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Abstract

The McShane integral of Banach space-valued functions
� � � � �

defined on an � -dimensional interval � is considered in the paper.
We show that a McShane integrable function is integrable over mea-

surable sets contained in
�
(Theorem 9). A certain type of absolute con-

tinuity of the indefinite McShane integral with respect to the Lebesgue
measure is derived (Theorem 11) and we show that the indefinite Mc-
Shane integral is countably additive (Theorem 16).

Allowing more general partitions using measurable sets instead of
intervals another McShane type integral is defined and we show that it
is equivalent to the original McShane integral (Theorem 21).

We consider functions � : � 	 
 where � � �
 is a compact interval,� � 1 and 
 is a Banach space with the norm � � �� .
By � let the Lebesgue measure in �
 be denoted.
A system (finite collection) of point-interval pairs �(�� � ��), � = 1 � � � � � � � is

called an � -system in � if �� are non-overlapping (int �� � int �� = � for �  = ! ,
int �� is the interior of ��), �� are arbitrary points in � .
An � -system in � is called an � -partition of � if

"#
�=1

�� = � .
By $ (� � %) the ball in �
 centered at � with the radius % is denoted. For

simplicity we use dist(& � �) = max�=1 '((('
 )�� * &� ) for the distance of two points� � & + �
 .
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Given ∆ : � 	 (0 �+�), called a gauge, an � -system �(�� � � �), � = 1 � � � � � � �
in � is called ∆-fine if

�� � $ (�� �∆(��)) � � = 1 � � � � � � �
The set of ∆-fine partitions of � is nonempty (Cousin’s lemma, see e.g.

[3]).

Definition 1. � : � 	 
 is McShane integrable and � + 
 is its McShane
integral over � if for every � � 0 there exists a gauge ∆ : � 	 (0 �+� ) such
that for every ∆-fine � -partition (�� � ��) � � = 1 � � � � � � of � the inequality

�
"�
�=1

� (��)�(��) * � �� � �

holds. Denote
�

= �� � .
Given a set � � � we denote by 	
 its characteristic function (	
 (�) = 1

for � + � , 	
 (�) = 0 otherwise).
A function � : � 	 
 is called McShane integrable over the set � � � if

the function � � 	
 : � 	 
 is McShane integrable.
In this case we write �� � � 	
 = �
 � .
By a figure we mean a finite union of compact nondegenerate intervals in�
 .
We mention the fact that that if for the notion of an � -system �(�� � ��) � � =

1 � � � � � � � the intervals �� are replaced by figures, we can develop the same
theory and � -systems and � -partitions of this kind can be used everywhere
in our forthcomming considerations because if in the � -system (�� � ��) � � =
1 � � � � � � some of the �� are the same, then the intervals corresponding �� to
this common point form a figure and vice versa if we have (�� � � �) where � �
is a figure then this point-figure pair can be divided into point-interval pairs
where the intervals are those which give the figure �� .
Theorem 2. The function � : � 	 
 is McShane integrable if and only if for
every � � 0 there exists a gauge ∆ : � 	 (0 �+� ) such that

�
"�
�=1

� (��)�(��) * ���=1

� (&� )�(
 � )�� � � (1)

for any ∆-fine � -partitions �(�� � ��) � � = 1 � � � � � � � and �(&� �
 � ) � ! = 1 � � � � � � �
of � .
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Proof. If � is McShane integrable then (1) clearly holds for the gauge � which
corresponds to

�
2
� 0 in the definition of McShane integrability.

Given � � 0 assume that (1) holds for any �-fine � -partitions �(�� � ��) � � =
1 � � � � � � � and �(&� �
 � ) � � = 1 � � � � � � � of � .
Denote

�
(�) = ��(� �� ) =

��
�=1

� (��)�(
��); � = �(�� � ��) � � = 1 � � � � � � � � 


where � is an arbitrary �-fine � -partition of � . The set �(�) � 
 is nonempty
because by Cousin’s lemma there exists a �-fine � -partition �(�� � ��) � � =
1 � � � � � � � of � . Since by (1) we have

�
��
�=1

� (��)�(
��) *

��
�=1

� (&� )�(�� )�� � �

for all �-fine � -partitions �(�� � ��) � � = 1 � � � � � � � and �(&� ��� ) � ! = 1 � � � � � �� of� , we have also
diam

�
(�) � �

(by diam
�
(�) the diameter of the set �(�) is denoted). Further evidently

�
(�1) � �

(�2) �
provided �1 � �2. Hence the set

�
	


0

cl
�
(�) =

�� + 


consists of a single point because the space 
 is complete (by cl �(�) the
closure of the set

�
(�) in 
 is denoted).

For the integral sum
�
(� �� ) we get

�
��
�=1

� (��)�(
��) * �� �� � � �

whenever � = �(�� � ��) � � = 1 � � � � � � � is an arbitrary �-fine � -partition of �
and this means that � is McShane integrable with �� � =

��
.

Theorem 3. Assume that � : � 	 
 is McShane integrable and let � � � be
a compact interval. Then � is McShane integrable on the interval � .
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Proof. By Theorem 2 for any given � � 0 there exists a gauge � : � 	 (0 �+�)
such that for every �-fine � -partitions �(�� � ��) � � = 1 � � � � � � � and �(&� � �� ) � � =
1 � � � � � � � of � the inequality (1) is satisfied.
Let �(� � �
 �) � � = 1 � � � � � � � and �(�� ��� ) � � = 1 � � � � � & � be arbitrary �-fine� -partitions of the interval � .
The complement � � � can be expressed as a finite union of intervals con-

tained in � . Taking an arbitrary �-fine � -partition of every of those intervals
we obtain a finite collection �(% � � � �) � � = 1 � � � � � �� of tagged intervals which
together with �(� � �
 �) � � = 1 � � � � � � � or �(�� �� � ) � � = 1 � � � � � &� form two �-fine� -partitions of the interval � .
Taking the difference of the integral sums corresponding to this two �-fine� -partitions of � we can see that its value is

��
�=1

� (� �)�(
 �) *
��

�=1

� (�� )�(� � )

because the remaining ���
=1

� (% �)�(� �) is the same for both of them. There-
fore by (1) we have

�
��

�=1

� (� �)�(
 �) *
��

�=1

� (�� )�(�� )�� � �

and this inequality shows by Theorem 2 the McShane integrability of � on�
.

Theorem 4. Let � : � 	 
 . If � = 0 almost everywhere on � then � is
McShane integrable on � and �� � = 0.

Proof. Assume that � � 0 is given.
Let � = �� + � ; � (�)  = 0� and for each 	 + 
 , let

�� = �� + � ; 	 * 1 � �� (�)�� � 	 � �
Since �(� ) = 0, we have also �(��) = 0 for 	 + 
 and therefore there are
open sets �� � � such that �� � �� and �(��) � �

	2� .
Define a gauge � : � 	 (0 �+�) in such a way that �(�) = 1 for � + � � �

and $ (� � �(�)) � �� if � + �� .
Suppose that �(�� � ��) � � = 1 � � � � � � � is a �-fine � -partition of � . Then

�
"�
�=1

� (��)�(� �)�� � �

�
�=1

"�
�=1 ' �� ���

� (��)�(��)�� �
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�

�
�=1

�
"�

�=1 ' �� ���
� (��)�(� �)�� �


�
�=1

	
"�

�=1 ' �� ���
�(��) �

�

�
�=1

	�(��) �

�
�=1

	 �
	2� = � �

Hence � : � 	 
 is McShane integrable and �� � = 0.

Lemma 5. (Saks-Henstock) Assume that � : � 	 
 is McShane integrable.
Given � � 0 assume that the gauge ∆ on � is such that

�
"�
�=1

� (��)�(��) *
�
� � �� � �

for every ∆-fine � -partition �(�� � � �) � � = 1 � � � � � � � of � .
Then if �(�� �
 � ) � ! = 1 � � � � � � � is an arbitrary ∆-fine � -system we have

�
��

�=1

[� (�� )�(
 � ) *
���

� ]�� � � �

Proof. Since �(�� �
 � ) � ! = 1 � � � � � � � is a ∆-fine � -system, the complement
� �

�#
�=1

int 
 � can be expressed as a finite system � �, � = 1 � � � � � � of non-
overlapping intervals in � . The function � is McShane integrable and therefore
the integrals ��� � �� exist and by definition for any � � 0 there is a gauge ��
on � � with ��(�) � �(�) for � + � � such that for every � = 1 � � � � � � we have

�
� ��
�=1

� (& ��)�(
� �� ) *

��� � �� � �
� + 1

provided �(&�� � � �� ) � � = 1 � � � � � �� � is a ��-fine � -partition of the interval � �.
The sum ��

�=1

� (�� )�(
 � ) + ���
=1

� ��
�=1

� (& ��)�(
� �� )

represents an integral sum which corresponds to a certain �-fine � -partition
of � , namely �(�� �
 � ) � (& �� � � �� ); ! = 1 � � � � � � � � = 1 � � � � � � � � = 1 � � � � � �� �, and
consequently by the assumption we have

�
��

�=1

� (�� )�(
 � ) + ���
=1

� ��
�=1

� (& ��)�(
� �� ) *

�
� � �� � � �
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Hence

�
��

�=1

� (�� )�(
 � ) *
���

� �� =

= �
��

�=1

� (�� )�(
 � ) + ���
=1

� ��
�=1

� (& ��)�(
� �� ) *

�
� �+

* ���
=1

� ��
�=1

� (& ��)�(
� �� ) +

��� � ��
� �

��
�=1

� (�� )�(
 � ) + ���
=1

� ��
�=1

� (& ��)�(
� �� ) *

�
� � ��+

+ ���
=1

�
� ��
�=1

� (& ��)�(
� �� ) *

��� � �� � � + � �
� + 1

� � + �
Since this inequality holds for any � � 0 we obtain the statement of the
lemma.

Our main goal is to show that if � : � 	 
 is McShane integrable then �
is McShane integrable over every measurable set � � � .
Theorem 3 shows that if � : � 	 
 is McShane integrable then � is

McShane integrable over every subinterval
� � � .

It is clear that if � � � is a finite union of non-overlapping intervals
contained in � then a McShane integrable � : � 	 
 is integrable over � .
Lemma 6. If � : � 	 
 is McShane integrable on � , then for every � � 0
there is an � � 0 such that for any finite collection ��� : ! = 1 � � � � � � � of
non-overlapping intervals in � with � "�=1

�(
�� ) � � we have

�
"�

�=1

���
� �� � � �

Proof. Let � � 0 be given. Since � is McShane integrable on � , there exists a
gauge � on � such that ����=1

� (��)�(��) * �� � �� � � whenever �(�� � ��); � =
1 � � � � � � � is an arbitrary �-fine � -partition of � . Fix a �-fine � -partition of �

�(�� � ��); � = 1 � � � � � � ��
put 
 = max� �� (��)�� ; 1 � � � � � and set � =

�

 + 1

.
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Suppose that ��� : ! = 1 � � � � � � � is a finite collection of non-overlapping
intervals in � such that � "�=1

�(
�� ) � � . By subdividing these intervals if

necessary, we may assume that for each ! , �� � � � for some �. For each �,
1 � � � � let � � = �! ; 1 � ! � � with �� � �� � and let

� = �(�� � ��) : ! + � � � � = 1 � � � � � � ��
Note that � is a �-fine � -system in � .
Using the Saks-Henstock Lemma 5 we get

�
"�

�=1

���
� �� � �

"�
�=1

� ��
� * � (��)�(

�� )�� +

"�
�=1

�� (��)�� �(
�� ) �

� � + �
"�

�=1

�(
�� ) � � + 
 � � 2�

and this proves the lemma.

Lemma 7. If � : � 	 
 is McShane integrable then
(a) for any sequence ��� : � = 1 �2 � � � � � of non-overlapping intervals �� � � ,� + 
 the limit

lim��

��
�=1

�
��
� =


�
�=1

�
��
� + 


exists,
(b) for every � � 0 there is an � � 0 such that if for the sequence ��� : � =

1 �2 � � � � � of non-overlapping intervals �� � � we have �
�=1
�(� �) � � then

�

�
�=1

�
��
� �� � � �

Proof. Assume that � � 0 is given. Let � � 0 corresponds to � by Lemma 6.
Since �
�=1

�(��) � �(� ) � � , there is an � + 
 such that for 	 � � we
have �
�=� �(� �) � � .
Assume that 	 � � + 
 , � � 	 � � . Then by Lemma 6 we have

� 
�
�=1

�
��
� *

��
�=1

�
��
� �� = � 
�

�=�+1

�
��
� �� � �

because �
�=�+1
�(� �) � �
�=�+1

�(��) � � .
This implies that ���=1

��� � , 	 + 
 is a Cauchy sequence in 
 and (a) is
proved.
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If �
�=1
�(��) � � then ���=1

�(��) � � for every 	 + 
 and therefore

�
��
�=1

�
��
� �� � �

by Lemma 6. Since by (a) the series �
�=1
��� � converges in 
 , we obtain

�

�
�=1

�
��
� �� = � lim��


��
�=1

�
��
� �� � �

and (b) is proved.

Notation. For simplifying writing we will from now use the notation�(� � � � �)� for � -systems instead of �(� � � � �); � = 1 � � � � � � � which specifies the
number � of elements of the � -system. For a function � : � 	 
 and an� -system �(� � � � �)� we write � � � (� �)�(

� �) instead of � ��=1
� (� �)�(

� �), etc.
Lemma 8. Assume that � : � 	 
 is McShane integrable.
Then for every � � 0 there exists an � � 0 such that
(a) if � is closed, � open, � � � � � , �(� � � ) � � then there is a gauge�

: � 	 (0 ��) such that

$ (� � �(�)) � � for � + � �
$ (� � �(�)) � � � � for � + � � �

and
(b) for

�
-fine � -systems �(� � � � �)�, �(�
 � �
 )� satisfying

� � � �
 + � � � � int �� ���
� � � � int ��	 ��

�

we have ��� � (� �)�(

� �) * �



� (�
 )�(�
 )�� � � �

Proof. Denote Φ(
�
) = �

�
� for an interval � � � (the indefinite integral or

primitive of � ) and put 
� =
�
10
.

Since � is McShane integrable we obtain by the Saks-Henstock lemma 5
that there is a gauge ∆ on � such that

��� [� (�� )�(
 � ) * Φ(
 � )]�� � 
� (2)
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for every ∆-fine � -system �(�� �
 � )�.
Assume that

�(� " �� ")� is a ∆-fine � -partition of � � (3)

Put �
= max" ��� (� ")�� �� (4)

assume that � � 0 satisfies � �
�
� 
� (5)

and take
0 � �

(�) � ∆(�) � � + � � (6)

Since the sets � and � � � are open it is clear that the gauge � can be chosen
in such a way thet $ (� � �(�)) � � for � + � and $ (� � �(�)) � � � � for � + � � � .
This is the introductory part (a) of the lemma and now we will show the

part (b).
Since �(�" �� " )� is a partition of � , we have #" � " = � and therefore

�
� � (� �)�(

� �) =
�
"

�
� ' � ���

�


 ' �	 ��
� (� �)�(

� " � � � � �
 )+ (7)

+
�
"

�
� ' � ��� � (� �)�(

� " � � � � �

 ' �	 ��

�
 ) +
�
"

�
� ' � ��� �� � (� �)�(

� " � � �)
and similarly

�



� (�
 )�(�
 ) =

�
"

�
� ' � ���

�


 ' �	 ��
� (� �)�(

� " � � � � �
 )+ (8)

+
�
"

�


 ' �	 ��
� (� �)�(

� " � �
 � �� ' � ���
� �) +

�
"

�


 ' �	 �� ��
� (�
 )�(

� " � �
 ) �
The � -systems

�(� � �� " � � � � �
 ); � � � � + � � �
 + � � �
�(�" �� " � � � � �
 ); � � � � + � � �
 + � �

are ∆-fine and therefore, by (2), we have the inequalities

��"
�

� ' � ���
�


 ' �	 ��
� (� �)�(

� " � � � � �
 ) * Φ(
� " � � � � �
 )�� � 
� �
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��"
�

� ' � ���
�


 ' �	 ��
� (� " )�(

� " � � � � �
 ) * Φ(
� " � � � � �
 )�� � 
� �

Hence
��"

�
� ' � ���

�


 ' �	 ��
� (� �)�(

� " � � � � �
 )*

* �
"

�
� ' � ���

�


 ' �	 ��
� (� ")�(

� " � � � � �
 )�� � 2
�
and similarly also

��"
�

� ' � ���
�


 ' �	 ��
� (�
 )�(

� " � � � � �
 )*

* �
"

�
� ' � ���

�


 ' �	 ��
� (� " )�(

� " � � � � �
 )�� � 2
� �
Therefore

��"
�

� ' � ���
�


 ' �	 ��
� (� �)�(

� " � � � � �
 )*

* �
"

�
� ' � ���

�


 ' �	 ��
� (�
 )�(

� " � � � � �
 )�� � 4
� � (9)

Since �(� � � � �)� is a �-fine � -system with � � + � , we obtain by the properties
of the gauge

�
given in (a) and from the assumption � � int

# � ��� � �,
� � int # �	 �� �
 that

( �" '� ���
� " � � � � ��	 ��

�
 ) � �" '� ��� ��
� " � � � � � � � � (10)

Further the � -systems
�(� � �� " � � � � ��	 ��

�
 ); � � � � + � � � �(� � �� " � � �); � � � � + � � � ��

�(� " �� " � � � � ��	 ��
�
 ); � � � � + � � � �(�" �� " � � �); � � � � + � � � �

are ∆-fine (note that here we have figures instead of intervals). Therefore by
(2) we have

� �
" '� ��� [� (� �)�(

� " � � � � ��	 ��
�
 ) * Φ(

� " � � � � ��	 ��
�
 )]+
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+
�

" '� ��� �� [� (� �)�(
� " � � �) * Φ(

� " � � �)]�� � 
� �

� �
" '� ��� [� (� ")�(

� " � � � � ��	 ��
�
 ) * Φ(

� " � � � � ��	 ��
�
 )]+

+
�

" '� ��� �� [� (� ")�(
� " � � �) * Φ(

� " � � �)]�� � 
� �
This yields

� �
" '� ��� � (� �)�(

� " � � � � ��	 ��
�
 ) +

�
" '� ��� �� � (� �)�(

� " � � �)*

* �
" '� ��� � (� ")�(

� " � � � � ��	 ��
�
 ) * �

" '� ��� �� � (� " )�(
� " � � �)�� � 2
� �

With respect to (10) and (5) we have

� �
" '� ��� � (� " )�(

� " � � � � ��	 ��
�
 ) * �

" '� ��� �� � (� ")�(
� " � � �)�� �

�
�
� � � 
�

and therefore

� �
" '� ��� � (� �)�(

� " � � � � ��	 ��
�
 ) +

�
" '� ��� �� � (� �)�(

� " � � �)�� � 3
� (11)

and similarly also

� �
" '�	 ��

� (�
 )�(
� " � � � � �� ���

� �)+ �
" '�	 �� ��

� (�
 )�(
� " � �
 )�� � 3
� � (12)

From (7), (8), (9), (11) and (12) we get

��� � (� �)�(
� �) * �



� (�
 )�(�
 )�� � 10
� � �

and (8) is satisfied. This proves part (b) of the lemma.

Theorem 9. If � : � 	 
 is McShane integrable then � � 	
 is McShane
integrable for every measurable set � � � (� is McShane integrable over � ).
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Proof. Let � � 0 be given and let � � 0 corresponds to � by Lemma 8.
Assume that � � � is measurable. Then there exist � � � closed and � � �
open such that � � � � � where �(� � � ) � � . Assume that the gauge�

: � 	 (0 ��) is given as in the Lemma 8 and that �(� � � � �)�, �(�
 � �
 )� are�
-fine � -partitions of � .
We have the following:

if � � + � then � � � � � � � int �� ���
� �

and
if �
 + � then �
 � � � � � int ��	 ��

�
 �
Hence by (8) from Lemma 8 we have

� �
� '� ��
 � (� �)�(

� �) * �


 '�	 �

� (�
 )�(�
 )�� � �

and therefore also

��� � (� �)	
 (� �)�(
� �) * �



� (�
 )	
 (�
 )�(�
 )�� � �

and by Theorem 2 we can see that the McShane integral �� � � 	
 = �
 �
exists.

Remark 10. Theorem 9 was proved in [1], 2E Theorem by a different ap-
proach for the case when � � �.
Theorem 11. If � : � 	 
 is McShane integrable then for every � � 0 there
is an � � 0 such that if � � � is measurable with �(� ) � � then

�
�
� � � 	
 �� = �

�

 � �� � 2� �

Proof. Let � � 0 be given and let � � 0 corresponds to � by Lemma 6 and
assume that �(� ) � � . Then there is an open set � � � such that � � � and�(�) � � .
The McShane integrability of � over � implies the existence of a gauge

∆ : � 	 (0 �+� ) such that for every ∆-fine � -partition �(�� � ��)� of � the
inequality

��� � (��)�(��) *
�
� � �� � �

holds.
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By Theorem 9 the integral �� � � 	
 exists and by the definition of the
integral to every � � 0 there is a gauge � : � 	 (0 �+�) which satisfies$ (� � �(�)) � � if � + � , �(�) � ∆(�), � + � and

��



� (�
 ) � 	
 (�
 )�(�
 ) *
�
� � � 	
 �� � �

holds for any �-fine � -partition �(�
 � �
 )� of � .
If �
 + � � � then �
 � � and �
 '�	 �
 �(�
 ) � � .
Since �(�
 � �
 ); �
 + � � is a ∆-fine � -system, we have by the Saks-

Henstock lemma 5 the inequality

� �


 '�	 �

[� (�
 )�(�
 ) *

�
�	 � ]�� � �

and by Lemma 6 we get

� �


 '�	 �

�
�	 � �� � � �

Hence

�
�

 � �� � � + � �


 '�	 �

� (�
 )�(�
 )�� �

� � + � �


 '�	 �

[� (�
 )�(�
 ) *

�
�	 � ]�� + � �


 '�	 �


�
�	 � �� � � + 2� �

This proves the statement because � � 0 can be chosen arbitrarily small.

Remark 12. Theorem 10 represents an analog of absolute continuity of the
indefinite McShane integral which was extended to measurable sets � � � by
Theorem 9.

Theorem 13. If � : � 	 
 is McShane integrable and � � � is measurable
where � � � � , � + 
 are closed sets with � � � � �+1 and �(� � #� � �) = 0, then�

� � � 	
 = lim��

�
� � � 	�� �

Proof. First note that to a given measurable set � a sequence of closed sets
� � with the properties given in the theorem always exists.
Let an arbitrary � � 0 be given and let � � 0 corresponds to it by Lemma 6

and Lemma 8, as well. Let � � � be open such that � � � and �(� �� ) � �
2
.
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Further there is a �0 + 
 such that �(� � � �
0
) � �

2
and therefore �(� �

� �
0
) � � and of course also �(� � � �) � � for all � � �0.
Let the gauge

�
: � 	 (0 �� ) be given by the Lemma 8 for the set � �

0
in

the role of � , in particular we have
$ (� � �(�)) � � � � �

0
for � + � � � �

0
�

Assume that �(� � � � �)� is an arbitrary �
-fine � -partition of � .

Fix an arbitrary � � �0.
By Theorem 9 the gauge

�
can be chosen in such a way that in addition

we have

�
�
� � * �

� � (� �)�(
� �)�� � � �

�
�
� � � 	
 * �

� � (� �) � 	
 (� �)�(
� �)�� � � �

�
�
� � � 	�� * �

� � (� �) � 	 �� (� �)�(
� �)�� � � �

The last two inequalities can be written in the form

�
�
� � � 	
 * �

� ��
 � (� �)�(
� �)�� � � �

�
�
� � � 	�� * �

� ���� � (� �)�(
� �)�� � � �

This gives

�
�
� � � 	
 *

�
� � � 	�� �� � 2� + � �

� ��
 ��� � (� �)�(
� �)�� �

Further by the Saks-Henstock lemma 5 we have

� �
� ��
 ��� � (� �)�(

� �)�� � � �
� ��
 ��� [� (� �)�(

� �) *
�
�� � ]��+

+� �
� ��
 ���

�
�� � �� � � + � �

� ��
 ���
�
�� � ��

while

� �
� ��
 ���

�
�� � �� � �
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by Lemma 6 because we have � � ��
 ��� �(
� �) � �(� � � �

0
) � � . Hence

�
�
� � � 	
 *

�
� � � 	�� �� � 4�

for � � �0 and this proves the theorem.

Theorem 14. If � : � 	 
 is McShane integrable and �1 � �2 � � are closed
sets with �1 � �2 = � then�

� � � 	�1��2
=

�
� � � 	 �1

+

�
� � � 	 �2

�
Proof. Assume that � � 0 is given and that � � 0 corresponds to � by Lemma
8.
Since �1 and �2 are disjoint closed sets, we have dist (�1 � �2) � 0 and

therefore there exist open sets �1 and �2 such that �1 � �1, �2 � �2,

�1 � �2 = �, �(�1 � �1) � �
2
, �(�2 � �2) � �

2
.

Hence �(�1 � �2 � (�1 � �2)) � � �
For the open set � = �1 � �2 and the closed set � = �1 � �2 let the gauge�

: � 	 (0 �+�) be given by Lemma 8.
For a given

�
-fine � -partition �(� � � � �)� of � we have
�
�
� � � 	�1

* �
� � (� �) � 	 �1

(� �)�(
� �)�� � � �

�
�
� � � 	�2

* �
� � (� �) � 	 �2

(� �)�(
� �)�� � � �

�
�
� � � 	 �1��2

* �
� � (� �) � 	�1��2

(� �)�(
� �)�� � �

and this means in other words

�
�
� � � 	�1

* �
� ���1

� (� �)(� �)�(
� �)�� � � �

�
�
� � � 	�2

* �
� ���2

� (� �)(� �)�(
� �)�� � � �

�
�
� � � 	�1��2

* �
� ���1��2

� (� �)(� �)�(
� �)�� � � �
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This yields

�
�
� � � 	�1

+

�
� � � 	�2

*
�
� � � 	�1��2

�� � 3�

and the statement of the theorem is proved because � � 0 can be taken
arbitrarily small.

Theorem 15. If � : � 	 
 is McShane integrable and �1 ��2 � � are
measurable sets with �1 � �2 = � then�

� � � 	

1�
2

=

�
� � � 	


1
+

�
� � � 	


2
�

Proof. By Theorem 14 the statement holds for closed sets, Theorem 13 yields
the result by passing to limits for sequences of closed sets contained in �1,
�2.

Theorem 16. If � : � 	 
 is McShane integrable and � � � � , � + 
 are
measurable sets with � � � � � = � for �  = ! then�

� � � 	� � 
 � =
�
�

�
� � � 	
 � �

Proof. By Theorem 9 all the integrals �� � � 	� � 
 � , �� � � 	
 � , � + 
 exist.
Let � � 0 be given; by the definition of the McShane integral there exist

gauges � : � 	 (0 �+�), � � : � 	 (0 �+�), � + 
 such that

�
�
� � � 	� � 
 � *

�
� � (�� ) � 	� � 
 �(�� )�(�� )�� � �

for any �-fine � -partition �(�� � �� )� of the interval � and
�
�
� � � 	
 � *

�
� � (�� ) � 	
 �(�� )�(�� )�� � �

2�
for every � �-fine � -partition �(�� � �� )� of the interval � , � + 
 .
Assume now that � � 0 corresponds to the given � by Lemma 8 and that

� + 
 is such that �(��
� � �) � �
2
�

Assume further that a closed set � � � is contained in the measurable union#��� � � (� � #��� � �) while
�(���� � � � � ) � �

2
�
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Hence we have
�(�� � � � � ) � �

and there is an open set � � � such that #� � � � � and �(� � � ) � � .
Let

�
: � 	 (0 �+�) be the gauge given by (a) from Lemma 8.

Take
� � = min(

� � � �) � � + 
 � � = min(
� � �)

and let � + 
 be such that � � � . Put
� = min(� � �1 � � � � � � �)

and take an arbitrary � -fine � -partition �(&� �
 � )� of � . For such a partition
we have

�
�
� � � 	� � 
 � *

�
� � (&� ) � 	� � 
 � (&� )�(
 � )�� � � �

�
�
� � � 	
 � *

�
� � (&� ) � 	
 �(&� )�(
 � )�� � �

2� � � = 1 � � � � � �
i.e.

�
�
� � � 	� � 
 � *

�
�
�
�� � 
 �

� (&� )�(
 � )�� � �

and

�
�
� � � 	
 � *

�
�
�
�
 �

� (&� )�(
 � )�� � �
2� � � = 1 � � � � � � �

Therefore

�
�
� � � 	� � 
 � *

��
�=1

�
� � � 	
 � *

�
�
�
�� ��� 
 � � (&� )�(
 � )�� � 2�

and

�
�
� � � 	� � 
 � *

��
�=1

�
� � � 	
 � �� � 2� + � �

�
�
�� ��� 
 � � (&� )�(
 � )�� �

Using Lemma 6 we get

� �
�
�
�� ��� 
 � � (&� )�(
 � )�� � 2�
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and this yields

�
�
� � � 	� � 
 � *

��
�=1

�
� � � 	
 � �� � 4�

and the statement is proved because this can be done for every � � � .
Remark 17. Theorem 16 extends the statement (a) from Lemma 7 to se-
quences of measurable sets an it says that the indefinite McShane integral of
a given McShane integrable � : � 	 
 is countably additive.
The notion of the McShane integral of a function given in Definition 1 is

based on the concept of � -partitions of the interval � .
Let us define the following:
A system (finite collection) of pairs �(�� �� �), � = 1 � � � � � � � with � � � �

measurable, � � � � � = � for �  = ! is called an � �
-system in � .

An � �
-system in � is called an � �

-partition of � if
"#
�=1

� � = � .
Given a gauge ∆ : � 	 (0 �+� ), an � �

-system �(�� �� �), � = 1 � � � � � � � in �
is called ∆-fine if

� � � $ (�� �∆(��)) � � = 1 � � � � � � �
Definition 18. A function � : � 	 
 is McShane� integrable and � + 
 is
its McShane

�
integral over � if for every � � 0 there exists a gauge ∆ : � 	

(0 �+�) such that for every ∆-fine � �
-partition (&� �� �) � � = 1 � � � � � � of � the

inequality

�
"�
�=1

� (&�)�(� �) * � �� � �

holds. Denote
�

= � �� � .
It is clear that if � : � 	 
 is McShane� integrable then � is McShane

integrable in the sense of Definition 1.
We will show that the concept of the McShane

�
integral from Definition

18 is not less general than that of the McShane integral from Definition 1. To
this aim let us prove the next lemma.

Lemma 19. Assume that
� � � is a figure and that � � 0 is given. Let

� : � 	 (0 �+� ) be a gauge and let �(�� �� �) � � = 1 � � � � � � � is such �� + � ,
� � � �

are measurable sets with � � � � � = � for �  = ! and � � � $ (�� � 1
2
�(��)).

Then for � = 1 � � � � � � there exist figures � � � �
such that �(� � � �� ) = 0

for �  = ! and �(� � � � �) � � for � = 1 � � � � � � �
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(� � � � � = � � � � � � � � � � � is the symmetric difference of the sets � � and � �)
� � � $ (�� � �(��)) �

Proof. We prove the statement by induction.
Assume that � = 1, i.e. we have �1 + � and �1 � �

.
Let � � 0 be arbitrary. Then there is a set � � �

which is open in
�

such that � � $ (�1 � �(�1)), �1 � � , �(� � �1) � � and a figure �1 such that
�1 � � and �(� � �1) � �.
We have �(�1 � �1) = �(�1 � �1) + �(�1 � �1) �

� �(� � �1) + �(� � �1) � 2�

and the statement holds in this case if we put � =
�
2
because �1 � � �

$ (�1 � �(�1)).
Coming to the induction step, assume that the statement of the lemma

holds for some � + 
 and let (�0 ��0) � (�1 ��1) � � � � � (�� �� �) are � + 1 point-set
pairs satisfying the assumption. Let � � 0 be arbitrary.
Using the first part of the proof there is a figure �0 contained in

�
, such

that �(�0 � �0) � 2� (13)

and
�0 � $ (�0 � �(�0))

holds.
Put

� �
= cl (

� � �0), (cl (
� � �0) is the closure of the set

� � �0) and let
� �� = � � � � �

for � = 1 � � � � � � . � �
is evidently a figure while �(�� �� �� ) � � =

1 � � � � � � � satisfy the assumptions of the lemma.
By the induction assumption there exist figures �1 � � � � � � � contained in� �
, such that �(� � � �� ) = 0 for �  = ! and

�(� �� � � �) � � � (14)

� � � $ (�� � �(��)) � � = 1 � � � � � � �
We also have �(�0 � � �) = 0 for � = 1 � � � � � �
because � � � � �

= cl (
� � �0).

For � = 1 � � � � � � we have �0 � � � = � and therefore
� � � �0 = � � � (�0 � �0) �

�(� � � �0) � �(�0 � �0) � � � (15)



20 J. Kurzweil, Š. Schwabik

Since � � � � �� � � � � �0 we get

�(� � � � �) = �(� � � � �� ) � � � (16)

On the other hand we have, by (14) and (15),

�(� � � � �) � �(� �� � � �) + �((� � � �0) � � �) � 2�

and this together with (16) shows that for � = 1 � � � � � � we have
�(� � � � �) � 3� �

Taking into account (13) we obtain the result because � � 0 can be taken
arbitrarily small.

Theorem 20. If � : � 	 
 is McShane integrable then � is McShane�
integrable and � �

� � =

�
� � �

Proof. Let � � 0 be given. By the Saks-Henstock lemma 5 there exists a gauge
� : � 	 (0 �+�) such that for every �-fine � -system (�� �
 � ) � ! = 1 � � � � � � of� the inequality

��� [� (�� )�(
 � ) *
���

� ]�� � �

holds. This implies that if �(�� ��� ) � ! = 1 � � � � � � �, �� + � , �� are non-
overlapping figures contained in � with �� � $ (�� � �(�� )) then

��� [� (�� )�(�� ) *
�
�

�
� ]�� � � � (17)

Assume that �(&� �� �) � � = 1 � � � � � � � is an arbitrary 1

2
�-fine � �

-partition of � .
By Theorem 11 there is an � � 0 such that if � � � is measurable and�(� ) � � then

�
�

 � �� � �

� � (18)

By Lemma 19 there exist figures � � � � such that �(� � � �� ) = 0 for �  = !
with �(� � � � �) � min�� � �

� � [max� (�� (&� �� ) + 1]
� (19)

and
� � � $ (�� � �(��))
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for � = 1 � � � � � � .
We have

��� � (&�)�(� �) *
�
� � �� = ��� [� (&�)�(� �) *

�

 �

� ]�� = (20)

= ��� [� (&�)�(� �) + � (&�)[�(� �) * �(� �)]*
*[

�
�

�
� +

�

 � �

�

�
� *

�
�

� �
 �
� ]]�� �

� ��� [� (&�)�(� �) *
�
�

�
� ]�� +

�
� �� (&�)�� )�(� �) * �(� �) )+

+
�
� �

�

 � �

�

�
� �� +

�
� �

�
�

� �
 �
� �� �

Since

)�(� �) * �(� �) ) � �(� � � � �) � �
� � [max� (�� (&� �� ) + 1]

we have�
� �� (&�)�� )�(� �)*�(� �) ) �

�
� �� (&�)�� �

� � [max� (�� (&� �� ) + 1]
� � (21)

and because

�(� � � � �) � �(� � � � �) � � � �(� � � � �) � �(� � � � �) � �
we obtain by (18)

�
� �

�

 � �

�

�
� �� � �

�
�
� = � � �

� �
�

 � �

�

�
� �� � � � (22)

Using the figure version (17) of the Saks-Henstock lemma we obtain finally
from (20), (21) and (22)

��� � (&�)�(� �) *
�
� � �� � 4�

and this shows that � is McShane� integrable and that � �� � = �� � holds.
Hence we arrive at the following result.

Theorem 21. A function � : � 	 
 is McShane integrable if and only if �
is is McShane

�
integrable and both the integrals � �� � , �� � coincide.

Remark 22. The concept of McShane
�
integrability was considered in a more

general setting in Fremlin’s paper [2], 1A Definitions. See also [1], 2H Lemma.
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