.

32



[73] On Mawhin’s approach to multiple nonabsolutely convergent integrals
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vals (with J. Jarńık). Annales Polonici Mathematici (Zdzislaw Opial
in memoriam) LI (1990), 205-218.

[90] The PU -integral: its definitions and some basic properties (with J.
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