LINEAR STIELTJES INTEGRAL EQUATIONS IN BANACH SPACES II; OPERATOR VALUED SOLUTIONS

Štefan Schwabik, Praha

(Received September 30, 1998)

Abstract. This paper is a continuation of [9]. In [9] results concerning equations of the form

$$
x(t)=x(a)+\int_{a}^{t} \mathrm{~d}[A(s)] x(s)+f(t)-f(a)
$$

were presented. The Kurzweil type Stieltjes integration in the setting of [6] for Banach space valued functions was used.

Here we consider operator valued solutions of the homogeneous problem

$$
\Phi(t)=I+\int_{d}^{t} \mathrm{~d}[A(s)] \Phi(s)
$$

as well as the variation-of-constants formula for the former equation.
Keywords: linear Stieltjes integral equations, generalized linear differential equation, equation in Banach space

MSC 2000: 34G10, 45N05

Assume that X is a Banach space and that $L(X)$ is the Banach space of all bounded linear operators $A: X \rightarrow X$ with the uniform operator topology. Defining the bilinear form $B: L(X) \times X \rightarrow X$ by $B(A, x)=A x \in X$ for $A \in L(X)$ and $x \in X$, we obtain in a natural way the bilinear triple $\mathcal{B}=(L(X), X, X)$ (see [6]) because using the usual operator norm we have

$$
\|B(A, x)\|_{X} \leqslant\|A\|_{L(X)}\|x\|_{X}
$$

This work was supported by the grant 201/97/0218 of the Grant Agency of the Czech Republic.

Similarly, if we define the bilinear form $B^{*}: L(X) \times L(X) \rightarrow L(X)$ by the relation $B^{*}(A, C)=A C \in L(X)$ for $A, C \in L(X)$ where $A C$ is the composition of the linear operators A and C we get the bilinear triple $\mathcal{B}^{*}=(L(X), L(X), L(X))$ because we have

$$
\left\|B^{*}(A, C)\right\|_{L(X)} \leqslant\|A C\|_{L(X)} \leqslant\|A\|_{L(X)}\|C\|_{L(X)}
$$

Assume that $[a, b] \subset \mathbb{R}$ is a bounded interval.
Given $A:[a, b] \rightarrow L(X)$, the function A is of bounded variation on $[a, b]$ if

$$
\operatorname{var}_{[a, b]}(A)=\sup \left\{\sum_{j=1}^{k}\left\|A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right\|_{L(X)}\right\}<\infty
$$

where the supremum is taken over all finite partitions

$$
D: a=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{k-1}<\alpha_{k}=b
$$

of the interval $[a, b]$. The set of all functions $A:[a, b] \rightarrow L(X)$ with $\operatorname{var}_{[a, b]}(A)<\infty$ will be denoted by $B V([a, b] ; L(X))$.

For $A:[a, b] \rightarrow L(X)$ and a partition D of the interval $[a, b]$ define

$$
V_{a}^{b}(A, D)=\sup \left\{\left\|\sum_{j=1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] y_{j}\right\|_{X}\right\}
$$

where the supremum is taken over all possible choices of $y_{j} \in X, j=1, \ldots, k$ with $\left\|y_{j}\right\| \leqslant 1$ and similarly

$$
\stackrel{*}{V}_{a}^{b}(A, D)=\sup \left\{\left\|\sum_{j=1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)}\right\}
$$

where the supremum is taken over all possible choices of $C_{j} \in L(X), j=1, \ldots, k$ with $\left\|C_{j}\right\|_{L(X)} \leqslant 1$.

Define

$$
(\mathcal{B}) \operatorname{var}_{[a, b]}(A)=\sup V_{a}^{b}(A, D)
$$

and

$$
\left(\mathcal{B}^{*}\right) \operatorname{var}_{[a, b]}(A)=\sup \stackrel{*}{V}_{a}^{b}(A, D)
$$

where the supremum is taken over all finite partitions

$$
D: a=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{k-1}<\alpha_{k}=b
$$

of the interval $[a, b]$.
The function $A:[a, b] \rightarrow L(X)$ with $(\mathcal{B}) \operatorname{var}_{[a, b]}(A)<\infty$ is called a function with bounded \mathcal{B}-variation on $[a, b]$ and similarly if $\left(\mathcal{B}^{*}\right) \underset{[a, b]}{\operatorname{var}}(A)<\infty$ then A is of bounded \mathcal{B}^{*}-variation on $[a, b]([3])$.

We denote by $(\mathcal{B}) B V([a, b] ; L(X))$ the set of all functions $A:[a, b] \rightarrow L(X)$ with $(\mathcal{B}) \operatorname{var}(A)<\infty$ and by $\left(\mathcal{B}^{*}\right) B V([a, b] ; L(X))$ the set of all functions $A:[a, b] \rightarrow$ $L(X)$ with $\left(\mathcal{B}^{*}\right) \operatorname{var}_{[a, b]}(A)<\infty$.

In [9, Prop. 1.1 and 1.2$]$ it is shown that

$$
B V([a, b] ; L(X)) \subset(\mathcal{B}) B V([a, b] ; L(X))=\left(\mathcal{B}^{*}\right) B V([a, b] ; L(X))
$$

holds.
Given $x:[a, b] \rightarrow X$, the function x is called regulated on $[a, b]$ if it has one-sided limits at every point of $[a, b]$, i.e. if for every $s \in[a, b)$ there is a value $x(s+) \in X$ such that

$$
\lim _{t \rightarrow s+}\|x(t)-x(s+)\|_{X}=0
$$

and if for every $s \in(a, b]$ there is a value $x(s-) \in X$ such that

$$
\lim _{t \rightarrow s-}\|x(t)-x(s-)\|_{X}=0
$$

The set of all regulated functions $x:[a, b] \rightarrow X$ will be denoted by $G([a, b] ; X)$ and similarly we denote the set of all regulated functions $A:[a, b] \rightarrow L(X)$ by $G([a, b] ; L(X))$.

If $\mathcal{B}=(L(X), X, X)$ is the bilinear triple of Banach spaces mentioned above then a function $A:[a, b] \rightarrow L(X)$ is called \mathcal{B}-regulated on $[a, b]$ if for every $y \in X,\|y\|_{X} \leqslant 1$, the function $A y:[a, b] \rightarrow X$ given by $t \in[a, b] \mapsto A(t) y \in X$ for $t \in[a, b]$ is regulated, i.e. $A y \in G([a, b] ; X)$ for every $y \in X,\|y\|_{X} \leqslant 1$.

We denote by $(\mathcal{B}) G([a, b] ; L(X))$ the set of all \mathcal{B}-regulated functions $A:[a, b] \rightarrow$ $L(X)$.

1. Equations with operator valued solutions

For $[a, b]=[0,1]$ we denote shortly

$$
\begin{aligned}
B V(L(X)) & =B V([0,1] ; L(X)),(\mathcal{B}) B V(L(X)) \\
G(L(X)) & =G([0,1] ; L(X)) \text { and }(\mathcal{B}) G(L(X))=(\mathcal{B}) G([0,1] ; L(X))
\end{aligned}
$$

Assume that $A:[0,1] \rightarrow L(X)$ satisfies

$$
\begin{equation*}
A \in(\mathcal{B}) B V(L(X)) \cap(\mathcal{B}) G(L(X)) \tag{1.1}
\end{equation*}
$$

and the following condition (E) (see [9]):
for every $d \in[0,1]$ there are $0<\varrho=\varrho(d)<1$ and $\Delta=\Delta(d)>0$ such that
(E+)
$(\mathcal{B}) \operatorname{var}_{(d, d+\Delta] \cap[0,1]}(A)<\varrho$
and
(E-)
$(\mathcal{B}) \operatorname{var}_{[d-\Delta, d) \cap[0,1]}(A)<\varrho$.

Taking the bilinear triple $\mathcal{B}^{*}=(L(X), L(X), L(X))$, by Proposition 1.1 in [9] we have

$$
(\mathcal{B}) B V(L(X))=\left(\mathcal{B}^{*}\right) B V(L(X))
$$

and

$$
(\mathcal{B}) \operatorname{var}_{[a, b]}^{\operatorname{ar}}(A)=\left(\mathcal{B}^{*}\right) \operatorname{var}_{[a, b]}^{\operatorname{var}}(A)
$$

for every $[a, b] \subset[0,1]$. Therefore condition (1.1) reads

$$
\begin{equation*}
A \in\left(\mathcal{B}^{*}\right) B V(L(X)) \cap(\mathcal{B}) G(L(X)) \tag{1.1}
\end{equation*}
$$

and in condition (E) the symbol \mathcal{B} can also be replaced by \mathcal{B}^{*}, i.e. condition (E) reads for every $d \in[0,1]$ there are $0<\varrho=\varrho(d)<1$ and $\Delta=\Delta(d)>0$ such that

$$
\begin{equation*}
\left(\mathcal{B}^{*}\right) \operatorname{var}_{(d, d+\Delta] \cap[0,1]}(A)<\varrho \tag{E+}
\end{equation*}
$$

and
(E-)

$$
\left(\mathcal{B}^{*}\right)_{[d-\Delta, d) \cap[0,1]} \operatorname{var}(A)<\varrho .
$$

Hence the results presented in Section 2 from [9] can be used for equations of the form

$$
\begin{equation*}
Y(t)=\widetilde{Y}+\int_{d}^{t} \mathrm{~d}[A(s)] Y(s)+F(t)-F(d) \tag{1.2}
\end{equation*}
$$

for every $t \in[0,1]$ where $F \in G(L(X)), d \in[0,1]$ and $\widetilde{Y} \in L(X)$.

The operator valued function $Y:[\alpha, \beta] \rightarrow L(X)$ is called a solution of (1.2) on an interval $[\alpha, \beta] \subset[0,1]$ if Y satisfies (1.2) for every $t \in[\alpha, \beta]$. If $d \in[\alpha, \beta]$ then of course we have $Y(d)=\widetilde{Y}$ for this solution.

With regard to the above mentioned facts we obtain by a simple reformulation of Proposition 2.4 and Theorem 2.10 from [9] the following
1.1. Theorem. Assume that $A:[0,1] \rightarrow L(X)$ satisfies (1.1) and condition (E). Then for every $d \in[0,1], \widetilde{Y} \in X, F \in G(L(X))$ there is a $\Delta>0$ such that for the interval $J_{d}=[d-\Delta, d+\Delta] \cap[0,1]$ there is a unique function $Y \in G\left(J_{d} ; L(X)\right)$ such that

$$
Y(t)=\widetilde{Y}+\int_{d}^{t} \mathrm{~d}[A(s)] Y(s)+F(t)-F(d), t \in J_{d}
$$

i.e. $Y(t)$ is a local solution of the operator valued equation (1.2) on $J_{d}=[d-\Delta, d+$ $\Delta] \cap[0,1]$.
If

$$
\begin{equation*}
A \in(\mathcal{B}) B V(L(X)) \cap G(L(X)) \tag{1.3}
\end{equation*}
$$

condition (U):
(U+)

$$
\left[I+\Delta^{+} A(t)\right]^{-1} \in L(X) \text { exists for every } t \in[0,1)
$$

and

$$
\begin{equation*}
\left[I-\Delta^{-} A(t)\right]^{-1} \in L(X) \text { exists for every } t \in(0,1] \tag{U-}
\end{equation*}
$$

and (E) hold, then for every choice of $d \in[0,1], \widetilde{Y} \in L(X), F \in G([0,1] ; L(X))$ there exists a unique $Y \in G([0,1] ; X)$ which is a (global) solution of (1.2) on $[0,1]$.

Let us consider the special case of the equation (1.2) with F a constant, i.e. the so called homogeneous equation

$$
\begin{equation*}
Y(t)=\widetilde{Y}+\int_{d}^{t} \mathrm{~d}[A(s)] Y(s) \tag{1.4}
\end{equation*}
$$

Theorem 1.1 applies to this equation and therefore there is a unique (global) solution to this equation and this operator valued solution is regulated provided $A:[0,1] \rightarrow L(X)$ satisfies (1.3), (E) and (U).
Together with (1.4) let us consider the equation

$$
\begin{equation*}
\Phi(t)=I+\int_{d}^{t} \mathrm{~d}[A(s)] \Phi(s) \tag{1.5}
\end{equation*}
$$

where $I \in L(X)$ is the identity operator.
Clearly every solution $Y:[0,1] \rightarrow L(X)$ of (1.4) can be written in the form

$$
Y(t)=\Phi(t) \widetilde{Y}, \quad t \in[0,1]
$$

Let us now consider the properties of the solution $\Phi:[0,1] \rightarrow L(X)$ of (1.5).
1.2. Lemma. Assume that $A:[0,1] \rightarrow L(X)$ satisfies (1.3), (E) and (U). Then for the solution $\Phi:[0,1] \rightarrow L(X)$ of (1.5) we have

$$
\Phi \in(\mathcal{B}) B V(L(X)) \cap G(L(X))
$$

and there is a constant $K>0$ such that $\|\Phi(t)\| \leqslant K$ for every $t \in[0,1]$.
Proof. By Theorem $1.1 \Phi \in G([0,1] ; L(X))$ and therefore there exists a $K>0$ such that $\|\Phi(t)\| \leqslant K$ for every $t \in[0,1]$. It remains to show that $\Phi \in(\mathcal{B}) B V([0,1] ; L(X))$.

Assume that

$$
D: 0=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{k-1}<\alpha_{k}=1
$$

is an arbitrary partition of the interval $[0,1]$.
For any $y_{j} \in X, j=1, \ldots, k$ with $\left\|y_{j}\right\| \leqslant 1$ we have

$$
\left\|\sum_{j=1}^{k}\left[\Phi\left(\alpha_{j}\right)-\Phi\left(\alpha_{j-1}\right)\right] y_{j}\right\|_{X}=\left\|\sum_{j=1}^{k} \int_{\alpha_{j-1}}^{\alpha_{j}} \mathrm{~d}[A(s)] \Phi(s) y_{j}\right\|_{X}
$$

Define

$$
\varphi(s)=\Phi(s) y_{j} \text { for } s \in\left(\alpha_{j-1}, \alpha_{j}\right) \text { and } \varphi(s)=0 \text { for } s=\alpha_{j} .
$$

Evidently $\|\varphi(s)\| \leqslant K$.
Then by 1.18 from [9] we get

$$
\begin{aligned}
& \int_{\alpha_{j-1}}^{\alpha_{j}} \mathrm{~d}[A(s)] \Phi(s) y_{j}=\int_{\alpha_{j-1}}^{\alpha_{j}} \mathrm{~d}[A(s)] \varphi(s) \\
& \quad+\left[A\left(\alpha_{j-1}+\right)-A\left(\alpha_{j-1}\right)\right] \Phi\left(\alpha_{j-1}\right) y_{j}+\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j}-\right)\right] \Phi\left(\alpha_{j}\right) y_{j}
\end{aligned}
$$

and

$$
\begin{aligned}
& \| \sum_{j=1}^{k} \int_{\alpha_{j-1}}^{\alpha_{j}} \mathrm{~d}\left[A(s) \Phi(s) y_{j}\left\|_{X}=\right\| \sum_{j=1}^{k} \int_{\alpha_{j-1}}^{\alpha_{j}} \mathrm{~d}[A(s)] \varphi(s)\right. \\
& \quad+\left[A\left(\alpha_{j-1}+\right)-A\left(\alpha_{j-1}\right)\right] \Phi\left(\alpha_{j-1}\right) y_{j}+\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j}-\right)\right] \Phi\left(\alpha_{j}\right) y_{j} \|_{X} \\
& =\| \int_{0}^{1} \mathrm{~d}[A(s)] \varphi(s)+\sum_{j=1}^{k}\left[A\left(\alpha_{j-1}+\right)-A\left(\alpha_{j-1}\right)\right] \Phi\left(\alpha_{j-1}\right) y_{j} \\
& \quad+\sum_{j=1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j}-\right)\right] \Phi\left(\alpha_{j}\right) y_{j}\left\|_{X} \leqslant\right\| \int_{0}^{1} \mathrm{~d}[A(s)] \varphi(s) \|_{X} \\
& \quad+\left\|\sum_{j=1}^{k}\left[A\left(\alpha_{j-1}+\right)-A\left(\alpha_{j-1}\right)\right] \Phi\left(\alpha_{j-1}\right) y_{j}\right\|_{X}+\left\|\sum_{j=1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j}-\right)\right] \Phi\left(\alpha_{j}\right) y_{j}\right\|_{X} .
\end{aligned}
$$

For a given $\eta>0$ let us choose a $\theta>0$ such that

$$
\left\|A\left(\alpha_{j-1}+\theta\right)-A\left(\alpha_{j-1}+\right)\right\|_{L(X)}<\frac{\eta}{k+1}
$$

and

$$
\left\|A\left(\alpha_{j}-\theta\right)-A\left(\alpha_{j}-\right)\right\|_{L(X)}<\frac{\eta}{k+1}
$$

for all $j=1, \ldots, k$. Then

$$
\begin{aligned}
& \| \sum_{j=1}^{k} {\left[A\left(\alpha_{j-1}+\right)-A\left(\alpha_{j-1}\right)\right] \Phi\left(\alpha_{j-1}\right) y_{j} \|_{X} } \\
&=\left\|\sum_{j=1}^{k}\left[A\left(\alpha_{j-1}+\right)-A\left(\alpha_{j-1}+\theta\right)+A\left(\alpha_{j-1}+\theta\right)-A\left(\alpha_{j-1}\right)\right] \Phi\left(\alpha_{j-1}\right) y_{j}\right\|_{X} \\
& \leqslant\left\|\sum_{j=1}^{k}\left[A\left(\alpha_{j-1}+\right)-A\left(\alpha_{j-1}+\theta\right)\right] \Phi\left(\alpha_{j-1}\right) y_{j}\right\|_{X} \\
&+\left\|\sum_{j=1}^{k}\left[A\left(\alpha_{j-1}+\theta\right)-A\left(\alpha_{j-1}\right)\right] \Phi\left(\alpha_{j-1}\right) y_{j}\right\|_{X} \\
& \quad<\sum_{j=1}^{k} \frac{K \eta}{k+1}+\left\|\sum_{j=1}^{k}\left[A\left(\alpha_{j-1}+\theta\right)-A\left(\alpha_{j-1}\right)\right] \Phi\left(\alpha_{j-1}\right) y_{j}\right\|_{X} \\
& \quad<K \eta+K(\mathcal{B}) \underset{[0,1]}{\operatorname{var}(A)}
\end{aligned}
$$

and similarly also

$$
\left\|\sum_{j=1}^{k}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j}-\right)\right] \Phi\left(\alpha_{j}\right) y_{j}\right\|_{X}<K \eta+K(\mathcal{B}) \underset{[0,1]}{\operatorname{var}}(A)
$$

By 1.11 from [9] we have further

$$
\left\|\int_{0}^{1} \mathrm{~d}[A(s)] \varphi(s)\right\|_{X} \leqslant K(\mathcal{B}) \operatorname{var}_{[0,1]}(A)
$$

and finally we obtain

$$
\| \sum_{j=1}^{k}\left[\Phi\left(\alpha_{j}\right)-\Phi\left(\alpha_{j-1}\right) y_{j}\left\|_{X}=\right\| \sum_{j=1}^{k} \int_{\alpha_{j-1}}^{\alpha_{j}} \mathrm{~d}[A(s)] \Phi(s) y_{j} \|_{X}<2 K \eta+3 K(\mathcal{B}) \operatorname{var}_{[0,1]}(A)\right.
$$

Passing to the corresponding suprema we arrive easily at

$$
(\mathcal{B}) \operatorname{var}_{[0,1]}^{\operatorname{var}}(\Phi) \leqslant 3 K(\mathcal{B}) \operatorname{var}_{[0,1]}(A)<\infty,
$$

i.e. $\Phi \in(\mathcal{B}) B V([0,1] ; L(X))$.
1.3. Lemma. Assume that $A:[0,1] \rightarrow L(X)$ satisfies (1.3), (E) and (U).

Then the solution $\Phi:[0,1] \rightarrow L(X)$ of (1.5) has an inverse $[\Phi(t)]^{-1} \in L(X)$ for every $t \in[0,1]$.

Proof. For $t=d$ we have $\Phi(t)=\Phi(d)=I$ and the inverse $[\Phi(t)]^{-1}$ evidently exists for this value.

Assume that there is a point $t^{*} \in[0,1]$ such that the inverse $\left[\Phi\left(t^{*}\right)\right]^{-1}$ does not exist. Then there exists $y \in X$ such that the equation

$$
\Phi\left(t^{*}\right) z=y
$$

has no solution in X. Assume that $\Psi:[0,1] \rightarrow L(X)$ is a solution of the operator valued equation

$$
\Psi(t)=I+\int_{t^{*}}^{t} \mathrm{~d}[A(s)] \Psi(s)
$$

this solution exists and is uniquely determined by the second part of Theorem 1.1. Let us set $z=\Psi(d) y$. The function $x:[0,1] \rightarrow X$ given by $x(t)=\Psi(t) y$ is a solution of the equation

$$
x(t)=y+\int_{t^{*}}^{t} \mathrm{~d}[A(s)] x(s)
$$

with $x\left(t^{*}\right)=y$ and $x(d)=\Psi(d) y$. On the other hand, $\varphi(t)=\Phi(t) z$ is a solution of

$$
\varphi(t)=z+\int_{d}^{t} \mathrm{~d}[A(s)] \varphi(s)
$$

where $\varphi(d)=z=\Psi(d) y=x(d)$ and

$$
x(t)=x(d)+\int_{d}^{t} \mathrm{~d}[A(s)] x(s)
$$

Hence by the uniqueness of a solution stated in Theorem 2.10 from [9] we have $x(t)=\varphi(t)$ for all $t \in[0,1]$. Therefore

$$
x\left(t^{*}\right)=y=\varphi\left(t^{*}\right)=\Phi\left(t^{*}\right) z=\Phi\left(t^{*}\right) \Psi(d) y,
$$

i.e. $z=\Psi(d) y \in X$ is a solution of the equation $\Phi\left(t^{*}\right) z=y$. This contradicts the assumption and proves that the operator $\Phi(t) \in L(X)$ has an inverse for every $t \in[0,1]$.
1.4. Lemma. Assume that $A:[0,1] \rightarrow L(X)$ satisfies (1.3), (E) and (U).

Then the inverse $[\Phi(t)]^{-1}=\Phi^{-1}(t)$ to the solution $\Phi:[0,1] \rightarrow L(X)$ of (1.5) belongs to $G(L(X))$ and there is a constant $L>0$ such that

$$
\left\|\Phi^{-1}(t)\right\|_{L(X)} \leqslant L
$$

for every $t \in[0,1]$.
Proof. By Theorem 1.1 we have $\Phi \in G(L(X))$ and therefore the onesided limits of this function exist at every point of $[0,1]$. E. g., the limit $\lim _{r \rightarrow t+} \Phi(r)$ exists for every $t \in[0,1)$ and by 1.18 from [9] we have

$$
\begin{aligned}
\lim _{r \rightarrow t+} \Phi(r)= & I+\lim _{r \rightarrow t+} \int_{d}^{r} \mathrm{~d}[A(s)] \Phi(s)=I+\int_{d}^{t} \mathrm{~d}[A(s)] \Phi(s) \\
& +\lim _{r \rightarrow t+} \int_{t}^{r} \mathrm{~d}[A(s)] \Phi(s)=\Phi(t)+\lim _{r \rightarrow t+} \int_{t}^{r} \mathrm{~d}[A(s)] \Phi(s) \\
= & \Phi(t)+[A(t+)-A(t)] \Phi(t)=\left[I+\Delta^{+} A(t)\right] \Phi(t)
\end{aligned}
$$

Hence $\Phi(t+)=\left[I+\Delta^{+} A(t)\right] \Phi(t)$ and because $\Phi^{-1}(t)$ exists by Lemma 1.3 and the inverse $\left[I+\Delta^{+} A(t)\right]^{-1}$ exists by ($\mathrm{U}+$) from the assumption (U) the inverse $[\Phi(t+)]^{-1}=\Phi^{-1}(t+)$ also exists and we have the relation

$$
[\Phi(t+)]^{-1}=\Phi^{-1}(t+)=\Phi^{-1}(t) \cdot\left[I+\Delta^{+} A(t)\right]^{-1}, \quad t \in[0,1)
$$

Similarly we have also

$$
\Phi^{-1}(t-)=\Phi^{-1}(t) \cdot\left[I-\Delta^{-} A(t)\right]^{-1}, \quad t \in(0,1]
$$

where $\Phi^{-1}(t-)=[\Phi(t-)]^{-1}$.
Using the continuity of the operation of taking an inverse (see [2], p. 624) we obtain

$$
\lim _{r \rightarrow t+} \Phi^{-1}(r)=\Phi^{-1}(t+) \text { for } t \in[0,1)
$$

and

$$
\lim _{r \rightarrow t-} \Phi^{-1}(r)=\Phi^{-1}(t-) \text { for } t \in(0,1]
$$

because $\lim _{r \rightarrow t+} \Phi(r)=\Phi(t+)$ for $t \in[0,1)$ and $\lim _{r \rightarrow t-} \Phi(r)=\Phi(t-)$ for $t \in(0,1]$.
Hence the operator valued function $\Phi^{-1}:[0,1] \rightarrow L(X)$ belongs to the space $G(L(X))$ and it is therefore bounded, i.e. there is an $L \geqslant 0$ such that

$$
\left\|\Phi^{-1}(t)\right\|_{L(X)} \leqslant L
$$

for every $t \in[0,1]$.
1.5. Lemma. Assume that $A:[0,1] \rightarrow L(X)$ satisfies (1.3), (E) and (U).

Assume that $d \in[0,1]$ is fixed and that $\Phi:[0,1] \rightarrow L(X)$ is the solution of (1.5). Then for every $t_{0} \in[0,1]$ and $\widetilde{x} \in X$, the unique solution $x:[0,1] \rightarrow X$ of the homogeneous equation

$$
x(t)=\widetilde{x}+\int_{t_{0}}^{t} \mathrm{~d}[A(s)] x(s)
$$

is given by the relation

$$
x(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right) \widetilde{x}, \quad t \in[0,1] .
$$

Proof. The solution x exists and is unique by Theorem 2.11 in [9]. Using (1.1) we have

$$
\begin{aligned}
x(t) & =\Phi(t) \Phi^{-1}\left(t_{0}\right) \widetilde{x}=\left[I+\int_{d}^{t} \mathrm{~d}[A(s)] \Phi(s)\right] \Phi^{-1}\left(t_{0}\right) \widetilde{x} \\
& =\left[I+\int_{d}^{t_{0}} \mathrm{~d}[A(s)] \Phi(s)+\int_{t_{0}}^{t} \mathrm{~d}[A(s)] \Phi(s)\right] \Phi^{-1}\left(t_{0}\right) \widetilde{x} \\
& =\Phi\left(t_{0}\right) \Phi^{-1}\left(t_{0}\right) \widetilde{x}+\int_{t_{0}}^{t} \mathrm{~d}[A(s)] \Phi(s) \Phi^{-1}\left(t_{0}\right) \widetilde{x}=\widetilde{x}+\int_{t_{0}}^{t} \mathrm{~d}[A(s)] x(s)
\end{aligned}
$$

and the lemma is proved.

2. Variation of constants

2.1. Lemma. Assume that $A:[0,1] \rightarrow L(X)$ satisfies (1.3), (E) and (U). Let $\Phi:[0,1] \rightarrow L(X)$ be the solution of (1.5) and assume that its inverse $\Phi^{-1}:[0,1] \rightarrow$ $L(X)$ given by Lemma 1.3 is such that $\Phi^{-1} \in(\mathcal{B}) B V(L(X))$.

Then for every $g \in G(X), t \in[0,1]$ the equality
(2.1) $\int_{d}^{t} \mathrm{~d}[A(r)] \Phi(r) \int_{d}^{r} \mathrm{~d}\left[\Phi^{-1}(s)\right] g(s)=\Phi(t) \int_{d}^{t} \mathrm{~d}\left[\Phi^{-1}(s)\right] g(s)+\int_{d}^{t} \mathrm{~d}[A(s)] g(s)$
holds.
Proof. Since $g \in G(X)$ and $\Phi^{-1} \in(\mathcal{B}) B V(L(X))$, the integrals on both sides of (2.1) exist by [6, Theorem 11] (see also [9, 1.12]).

To show that the equality (2.1) is valid for every regulated function $g:[0,1] \rightarrow X$ it is sufficient to prove it for an arbitrary finite step function, because the finite step functions are dense in the space $G(X)$ (see [2]).

For a given $\alpha \in[0,1], c \in X$ and for $s \in[0,1]$ we define

$$
\psi_{\alpha}^{+}(s)=0 \text { if } s \leqslant \alpha, \quad \psi_{\alpha}^{+}(s)=c \text { if } s>\alpha
$$

and

$$
\psi_{\alpha}^{-}(s)=0 \text { if } s<\alpha, \quad \psi_{\alpha}^{-}(s)=c \text { if } s \geqslant \alpha
$$

It is a matter of routine to verify that every finite step function can be expressed in the form of a finite sum of functions of the the type ψ_{α}^{+}and ψ_{α}^{-}. Hence by the linearity of the integral it suffices to show that (2.1) holds for functions of this type.

Let us prove e.g. that (2.1) is satisfied for the function ψ_{α}^{+}.
Assume that $\alpha<d$. Then

$$
\int_{d}^{r} \mathrm{~d}_{s}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s)=\left[\Phi^{-1}(r)-\Phi^{-1}(d)\right] c \text { if } r>\alpha
$$

and

$$
\begin{equation*}
\int_{d}^{r} \mathrm{~d}_{s}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s)=\left[\Phi^{-1}(\alpha+)-\Phi^{-1}(d)\right] c \quad \text { if } \quad r \leqslant \alpha . \tag{2.2}
\end{equation*}
$$

Hence for $t>\alpha$ we have

$$
\begin{align*}
& \int_{d}^{t} \mathrm{~d}[A(r)] \Phi(r) \int_{d}^{r} \mathrm{~d}_{s}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s) \tag{2.3}\\
& =\int_{d}^{t} \mathrm{~d}[A(r)] \Phi(r)\left[\Phi^{-1}(r)-\Phi^{-1}(d)\right] c=\int_{d}^{t} \mathrm{~d}[A(r)]\left[I-\Phi(r) \Phi^{-1}(d)\right] c \\
& =[A(t)-A(d)] c-[\Phi(t)-\Phi(d)] \Phi^{-1}(d) c=[A(t)-A(d)] c+c-\Phi(t) \Phi^{-1}(d) c
\end{align*}
$$

If $t \leqslant \alpha$ then

$$
\begin{aligned}
& \int_{d}^{t} \mathrm{~d}[A(r)] \Phi(r) \int_{d}^{r} \mathrm{~d}_{s}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s)=-\int_{t}^{d} \mathrm{~d}[A(r)] \Phi(r) \int_{d}^{r} \mathrm{~d}_{s}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s) \\
& \quad=-\left(\int_{t}^{\alpha} \mathrm{d}[A(r)] \Phi(r) \int_{d}^{r} \mathrm{~d}_{s}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s)+\int_{\alpha}^{d} \mathrm{~d}[A(r)] \Phi(r) \int_{d}^{r} \mathrm{~d}_{s}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\alpha}^{d} \mathrm{~d}[A(r)] \Phi(r) \int_{d}^{r} \mathrm{~d}_{s}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s) \\
&= {[A(\alpha+)-A(\alpha)] \Phi(\alpha)\left[\Phi^{-1}(\alpha+)-\Phi^{-1}(d)\right] c } \\
& \quad+\lim _{\delta \rightarrow 0+} \int_{\alpha+\delta}^{d} \mathrm{~d}[A(r)] \Phi(r)\left[\Phi^{-1}(r)-\Phi^{-1}(d)\right] c \\
&= {[A(\alpha+)-A(\alpha)] \Phi(\alpha)\left[\Phi^{-1}(\alpha+)-\Phi^{-1}(d)\right] c } \\
& \quad+\lim _{\delta \rightarrow 0+} \int_{\alpha+\delta}^{d} \mathrm{~d}[A(r)] c-\lim _{\delta \rightarrow 0+} \int_{\alpha+\delta}^{d} \mathrm{~d}[A(r)] \Phi(r) \Phi^{-1}(d) c \\
&= {[A(\alpha+)-A(\alpha)] \Phi(\alpha)\left[\Phi^{-1}(\alpha+)-\Phi^{-1}(d)\right] c+[A(d)-A(\alpha+)] c } \\
& \quad[\Phi(d)-\Phi(\alpha+)] \Phi^{-1}(d) c .
\end{aligned}
$$

Further we have

$$
\int_{t}^{\alpha} \mathrm{d}[A(r)] \Phi(r) \int_{d}^{r} \mathrm{~d}_{s}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s)=[\Phi(\alpha)-\Phi(t)]\left[\Phi^{-1}(\alpha+)-\Phi^{-1}(d)\right] c
$$

and

$$
\begin{array}{rl}
\int_{d}^{t} & \mathrm{~d}[A(r)] \Phi(r) \int_{d}^{r} \mathrm{~d}_{s}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s) \\
= & -\left\{[A(\alpha+)-A(\alpha)] \Phi(\alpha)\left[\Phi^{-1}(\alpha+)-\Phi^{-1}(d)\right] c+[A(d)-A(\alpha+)] c\right. \\
& \left.-[\Phi(d)-\Phi(\alpha+)] \Phi^{-1}(d) c+[\Phi(\alpha)-\Phi(t)]\left[\Phi^{-1}(\alpha+)-\Phi^{-1}(d)\right] c\right\} .
\end{array}
$$

Since $[A(\alpha+)-A(\alpha)] \Phi(\alpha)=\Delta^{+} A(\alpha) \Phi(\alpha)=\Phi(\alpha+)-\Phi(\alpha)$ we have

$$
\begin{align*}
& \int_{d}^{t} \mathrm{~d}[A(r)] \Phi(r) \int_{d}^{r} \mathrm{~d}_{s}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s) \\
&=-\left\{[\Phi(\alpha+)-\Phi(\alpha)]\left[\Phi^{-1}(\alpha+)-\Phi^{-1}(d)\right]+[A(d)-A(\alpha+)]\right. \\
&-I+\Phi(\alpha+) \Phi^{-1}(d)+\Phi(\alpha) \Phi^{-1}(\alpha+)-\Phi(\alpha) \Phi^{-1}(d) \tag{2.4}\\
&\left.-\Phi(t) \Phi^{-1}(\alpha+)+\Phi(t) \Phi^{-1}(d)\right\} c \\
&=-\left\{[A(d)-A(\alpha+)]-\Phi(t)\left[\Phi^{-1}(\alpha+)-\Phi^{-1}(d)\right]\right\} c \\
&= {[A(\alpha+)-A(d)] c+\Phi(t)\left[\Phi^{-1}(\alpha+)-\Phi^{-1}(d)\right] c }
\end{align*}
$$

for $t \leqslant \alpha$.
For the right hand side of (2.1) we use (2.2) for obtaining

$$
\Phi(t) \int_{d}^{t} \mathrm{~d}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s)=\Phi(t)\left[\Phi^{-1}(t)-\Phi^{-1}(d)\right] c \text { if } t>\alpha
$$

and

$$
\begin{equation*}
\Phi(t) \int_{d}^{t} \mathrm{~d}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s)=\left[\Phi^{-1}(\alpha+)-\Phi^{-1}(d)\right] c \text { if } t \leqslant \alpha . \tag{2.5}
\end{equation*}
$$

Now it is a matter of routine to show that

$$
\int_{d}^{t} \mathrm{~d}[A(s)] \psi_{\alpha}^{+}(s)=[A(t)-A(d)] c \text { if } t>\alpha
$$

and

$$
\begin{equation*}
\int_{d}^{t} \mathrm{~d}[A(s)] \psi_{\alpha}^{+}(s)=[A(\alpha+)-A(d)] c \text { if } t \leqslant \alpha . \tag{2.6}
\end{equation*}
$$

Using (2.5) and (2.6) we obtain

$$
\begin{aligned}
& \Phi(t) \int_{d}^{t} \mathrm{~d}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s)+\int_{d}^{t} \mathrm{~d}[A(s)] \psi_{\alpha}^{+}(s) \\
& \quad=-\Phi(t)\left[\Phi^{-1}(t)-\Phi^{-1}(d)\right] c+[A(t)-A(d)] c \text { if } t>\alpha
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi(t) \int_{d}^{t} \mathrm{~d}\left[\Phi^{-1}(s)\right] \psi_{\alpha}^{+}(s)+\int_{d}^{t} \mathrm{~d}[A(s)] \psi_{\alpha}^{+}(s) \\
& \quad=\left[\Phi^{-1}(\alpha+)-\Phi^{-1}(d)\right] c+[A(\alpha+)-A(d)] c \text { if } t \leqslant \alpha .
\end{aligned}
$$

Looking at (2.3) and (2.4) we can see immediately that the equality (2.1) holds for the function ψ_{α}^{+}if $\alpha<d$.

For $\alpha \geqslant d$ as well as for the case of the function ψ_{α}^{-}the result can be proved similarly. The computations are straightforward but slightly tedious.

Let us assume that $A:[0,1] \rightarrow L(X)$ satisfies (1.3), (E) and (U).
Let us consider the equation

$$
\begin{equation*}
x(t)=\widetilde{x}+\int_{t_{0}}^{t} \mathrm{~d}[A(s)] x(s)+f(t)-f\left(t_{0}\right) . \tag{2.7}
\end{equation*}
$$

By [9, Theorem 2.10] we obtain that
for every choice of $t_{0} \in[0,1], \widetilde{x} \in X, f \in G(X)$ there exists $x \in G(X)$ such that

$$
x(t)=\widetilde{x}+\int_{t_{0}}^{t} \mathrm{~d}[A(s)] x(s)+f(t)-f\left(t_{0}\right)
$$

for every $t \in[0,1]$.
This solution of (2.7) is determined uniquely.
2.2. Theorem. Assume that $A:[0,1] \rightarrow L(X)$ satisfies (1.3), (E) and (U). Let $\Phi:[0,1] \rightarrow L(X)$ be the solution of (1.5) and assume that its inverse $\Phi^{-1}:[0,1] \rightarrow$ $L(X)$ given by Lemma 1.3 is such that $\Phi^{-1} \in(\mathcal{B}) B V(L(X))$.

Then for every $t_{0} \in[0,1], \widetilde{x} \in X$ and $f \in G(X)$ the formula

$$
\begin{equation*}
x(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right) \widetilde{x}+f(t)-f\left(t_{0}\right)-\Phi(t) \int_{t_{0}}^{t} \mathrm{~d}\left[\Phi^{-1}(s)\right]\left(f(s)-f\left(t_{0}\right)\right) \tag{2.8}
\end{equation*}
$$

$t \in[0,1]$, represents a solution of (2.7).
Proof. Using (2.8) we have for $t \in[0,1]$

$$
\begin{aligned}
& \int_{t_{0}}^{t} \mathrm{~d}[A(r)] x(r) \\
&= \int_{t_{0}}^{t} \mathrm{~d}[A(r)]\left\{\Phi(r) \Phi^{-1}\left(t_{0}\right) \widetilde{x}+f(r)-f\left(t_{0}\right)-\Phi(r) \int_{t_{0}}^{r} \mathrm{~d}\left[\Phi^{-1}(s)\right]\left(f(s)-f\left(t_{0}\right)\right)\right\} \\
&= \int_{t_{0}}^{t} \mathrm{~d}[A(r)] \Phi(r) \Phi^{-1}\left(t_{0}\right) \widetilde{x}+\int_{t_{0}}^{t} \mathrm{~d}[A(r)]\left(f(r)-f\left(t_{0}\right)\right) \\
&-\int_{t_{0}}^{t} \mathrm{~d}[A(r)] \Phi(r) \int_{t_{0}}^{r} \mathrm{~d}\left[\Phi^{-1}(s)\right]\left(f(s)-f\left(t_{0}\right)\right)
\end{aligned}
$$

For a solution Φ of (1.5) we have

$$
\int_{t_{0}}^{t} \mathrm{~d}[A(r)] \Phi(r)=\Phi(t)-\Phi\left(t_{0}\right)
$$

and by Lemma 2.1 we have

$$
\begin{aligned}
& \int_{t_{0}}^{t} \mathrm{~d}[A(r)] \Phi(r) \int_{t_{0}}^{r} \mathrm{~d}\left[\Phi^{-1}(s)\right]\left(f(s)-f\left(t_{0}\right)\right) \\
& \quad=\Phi(t) \int_{t_{0}}^{t} \mathrm{~d}\left[\Phi^{-1}(s)\right]\left(f(s)-f\left(t_{0}\right)\right)+\int_{t_{0}}^{t} \mathrm{~d}[A(s)]\left(f(s)-f\left(t_{0}\right)\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \int_{t_{0}}^{t} \mathrm{~d}[A(r)] x(r) \\
&= {\left[\Phi(t)-\Phi\left(t_{0}\right)\right] \Phi^{-1}\left(t_{0}\right) \widetilde{x}+\int_{t_{0}}^{t} \mathrm{~d}[A(r)]\left(f(r)-f\left(t_{0}\right)\right) } \\
&-\Phi(t) \int_{t_{0}}^{t} \mathrm{~d}\left[\Phi^{-1}(s)\right]\left(f(s)-f\left(t_{0}\right)\right)-\int_{t_{0}}^{t} \mathrm{~d}[A(s)]\left(f(s)-f\left(t_{0}\right)\right)=\Phi(t) \Phi^{-1}\left(t_{0}\right) \widetilde{x}-\widetilde{x} \\
&-\Phi(t) \int_{t_{0}}^{t} \mathrm{~d}\left[\Phi^{-1}(s)\right]\left(f(s)-f\left(t_{0}\right)\right) .
\end{aligned}
$$

Hence

$$
\int_{t_{0}}^{t} \mathrm{~d}[A(r)] x(r)=x(t)-\widetilde{x}-\left(f(s)-f\left(t_{0}\right)\right)
$$

for every $t \in[0,1]$ and this means that the function $x:[0,1] \rightarrow X$ given by (2.8) is a solution of the equation (2.7).

Remark. From the point of view of the variation-of-constants formula (2.8) presented in Theorem 2.2 the assumption that the inverse $\Phi^{-1}:[0,1] \rightarrow L(X)$ to $\Phi:[0,1] \rightarrow L(X)$ given by Lemma 1.3 is such that $\Phi^{-1} \in(\mathcal{B}) B V(L(X))$ is very unnatural. It would be nice if the property $\Phi^{-1} \in(\mathcal{B}) B V(L(X))$ could be derived from the general assumptions, i.e. from the fact that $A:[0,1] \rightarrow L(X)$ satisfies (1.3), (E) and (U).

In the next section we will show that in the special situation of $A \in B V(L(X))$ the variation-of-constants formula (2.8) holds without any further assumption.

3. The variation-of-constants formula for the case $A \in B V(L(X))$

Assume throughout this section that $A \in B V(L(X))$.
First of all it should be mentioned that by $[9,1.5]$ we have $A \in G(L(X))$ and therefore $A:[0,1] \rightarrow L(X)$ evidently satisfies (1.3) because, as was already mentioned in the introductory part of this note, we have $B V(L(X)) \subset(\mathcal{B}) B V(L(X))$ by [9, Prop. 1.1 and 1.2].

As was mentioned in the last Remark in [9], if $A \in B V(L(X))$ then A satisfies also condition (E).

Let us now prove the following proposition.
3.1. Proposition. Assume that $A:[0,1] \rightarrow L(X)$.

Then $A \in B V(L(X))$ if and only if

$$
\begin{equation*}
\sup _{P}\left\{\sup _{C_{j}, D_{j}} \| \sum_{j=1}^{k} D_{j}\left[A\left(\alpha_{j}-A\left(\alpha_{j-1}\right)\right] C_{j} \|_{L(X)}\right\}<\infty\right. \tag{3.1}
\end{equation*}
$$

where $P: 0=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{k-1}<\alpha_{k}=1$ is a partition of $[0,1], C_{j}, D_{j} \in L(X)$ with $\left\|C_{j}\right\|_{L(X)} \leqslant 1,\left\|D_{j}\right\|_{L(X)} \leqslant 1, j=1, \ldots, k$, and

$$
\operatorname{var}_{[0,1]}(A)=\sup _{P}\left\{\sup _{C_{j}, D_{j}} \| \sum_{j=1}^{k} D_{j}\left[A\left(\alpha_{j}-A\left(\alpha_{j-1}\right)\right] C_{j} \|_{L(X)}\right\}\right.
$$

Proof. Assume that

$$
P: 0=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{k-1}<\alpha_{k}=1
$$

is an arbitrary partition of $[0,1]$.
If $C_{j}, D_{j} \in L(X)$ with $\left\|C_{j}\right\|_{L(X)} \leqslant 1,\left\|D_{j}\right\|_{L(X)} \leqslant 1, j=1, \ldots, k$ then

$$
\begin{aligned}
& \left\|\sum_{j=1}^{k} D_{j}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)} \\
& \quad \leqslant \sum_{j=1}^{k}\left\|D_{j}\right\|_{L(X)}\left\|A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right\|_{L(X)}\left\|C_{j}\right\|_{L(X)} \\
& \quad \leqslant \sum_{j=1}^{k}\left\|A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right\|_{L(X)}
\end{aligned}
$$

Hence

$$
\sup _{C_{j}, D_{j}}\left\|\sum_{j=1}^{k} D_{j}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)} \leqslant \sum_{j=1}^{k}\left\|A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right\|_{L(X)}
$$

where the supremum on the left hand side is taken over all $C_{j}, D_{j} \in L(X)$ with $\left\|C_{j}\right\|_{L(X)} \leqslant 1,\left\|D_{j}\right\|_{L(X)} \leqslant 1$. Consequently,

$$
\begin{align*}
\sup _{P} & \left\{\sup _{C_{j}, D_{j}}\left\|\sum_{j=1}^{k} D_{j}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)}\right\} \\
& \leqslant \sup _{P} \sum_{j=1}^{k}\left\|A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right\|_{L(X)}=\operatorname{var}_{[0,1]}(A) . \tag{3.2}
\end{align*}
$$

Assume that $\widehat{D}_{j} \in L(X)$ with $\left\|\widehat{D}_{j}\right\|_{L(X)} \leqslant 1$ and $x_{j} \in X$ with $\left\|x_{j}\right\|_{X} \leqslant 1, j=$ $1, \ldots, k$. Let us take $w \in X$ such that $\|w\|_{X}=1$. Then for all $j=1, \ldots, k$ there exist $\widehat{C}_{j} \in L(X)$ with $\left\|\widehat{C}_{j}\right\|_{L(X)} \leqslant 1$ such that $\widehat{C}_{j} w=x_{j}$. Hence

$$
\begin{aligned}
& \left\|\sum_{j=1}^{k} \widehat{D}_{j}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j}\right\|_{X}=\left\|\sum_{j=1}^{k} \widehat{D}_{j}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] \widehat{C}_{j} w\right\|_{X} \\
& \quad \leqslant \sup _{\|y\|_{X} \leqslant 1}\left\|\sum_{j=1}^{k} \widehat{D}_{j}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] \widehat{C}_{j} y\right\|_{X} \\
& \quad=\left\|\sum_{j=1}^{k} \widehat{D}_{j}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] \widehat{C}_{j}\right\|_{L(X)} \\
& \quad \leqslant \sup _{C_{j}, D_{j}}\left\|\sum_{j=1}^{k} D_{j}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)}
\end{aligned}
$$

where the supremum on the right hand side is taken over all $C_{j}, D_{j} \in L(X)$ with $\left\|C_{j}\right\|_{L(X)} \leqslant 1,\left\|D_{j}\right\|_{L(X)} \leqslant 1$. Passing to the supremum over all $\widehat{D}_{j} \in L(X)$ with $\left\|\widehat{D}_{j}\right\|_{L(X)} \leqslant 1$ and $x_{j} \in X$ with $\left\|x_{j}\right\|_{X} \leqslant 1, j=1, \ldots, k$ we get

$$
\begin{align*}
\sup _{x_{j}, D_{j}} & \left\|\sum_{j=1}^{k} D_{j}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j}\right\|_{X} \\
& \leqslant \sup _{C_{j}, D_{j}}\left\|\sum_{j=1}^{k} D_{j}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)} \tag{3.3}
\end{align*}
$$

Assume that $\varepsilon>0$ is given. Choose vectors $x_{j} \in X$ with $\left\|x_{j}\right\|_{X} \leqslant 1, j=1, \ldots, k$ such that

$$
\begin{equation*}
\left\|\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j}\right\|_{X}>\left\|\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right]\right\|_{L(X)}-\frac{\varepsilon}{k} . \tag{3.4}
\end{equation*}
$$

Let us set

$$
v_{j}=\frac{\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j}}{\left\|\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j}\right\|_{X}} \text { if }\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} \neq 0
$$

and

$$
v_{j}=0 \text { if }\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j}=0
$$

For $v_{j} \neq 0$ let Y_{j} be the onedimensional subspace of X given by

$$
Y_{j}=\left\{\lambda v_{j} ; \lambda \in \mathbb{R}\right\}
$$

and assume that \widetilde{f}_{j} is a bounded linear functional on Y_{j} such that $\widetilde{f}_{j}\left(v_{j}\right)=1$ and denote by $f_{j} \in X^{*}$ its extension onto X with $\left\|f_{j}\right\|=1$.

Assume that $w \in X$ is fixed such that $\|w\|_{X}=1$ and define the linear operator $D_{j} \in L(X)$ by the relation

$$
D_{j} x=f_{j}(x) w, x \in X, j=1, \ldots, k
$$

Then certainly

$$
\left\|D_{j}\right\|_{L(X)}=\left\|f_{j}\right\|\|w\|=1
$$

and

$$
\begin{aligned}
D_{j}\left[A\left(\alpha_{j}\right)\right. & \left.\left.-A\left(\alpha_{j-1}\right)\right] x_{j}=\| A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} \|_{X} D_{j} v_{j} \\
& \left.\left.=\| A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j}\left\|_{X} f_{j}\left(v_{j}\right) w=\right\| A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j} \|_{X} w .
\end{aligned}
$$

Hence by (3.4) we get

$$
\begin{aligned}
\| \sum_{j=1}^{k} D_{j}\left[A\left(\alpha_{j}\right)\right. & \left.\left.-A\left(\alpha_{j-1}\right)\right] x_{j}\left\|_{X}=\right\| \sum_{j=1}^{k} \| A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j}\left\|_{X} w\right\|_{X} \\
& \left.\left.=\sum_{j=1}^{k} \| A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j}\left\|_{X}>\sum_{j=1}^{k}\left(\| A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right]\right\|_{L(X)}-\frac{\varepsilon}{k}\right) \\
& \left.=\sum_{j=1}^{k} \| A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] \|_{L(X)}-\varepsilon .
\end{aligned}
$$

Taking the supremum over all $D_{j} \in L(X)$ with $\left\|D_{j}\right\|_{L(X)} \leqslant 1$ and $x_{j} \in X$ with $\left\|x_{j}\right\|_{X} \leqslant 1, j=1, \ldots, k$ we get

$$
\left.\sup _{x_{j}, D_{j}}\left\|\sum_{j=1}^{k} D_{j}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] x_{j}\right\|_{X}>\sum_{j=1}^{k} \| A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] \|_{L(X)}-\varepsilon
$$

and using (3.3) we finally obtain

$$
\left.\sup _{C_{j}, D_{j}}\left\|\sum_{j=1}^{k} D_{j}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)} \geqslant \sum_{j=1}^{k} \| A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] \|_{L(X)}-\varepsilon .
$$

Taking the supremum over all partitions P of $[0,1]$ we obtain together with (3.2) for every $\varepsilon>0$ the inequality

$$
\operatorname{var}_{[0,1]}(A)-\varepsilon<\sup _{P}\left\{\sup _{C_{j}, D_{j}}\left\|\sum_{j=1}^{k} D_{j}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)}\right\} \leqslant \operatorname{var}_{[0,1]}(A)
$$

and therefore

$$
\operatorname{var}_{[0,1]}(A)=\sup _{P}\left\{\sup _{C_{j}, D_{j}}\left\|\sum_{j=1}^{k} D_{j}\left[A\left(\alpha_{j}\right)-A\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)}\right\} .
$$

Remark. It has to be mentioned that the characterization of the space $B V(L(X))$ given by Proposition 3.1 is interesting independently of the context of the equations studied in this paper.
3.2. Lemma. Assume that $A:[0,1] \rightarrow L(X)$ satisfies $A \in B V(L(X))$ and (U$)$. Then for the solution $\Phi:[0,1] \rightarrow L(X)$ of (1.5) we have $\Phi \in B V(L(X))$.

Proof. Since $B V(L(X)) \subset\left(\mathcal{B}^{*}\right) B V(L(X))$ the conclusion of Lemma 1.2 holds and there exists a $K>0$ such that $\|\Phi(t)\| \leqslant K$ for every $t \in[0,1]$. It remains to show that the relation $\Phi \in B V(L(X))$ holds.
Assume that

$$
P: 0=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{k-1}<\alpha_{k}=1
$$

is an arbitrary partition of the interval $[0,1]$ and that $C_{j}, D_{j} \in L(X), j=1, \ldots, k$ with $\left\|C_{j}\right\|_{L(X)} \leqslant 1,\left\|D_{j}\right\|_{L(X)} \leqslant 1$ are given.
The fact that $\Phi \in G(L(X))$ yields by [6, Prop. 15] the existence of the integral $\int_{0}^{1} \mathrm{~d}[A(r)] \Phi(r)$ and therefore by definition for every $\varepsilon>0$ there is a gauge $\delta:[0,1] \rightarrow$ $(0, \infty)$ such that

$$
\left\|\sum_{i=1}^{l}\left[A\left(\beta_{i}\right)-A\left(\beta_{i-1}\right)\right] \Phi\left(\sigma_{i}\right)-\int_{0}^{1} \mathrm{~d}[A(r)] \Phi(r)\right\|_{L(X)}<\frac{\varepsilon}{k+1}
$$

for every δ-fine P-partition

$$
\left\{\beta_{0}, \sigma_{1}, \beta_{1}, \ldots, \beta_{l-1}, \sigma_{l}, \beta_{l}\right\}
$$

of the interval $[0,1]$.
By the Saks-Henstock Lemma (see [6, Lemma 16]) we have

$$
\begin{equation*}
\left\|\sum_{i=1}^{l_{j}}\left[A\left(\beta_{i}^{j}\right)-A\left(\beta_{i-1}^{j}\right)\right] \Phi\left(\sigma_{i}^{j}\right)-\int_{\alpha_{j-1}}^{\alpha_{j}} \mathrm{~d}[A(r)] \Phi(r)\right\|_{L(X)} \leqslant \frac{\varepsilon}{k+1} \tag{3.5}
\end{equation*}
$$

for every δ-fine P-partition

$$
\left\{\beta_{0}^{j}, \sigma_{1}^{j}, \beta_{1}^{j}, \ldots, \beta_{l_{j}-1}^{j}, \sigma_{l_{j}}^{j}, \beta_{l_{j}}^{j}\right\}
$$

of the interval $\left[\alpha_{j-1}, \alpha_{j}\right], j=1, \ldots, k$.
Further, we have

$$
\Phi\left(\alpha_{j}\right)-\Phi\left(\alpha_{j-1}\right)=\int_{\alpha_{j-1}}^{\alpha_{j}} \mathrm{~d}[A(r)] \Phi(r)
$$

for every $j=1, \ldots, k$ by the definition of a solution of (1.5) and therefore

$$
\begin{aligned}
&\left\|\sum_{j=1}^{k} D_{j}\left[\Phi\left(\alpha_{j}\right)-\Phi\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)}=\left\|\sum_{j=1}^{k} D_{j}\left[\int_{\alpha_{j-1}}^{\alpha_{j}} \mathrm{~d}[A(r)] \Phi(r)\right] C_{j}\right\|_{L(X)} \\
&= \| \sum_{j=1}^{k}\left\{D_{j}\left[\int_{\alpha_{j-1}}^{\alpha_{j}} \mathrm{~d}[A(r)] \Phi(r)-\sum_{i=1}^{l_{j}}\left[A\left(\beta_{i}^{j}\right)-A\left(\beta_{i-1}^{j}\right)\right] \Phi\left(\sigma_{i}^{j}\right)\right] C_{j}\right\} \\
&+\sum_{j=1}^{k} \sum_{i=1}^{l_{j}} D_{j}\left[A\left(\beta_{i}^{j}\right)-A\left(\beta_{i-1}^{j}\right)\right] \Phi\left(\sigma_{i}^{j}\right) C_{j} \|_{L(X)} \\
& \leqslant\left\|\sum_{j=1}^{k}\left\{D_{j}\left[\int_{\alpha_{j-1}}^{\alpha_{j}} \mathrm{~d}[A(r)] \Phi(r)-\sum_{i=1}^{l_{j}}\left[A\left(\beta_{i}^{j}\right)-A\left(\beta_{i-1}^{j}\right)\right] \Phi\left(\sigma_{i}^{j}\right)\right] C_{j}\right\}\right\|_{L(X)} \\
& \quad+\left\|\sum_{j=1}^{k} \sum_{i=1}^{l_{j}} D_{j}\left[A\left(\beta_{i}^{j}\right)-A\left(\beta_{i-1}^{j}\right)\right] \Phi\left(\sigma_{i}^{j}\right) C_{j}\right\|_{L(X)} \\
& \leqslant \sum_{j=1}^{k}\left\|\left[\int_{\alpha_{j-1}}^{\alpha_{j}} \mathrm{~d}[A(r)] \Phi(r)-\sum_{i=1}^{l_{j}}\left[A\left(\beta_{i}^{j}\right)-A\left(\beta_{i-1}^{j}\right)\right] \Phi\left(\sigma_{i}^{j}\right)\right]\right\|_{L(X)} \\
& \quad+\left\|\sum_{j=1}^{k} \sum_{i=1}^{l_{j}} D_{j}\left[A\left(\beta_{i}^{j}\right)-A\left(\beta_{i-1}^{j}\right)\right] \Phi\left(\sigma_{i}^{j}\right) C_{j}\right\|_{L(X)}
\end{aligned}
$$

provided

$$
\left\{\beta_{0}^{j}, \sigma_{1}^{j}, \beta_{1}^{j}, \ldots, \beta_{l_{j}-1}^{j}, \sigma_{l_{j}}^{j}, \beta_{l_{j}}^{j}\right\}
$$

is a δ-fine P-partition of the interval $\left[\alpha_{j-1}, \alpha_{j}\right], j=1, \ldots, k$. Hence using (3.5) we obtain by the last inequalities

$$
\begin{aligned}
& \left\|\sum_{j=1}^{k} D_{j}\left[\Phi\left(\alpha_{j}\right)-\Phi\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)} \\
& \quad \leqslant \sum_{j=1}^{k} \frac{\varepsilon}{k+1}+\left\|\sum_{j=1}^{k} \sum_{i=1}^{l_{j}} D_{j}\left[A\left(\beta_{i}^{j}\right)-A\left(\beta_{i-1}^{j}\right)\right] \Phi\left(\sigma_{i}^{j}\right) C_{j}\right\|_{L(X)} \\
& \quad<\varepsilon+\left\|\sum_{j=1}^{k} \sum_{i=1}^{l_{j}} D_{j}\left[A\left(\beta_{i}^{j}\right)-A\left(\beta_{i-1}^{j}\right)\right] \Phi\left(\sigma_{i}^{j}\right) C_{j}\right\|_{L(X)} .
\end{aligned}
$$

For the second term on the right hand side we have

$$
\begin{aligned}
& \left\|\sum_{j=1}^{k} \sum_{i=1}^{l_{j}} D_{j}\left[A\left(\beta_{i}^{j}\right)-A\left(\beta_{i-1}^{j}\right)\right] \Phi\left(\sigma_{i}^{j}\right) C_{j}\right\|_{L(X)} \\
& \quad \leqslant \sum_{j=1}^{k} \sum_{i=1}^{l_{j}}\left\|D_{j}\right\|_{L(X)}\left\|A\left(\beta_{i}^{j}\right)-A\left(\beta_{i-1}^{j}\right)\right\|_{L(X)}\left\|\Phi\left(\sigma_{i}^{j}\right)\right\|_{L(X)}\left\|C_{j}\right\|_{L(X)} \\
& \quad \leqslant K \cdot \sum_{j=1}^{k} \sum_{i=1}^{l_{j}}\left\|A\left(\beta_{i}^{j}\right)-A\left(\beta_{i-1}^{j}\right)\right\|_{L(X)} \leqslant K \cdot \operatorname{var}_{[0,1]}(A) .
\end{aligned}
$$

Hence

$$
\left\|\sum_{j=1}^{k} D_{j}\left[\Phi\left(\alpha_{j}\right)-\Phi\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)}<\varepsilon+K \cdot \operatorname{var}_{[0,1]}(A)
$$

and since $\varepsilon>0$ can be taken arbitrarily small, we get

$$
\left\|\sum_{j=1}^{k} D_{j}\left[\Phi\left(\alpha_{j}\right)-\Phi\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)} \leqslant K \cdot \operatorname{var}_{[0,1]}(A)
$$

for any partition

$$
P: 0=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{k-1}<\alpha_{k}=1
$$

of the interval $[0,1]$ and any choice of $C_{j}, D_{j} \in L(X), j=1, \ldots, k$ with $\left\|C_{j}\right\|_{L(X)} \leqslant 1$, $\left\|D_{j}\right\|_{L(X)} \leqslant 1$.

Passing to the suprema over all $C_{j}, D_{j} \in L(X), j=1, \ldots, k$ with $\left\|C_{j}\right\|_{L(X)} \leqslant 1$, $\left\|D_{j}\right\|_{L(X)} \leqslant 1$ and all partitions P of $[0,1]$ we obtain

$$
\sup _{P} \sup _{C_{j}, D_{j}}\left\|\sum_{j=1}^{k} D_{j}\left[\Phi\left(\alpha_{j}\right)-\Phi\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)} \leqslant K \cdot \operatorname{var}_{[0,1]}(A)
$$

and this together with Proposition 3.1 yields the result.
3.3. Lemma. Assume that $A:[0,1] \rightarrow L(X)$ satisfies $A \in B V(L(X))$ and (U).

Then the inverse $[\Phi(t)]^{-1}=\Phi^{-1}(t)$ to the solution $\Phi:[0,1] \rightarrow L(X)$ of (1.5) exists for every $t \in[0,1]$ and we have $\Phi^{-1} \in B V(L(X))$.

Proof. By the results given in Lemma 1.3 and 1.4 the inverse Φ^{-1} exists and $\Phi^{-1} \in G(L(X))$. Hence there is a constant $L>0$ such that

$$
\left\|\Phi^{-1}(t)\right\|_{L(X)} \leqslant L
$$

for every $t \in[0,1]$.
It remains to show that $\Phi^{-1} \in B V(L(X))$.
Assume that

$$
P: 0=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{k-1}<\alpha_{k}=1
$$

is an arbitrary partition of the interval $[0,1]$ and that $C_{j}, D_{j} \in L(X), j=1, \ldots, k$ with $\left\|C_{j}\right\|_{L(X)} \leqslant 1,\left\|D_{j}\right\|_{L(X)} \leqslant 1$ are given.
We have

$$
\begin{aligned}
\| \sum_{j=1}^{k} D_{j}\left[\Phi^{-1}\left(\alpha_{j}\right)\right. & \left.-\Phi^{-1}\left(\alpha_{j-1}\right)\right] C_{j}\|=\| \sum_{j=1}^{k} D_{j} \Phi^{-1}\left(\alpha_{j}\right)\left[I-\Phi\left(\alpha_{j}\right) \Phi^{-1}\left(\alpha_{j-1}\right)\right] C_{j} \| \\
& =\left\|\sum_{j=1}^{k} D_{j} \Phi^{-1}\left(\alpha_{j}\right)\left[\Phi\left(\alpha_{j-1}\right)-\Phi\left(\alpha_{j}\right)\right] \Phi^{-1}\left(\alpha_{j-1}\right) C_{j}\right\| \\
& =\left\|\sum_{j=1}^{k} D_{j} \Phi^{-1}\left(\alpha_{j}\right)\left[\Phi\left(\alpha_{j}\right)-\Phi\left(\alpha_{j-1}\right)\right] \Phi^{-1}\left(\alpha_{j-1}\right) C_{j}\right\| \\
& \leqslant L^{2} \cdot \underset{[0,1]}{\operatorname{var}(\Phi) \leqslant L^{2} \cdot K \cdot \underset{[0,1]}{\operatorname{var}(A)} .}
\end{aligned}
$$

Passing to the suprema over all $C_{j}, D_{j} \in L(X), j=1, \ldots, k$ with $\left\|C_{j}\right\|_{L(X)} \leqslant 1$, $\left\|D_{j}\right\|_{L(X)} \leqslant 1$ and all partitions P of $[0,1]$ we obtain

$$
\sup _{P} \sup _{C_{j}, D_{j}}\left\|\sum_{j=1}^{k} D_{j}\left[\Phi^{-1}\left(\alpha_{j}\right)-\Phi^{-1}\left(\alpha_{j-1}\right)\right] C_{j}\right\|_{L(X)} \leqslant L^{2} \cdot K \cdot \operatorname{var}(A) .
$$

and this together with Proposition 3.1 yields $\Phi^{-1} \in B V(L(X))$.
3.4. Theorem. Assume that $A:[0,1] \rightarrow L(X)$ satisfies $A \in B V(L(X))$ and (U). Let Φ : $[0,1] \rightarrow L(X)$ be the solution of (1.5).

Then for every $t_{0} \in[0,1], \widetilde{x} \in X$ and $f \in G(X)$ the formula

$$
\begin{equation*}
x(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right) \widetilde{x}+f(t)-f\left(t_{0}\right)-\Phi(t) \int_{t_{0}}^{t} \mathrm{~d}\left[\Phi^{-1}(s)\right]\left(f(s)-f\left(t_{0}\right)\right), \tag{2.8}
\end{equation*}
$$

$t \in[0,1]$, represents a solution of (2.7).
Proof. By Lemma 3.3 the inverse $\Phi^{-1}:[0,1] \rightarrow L(X)$ given by Lemma 1.3 belongs to $B V(L(X))$ and therefore we have also $\Phi^{-1} \in(\mathcal{B}) B V(L(X))$. All the assumptions of Theorem 2.2 being satisfied we obtain the result by this theorem.
3.5 Example . Let us consider the abstract linear differential equation

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=a(t) x+\varphi(t) \tag{3.6}
\end{equation*}
$$

on $[0,1]$ where $a:[0,1] \rightarrow L(X), \varphi:[0,1] \rightarrow X$ and both a and φ are Bochner integrable. For equations of this kind see e.g. [1].

A solution of (3.6) is understood to be a solution of the integral equation

$$
\begin{equation*}
x(t)=x_{0}+\int_{d}^{t} a(s) x(s) \mathrm{d} s+\int_{a}^{t} \varphi(s) \mathrm{d} s \tag{3.7}
\end{equation*}
$$

where $d \in[0,1]$ and $x_{0}=x(d)$.
More generally we can consider the integral equation of the form

$$
\begin{equation*}
x(t)=\int_{d}^{t} a(s) x(s) \mathrm{d} s+g(t) \tag{3.8}
\end{equation*}
$$

with $g \in G(X)$.
Let us set

$$
A(t)=\int_{d}^{t} a(s) \mathrm{d} s \text { and } f(t)=\int_{d}^{t} \varphi(s) \mathrm{d} s, \quad t \in[0,1] .
$$

Assume that $D: 0=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{k-1}<\alpha_{k}=1$ is an arbitrary partition of $[0,1]$. Then using the properties of the Bochner integral we get

$$
\begin{aligned}
\sum_{j=1}^{k} \| A\left(\alpha_{j}\right) & -A\left(\alpha_{j-1}\right)\left\|=\sum_{j=1}^{k}\right\| \int_{\alpha_{j-1}}^{\alpha_{j}} a(s) \mathrm{d} s \| \\
& \leqslant \sum_{j=1}^{k} \int_{\alpha_{j-1}}^{\alpha_{j}}\|a(s)\| \mathrm{d} s=\int_{0}^{1}\|a(s)\| \mathrm{d} s<\infty
\end{aligned}
$$

and therefore $A \in B V(L(X))$. Since the function $\|a\|$ is Lebesgue integrable over $[0,1]$ we have

$$
\|A(t)-A(r)\| \leqslant\left|\int_{r}^{t}\|a(s)\| \mathrm{d} s\right|
$$

for $t, r \in[0,1]$ and this yields the continuity of A on $[0,1]$. Hence $\lim _{t \rightarrow r+} A(t)=A(r)$ for $r \in[0,1)$ and $\lim _{t \rightarrow r-} A(t)=A(r)$ for $r \in(0,1]$ and consequently we have $\Delta^{+} A(r)=0$ for $r \in[0,1)$ and $\Delta^{-} A(r)=0$ for $r \in(0,1]$ and the function $A:[0,1] \rightarrow L(X)$ satisfies the condition (U) given in Theorem 1.1. Similarly the function $f:[0,1] \rightarrow X$ is also continuous and belongs trivially to $G(X)$.

It is a matter of routine to show that
if $x \in G(X)$ then the integrals $\int_{0}^{1} \mathrm{~d}[A(s)] x(s)$ and $\int_{0}^{1} a(s) x(s) \mathrm{d} s$ both exist and

$$
\int_{0}^{1} \mathrm{~d}[A(s)] x(s)=\int_{0}^{1} a(s) x(s) \mathrm{d} s
$$

Since g is assumed to belong to $G(X)$, every solution of (3.8) also belongs to $G(X)$ and therefore the equation (3.8) is equivalent to

$$
x(t)=\int_{d}^{t} \mathrm{~d}[A(s)] x(s)+g(t)=g(d)+\int_{d}^{t} \mathrm{~d}[A(s)] x(s)+g(t)-g(d)
$$

Hence by Theorem 2.10 in [9] there exists a unique solution $x:[0,1] \rightarrow X, x \in G(X)$ of (3.8) and by Theorem 3.4 we get after a straightforward calculation

$$
\begin{aligned}
x(t) & =\Phi(t) \Phi^{-1}\left(t_{0}\right) g(d)+g(t)-g(d)-\Phi(t) \int_{d}^{t} \mathrm{~d}\left[\Phi^{-1}(s)\right](g(s)-g(d)) \\
& =g(t)-\Phi(t) \int_{d}^{t} \mathrm{~d}\left[\Phi^{-1}(s)\right] g(s)
\end{aligned}
$$

where the function $\Phi:[0,1] \rightarrow L(X)$ is a solution of (1.5) with A given by $A(t)=$ $\int_{d}^{t} a(s) \mathrm{d} s$ for $t \in[0,1]$.

References

[1] Ju. L. Daletskij, M. G. Krejn: Stability of Solutions of Differential Equations in Banach Spaces. Nauka, Moskva, 1970. (In Russian.)
[2] N. Dunford, J. T. Schwartz: Linear Operators I. Interscience Publishers, New York, 1958.
[3] Ch.S. Hönig: Volterra-Stieltjes Integral Equations. North-Holland Publ. Comp., Amsterdam, 1975.
[4] J. Kurzweil: Nichtabsolut konvergente Integrale. B. G. Teubner Verlagsgesellschaft, Leipzig, 1980.
[5] W. Rudin: Functional Analysis. McGraw-Hill Book Company, New York, 1973.
[6] S. Schwabik: Abstract Perron-Stieltjes integral. Math. Bohem. 121 (1996), 425-447.
[7] Š. Schwabik: Generalized Ordinary Differential Equations. World Scientific, Singapore, 1992.
[8] S. Schwabik, M. Tvrdý, O. Vejvoda: Differential and Integral Equations. Academia \& Reidel, Praha \& Dordrecht, 1979.
[9] S. Schwabik: Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999), 433-457.

Author's address: Štefan Schwabik, Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 11567 Praha 1, Czech Republic, e-mail: schwabik@math.cas.cz.

