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VARIATIONAL MEASURES AND THE
KURZWEIL-HENSTOCK INTEGRAL

1 Introduction

For a given continuous function F on a compact interval E in the set R of reals the problem is
how to describe the ”total change” of F on a set M ⊂ E.

Quantities WF (M) and VF (M) (see Section 3) are introduced in this work for this aim. They
are in fact full variational measures in the sense presented by B.S. Thomson in [10] generated
by two slightly different interval functions, namely the oscillation of F over an interval and the
value of the additive interval function generated as usual by F . They coincide with the concept of
classical total variation if M is an interval and they are zero if on the set M the function F is of
negligible variation.

Properties of these variational measures are recalled from [10] and investigated.
The Kurzweil-Henstock integration is shortly described and some of its properties are studied

using the variational measure WF (M) for the indefinite integral F of an integrable function f .

2 Notations, divisions, tags, gauges

Let −∞ < a < b < ∞ and let the compact interval E = [a, b] be fixed in the sequel. The topology
on E is induced by the usual topology on the set R of reals.

We denote by Int(M) the interior of a set M ⊂ E and M denotes the closure of a set M ⊂ E.
In the next I and J always denote closed subintervals of E. The set of all closed subintervals

of J will be denoted by Sub(J). The empty set ∅ is also assumed to belong to Sub(J).
If I is nonempty, then by l(I), r(I) we denote the left, right endpoint of I, respectively.
The number |I| = r(I)− l(I) is the length of I.
For the purposes of this paper a mapping T from a set Γ into a set M will be sometimes called

a system of elements of M .
The notation T = {Vj ; j ∈ Γ} means that T (j) = Vj ∈ M for j ∈ Γ. A system {Vj ; j ∈ Γ} of

elements of M is called finite if Γ is finite. The usual use of this are mostly the cases Γ = N or
Γ = Nk where N is the set of natural numbers and Nk = {j ∈ N; j ≤ k}.

When we will deal with a system of elements belonging to Sub(E), we will speak simply about
a system (of intervals).

The set of all finite unions of closed subintervals of E (i.e. unions of elements of all finite
systems) is denoted by Alg(E).

The set Alg(E) is closed with respect to finite unions and intersections. Any set M ∈ Alg(E)
is the union of elements of a finite system {Ij ; j ∈ Γ}, where Ij ∩ Ik = ∅ for j 6= k. If M ∈ Alg(E),
then clearly also E \M ∈ Alg(E).

A division is a finite system D = {Ij ; j ∈ Γ} of intervals, where Int(Ij)∩ Ik = ∅ for j 6= k. This
means that the elements of a division do not overlap.
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For a given set M ⊂ E the division D is called a division in M if M ⊃ ⋃
j∈Γ Ij D is called a

division of M if M =
⋃

j∈Γ Ij ; and the division D covers M if M ⊂ ⋃
j∈Γ Ij .

A division of M exists if and only if M ∈ Alg(E).
A map τ from Sub(E) into E is called a tag if τ(I) ∈ I for I ∈ Dom(τ). In the sequel only tags

of this sort will be used.
A tagged system is a pair (D, τ), where D = {Ij ; j ∈ Γ} is a system and τ is a tag defined on

the range of D, i.e. on all Ij , j ∈ Γ. In this case we write usually τj instead of τ(Ij).
The tagged system (D, τ) is called M -tagged for some set M ⊂ E if τj ∈ M for j ∈ Γ.
Given a function f : E → R and a set M ⊂ E we denote

|f |M = sup
x∈M

|f(x)|.

A gauge is any function on E with values in the set R+ of positive reals. The set of all gauges
is denoted by ∆(E).

For δ1, δ2 ∈ ∆(E) we write δ1 ≤ δ2 if δ1(x) ≤ δ2(x) for x ∈ E. In this way a partial ordering in
∆(E) is defined and any finite set in ∆(E) has an infimum with respect to this ordering.

If δ ∈ ∆(E), then a tagged system (D, τ), where D = {Ij ; j ∈ Γ}, is called δ-fine if |Ij | < δ(τj)
for j ∈ Γ.

If δ1, δ2 ∈ ∆(E), δ1 ≤ δ2, then every δ1-fine tagged system is also δ2-fine.
Remark. Let us note that for a given M ⊂ E and a gauge δ ∈ ∆(E) in some situations it can

be helpful to use divisions D = {Ij ; j ∈ Γ} with the property

|Ij | ≤ |δ|Ij∩M , j ∈ Γ

instead of δ-fine M -tagged divisions. Let us call divisions of this type δ-fine and M -related.
If {Ij ; j ∈ Γ} is δ-fine and M -related and Ij ∩M = ∅ then |δ|Ij∩M = 0. Hence |Ij | = 0 and the

element Ij of the division D = {Ij ; j ∈ Γ} can be neglected in many of the considerations.
If (D, τ) = ({Ij ; j ∈ Γ}, τ) is an M -tagged δ-fine system then τ(Ij) = τj ∈ M ∩ Ij and

|Ij | ≤ δ(τj) ≤ |δ|Ij∩M and D = {Ij ; j ∈ Γ} is δ-fine and M -related.
If, conversely, D = {Ij ; j ∈ Γ} is δ-fine and M -related then it need not be possible to find

τj ∈ M ∩ Ij for j ∈ Γ such that |Ij | ≤ δ(τj).

The following crucial statement is known as Cousin’s lemma (see e.g. [5, 3.4 Lemma] or any
other relevant text on Kurzweil-Henstock integration).

Proposition 2.1. To any δ ∈ ∆(E) and I ∈ Sub(E) there exists a δ-fine division of I.

Cousin’s lemma can be used in many different ways. We shall use the following statements.

Lemma 2.2. Let I ∈ Sub(E) and let A be a closed subset of I. Then to every δ ∈ ∆(E) there is
a δ-fine A-tagged division in I which covers A.

Proof. Denote dist(x,A) the distance of a point x ∈ R from the set A. Let us set

η(x) =
{

min{δ(x), 1
2dist(x,A)} for x ∈ I \A,

δ(x) for x ∈ A ∪ (E \ I).

It is easy to see that η ∈ ∆(E). Let ({Ij ; j ∈ Φ}, τ) be an η-fine division of I (it exists by
Proposition 2.1) and set Γ = {j ∈ Φ, τj ∈ A}. Then ({Ij ; j ∈ Γ}, τ) is a δ-fine A-tagged division
which covers A. This follows from the definition of η for x /∈ A because for the tag τj /∈ A the
corresponding interval Ij does not intersect A by the definition of the gauge η.

Lemma 2.3. Let A be a closed subset of E, δ ∈ ∆(E) and let ({Ij ; j ∈ Γ}, τ) be a δ-fine A-tagged
division.
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Then there exists a set Φ ⊃ Γ a tag σ and a σ-fine A-tagged division ({Ij ; j ∈ Φ}, σ) such that
σj = τj for j ∈ Γ and

A ⊂ Int(
⋃

j∈Φ

Ij).

Proof. Let E \⋃
j∈Γ Ij =

⋃
k∈Ψ Uk where {Uk; k ∈ Ψ} is a pairwise disjoint finite system of closed

intervals.
For any k ∈ Ψ let ({Ij ; j ∈ Γk}, τ (k)) be a δ-fine A-tagged division in Uk which covers A ∩ Uk.

Now it suffices to set Φ = Γ ∪ (
⋃

k∈Ψ Γk) and σ(Ij) = τ(Ij) for j ∈ Γ and σ(Ij) = τ (k)(Ij) for
j ∈ Γk.

Remark. Lemma 2.3 means that any δ-fine A-tagged division can be extended to a δ-fine A-tagged
division which covers a closed set A ⊂ E.

3 The function W

Assume that F : E → R is a real function defined on E. For I ∈ Sub(E) define the usual interval
function

F [I] = F (r(I))− F (l(I)).

Let us denote by C(E) the set of all continuous real-valued functions on E.
The oscillation of F ∈ C(E) on an interval I ∈ Sub(E) is defined in the usual way by

ω(F, I) = sup{|F (x)− F (y)|; x, y ∈ I} = sup{|F [J ]|; J ∈ Sub(I)}.

The following simple properties of the oscillation of a function may be mentioned:

(3.1) ω(F, I) ≥ 0,

(3.2) ω(F, I) = 0 if and only if F is constant on I,

(3.3) ω(αF, I) = |α|ω(F, I) for α ∈ R,

(3.4) ω(
∑

j∈Φ

Fj , I) ≤
∑

j∈Φ

ω(Fj , I) if Φ is finite ,

(3.5) ω(F,
⋃

j∈Φ

Ij) ≤
∑

j∈Φ

ω(F, Ij) if Φ is finite and
⋃

j∈Φ

Ij ∈ Sub (E).

Definition 3.1. For F ∈ C(E) and a division D = {Ij ; j ∈ Γ} let us set

Ω(F, D) =
∑

j∈Γ

ω(F, Ij)

and
A(F,D) =

∑

j∈Γ

|F [Ij ]|.

If F ∈ C(E) and M ⊂ E then for any δ ∈ ∆(E) set

Wδ(F, M) = sup{Ω(F, D); D is δ-fine, M -tagged}
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and
Vδ(F, M) = sup{A(F, D); D is δ-fine, M -tagged}

and put

(3.6) WF (M) = inf{Wδ(F, M); δ ∈ ∆(E)},

(3.7) VF (M) = inf{Vδ(F,M); δ ∈ ∆(E)},

Let us note that if δ1, δ2 ∈ ∆(E), δ1 ≤ δ2 then Wδ1(F,M) ≤ Wδ2(F, M) and Vδ1(F, M) ≤
Vδ2(F,M).

Therefore in the definition of WF (M) and VF (M) it suffices to take into account gauges which
are less than some fixed gauge δ0 only.

If D = {Ij ; j ∈ Γ} is a division then

|F [Ij ]| ≤ ω(F, Ij) for j ∈ Γ.

Therefore
A(F, D) ≤ Ω(F, D)

and

(3.8) VF (M) ≤ WF (M)

Let us recall the notion V (F, I) of total variation of a function F over I ∈ Sub(E) which is
defined by

(3.9) V (F, I) = sup{
∑

j∈Γ

|F [Ij ]|; {Ij ; j ∈ Γ} is a division of I}.

Note that V (F, I) = 0 for I ∈ Sub(E) if and only if the function F is constant on I and that
V (F, I) = VF (I) for I ∈ Sub(E).

First let us show that in the simple situation of an interval I ∈ Sub(E) the values WF (I) and
VF (I) have the classical meaning of the total variation of F over I.

Lemma 3.2. Let F ∈ C(E) and I ∈ Sub(E). Then

(3.10) WF (I) = VF (I) = V (F, I).

Proof. Assume that ε > 0 is given.
Since F is uniformly continuous on E there is a σ > 0 such that |F [J ]| < 1

2ε provided J ⊂ E
and |J | ≤ σ.

If δ(x) = σ for x ∈ E then for any δ-fine I-tagged division {Ij ; j ∈ Γ} we have Ω(F, D) =∑
j∈Γ ω(F, Ij) =

∑
j∈Γ |F [Jj ]| where Jj ∈ Sub(Ij), j ∈ Γ is such that |F [Jj ]| = ω(F, Ij).

Define Γ1 = {j ∈ Γ; Ij ⊂ I} and Γ2 = Γ \ Γ1. Since I is an interval, the set Γ2 consists of at
most two elements. Hence

Ω(F, D) =
∑

j∈Γ

|F [Jj ]| =
∑

j∈Γ1

|F [Jj ]|+
∑

j∈Γ2

|F [Jj ]| < V (F, I) + ε

and therefore also
WF (I) ≤ V (F, I) + ε

and

(3.11) WF (I) ≤ V (F, I)
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since ε > 0 can be taken arbitrarily small.
Further let {Ij ; j ∈ Nk} be a division of I, for which

V (F, I) <

k∑

j=1

|F [Ij ]|+ ε

2
.

Let δ ∈ ∆(E) be arbitrary and let Dj = {Jj
i ; i ∈ Φj} be a δ-fine division of Ij . Then

|F [Ij ]| ≤
∑

i∈Φj

|F [Jj
i ]|

and

V (F, I) <
ε

2
+

k∑

j=1

∑

i∈Φj

|F [Jj
i ]|.

Let us set D = {Jj
i ; j = 1, . . . , k, i ∈ Φj}. Then D is a δ-fine division of I and therefore

k∑

j=1

∑

i∈Φj

|F [Jj
i ]| ≤ Vδ(F, I).

This yields then V (F, I) < ε
2 + Vδ(F, I) and also V (F, I) < ε + VF (I), i.e. we get

V (F, I) ≤ VF (I).

Using (3.8), (3.11) we obtain

VF (I) ≤ WF (I) ≤ V (F, I) ≤ VF (I)

and this finishes the proof.

The following simple assertion will be also useful.

Lemma 3.3. Let F ∈ C(E), I ∈ Sub(E) and τ ∈ I.
Then there exists J ⊂ I such that τ ∈ J and

ω(F, I) ≤ 2|F [J ]|.

Proof. Since F ∈ C(E) there is an interval Ĩ ⊂ I such that |F [Ĩ]| = ω(F, I).
If τ ∈ Ĩ, then we may take J = Ĩ.
If τ /∈ Ĩ, then we have two intervals J1, where the endpoints of J1 are τ and l(Ĩ) and J2, where

the endpoints of J2 are τ and r(Ĩ) and evidently ω(F, I) ≤ |F [J1]|+ |F [J2]|. To get the statement
we put J = J1 if |F [J1]| ≥ |F [J2]| or J = J2 if |F [J1]| < |F [J2]|.
Corollary 3.4. Assume that F ∈ C(E). If M ⊂ E then

VF (M) ≤ WF (M) ≤ 2VF (M).

(This implies e.g. that VF (M) = 0 if and only if WF (M) = 0.)

Given a function F ∈ C(E) by WF (M) and VF (M) two set functions are given. Using the
terms presented by B.S.Thomson in [10] we identify WF (M) and VF (M) as the full variational
measures generated by the continuous interval functions given for I ∈ Sub(E) by ω(F, I), F [I],
respectively.

By Theorem 3.7 in [10] WF (·) and VF (·) are metric outer measures. This means that the
following holds.
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Proposition 3.5. Assume that F ∈ C(E).
1. If M, M1,M2,M3, . . . is a sequence of sets in E for which M ⊂ ⋃∞

i=1 Mi then

WF (M) ≤
∞∑

i=1

WF (Mi)

and

VF (M) ≤
∞∑

i=1

VF (Mi).

2. If M1,M2 ⊂ E are such that there are open sets G1, G2 with M1 ⊂ G1, M2 ⊂ G2 and
G1 ∩G2 = ∅, then

WF (M1) + WF (M2) = WF (M1 ∪M2)

and
VF (M1) + VF (M2) = VF (M1 ∪M2).

From the second part of this proposition we obtain immediately the following.

Corollary 3.6. If F ∈ C(E) and A1, A2 ⊂ E are closed sets with A1 ∩A2 = ∅, then

WF (A1 ∪A2) = WF (A1) + WF (A2)

and
VF (A1 ∪A2) = VF (A1) + VF (A2)

Since ω(F, I) and F [I] are continuous interval functions for the case F ∈ C(E), by Theorem
3.10 in [10] the outer measures WF (·) and VF (·) have the increasing sets property presented in the
following statement.

Proposition 3.7. If F ∈ C(E) and Mi is a sequence of sets with Mi ⊂ Mi+1 then

WF (
∞⋃

i=1

Mi) = lim
n→+∞

WF (Mn)

and similarly

VF (
∞⋃

i=1

Mi) = lim
n→+∞

VF (Mn).

Let us recall another known concept.

Definition 3.8. Let F ∈ C(E) and M ⊂ E. The function F is called to be of negligible variation
on the set M if for any ε > 0 there is a δ ∈ ∆(E) such that

(3.12) |
∑

j∈Γ

F [Ij ]| < ε

for any δ-fine M -tagged division ({Ij ; j ∈ Γ}, τ).

Remark. Let us mention that if M is countable then every F ∈ C(E) is of negligible variation on
M .

It is easy to see that the notion of negligible variation on a set M for a function F ∈ C(E)
remains unchanged if (3.12) is replaced by

∑

j∈Γ

|F [Ij ]| < ε

in Definition 3.8.
The next statement indicates where the function WF might be important. It shows that the

concept of negligible variation can be characterized by WF .
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Lemma 3.9. Let F ∈ C(E) and M ⊂ E. Then F is of negligible variation on M if and only if
WF (M) = VF (M) = 0.

Proof. Let ε > 0 be given and let δ ∈ ∆(E) be such that (3.12) is satisfied in the case that F is of
negligible variation on M .

Assume that ({Ij ; j ∈ Γ}, τ) is a δ-fine M -tagged division and let Γ+ = {j ∈ Γ;F [Ij ] ≥ 0} and
Γ− = Γ \Γ+. Then ({Ij ; j ∈ Γ+}, τ) and ({Ij ; j ∈ Γ−}, τ) are again δ-fine M -tagged divisions and
this implies that ∑

j∈Γ

|F [Ij ]| =
∑

j∈Γ+

F [Ij ]−
∑

j∈Γ−

F [Ij ] < 2ε

holds. By Lemma 3.3 for any j ∈ Γ there is an interval Jj for which τj ∈ Jj ⊂ Ij and ω(F, Ij) ≤
2|F [Jj ]| for j ∈ Γ. Hence ∑

j∈Γ

ω(F, Ij) ≤ 2
∑

j∈Γ

|F [Jj ]| < 4ε,

because ({Jj ; j ∈ Γ}, τ) is also a δ-fine M -tagged division. The last inequality gives Wδ(F, M) ≤ 4ε
and this yields WF (M) ≤ 4ε for any ε > 0. Hence WF (M) = 0.

If WF (M) = 0 then by definition to every ε > 0 there is a δ ∈ ∆(E) such that Wδ(F, M) < ε.
Hence for every δ-fine M -tagged division D = ({Ij ; j ∈ Γ}, τ) we have Ω(F,D) < ε and this yields
the other implication because |F [Ij ]| ≤ ω(F, Ij) for every j ∈ Γ.

The quantity VF (M) appears in the result simply by using Corollary 3.4.

The basic properties of the function W are summarized in the following statement.

Theorem 3.10. Let F, Fj ∈ C(E) and M, Mj ⊂ E, j ∈ N.
Then

(3.13) if M1 ⊂ M2, then 0 ≤ WF (M1) ≤ WF (M2),

(3.14) WF (
⋃

j∈Φ

Mj) ≤
∑

j∈Φ

WF (Mj) if Φ is at most countable ,

(3.15) W (αF, I) = |α|WF (I) for α ∈ R,

(3.16) WP
j∈Φ Fj

(M) ≤
∑

j∈Φ

WFj (M) if Φ is finite.

Proof. The items (3.13), (3.14), (3.16) are easy to prove. (3.14) follows from Proposition 3.5.

Remark. The problem under what conditions the equality holds in (3.14), i.e. when

WF (
⋃

j∈Φ

Mj) =
∑

j∈Φ

WF (Mj)

if Φ is at most countable, will be important. We give a result of this type in Theorem 3.14 below.

For a given set M ⊂ E denote by µ(M) the Lebesgue measure of M .
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Definition 3.11. By C∗(E) we denote the set of all continuous functions on E which are of
negligible variation on sets of Lebesgue measure zero, i.e.

(3.17) C∗(E) = {F ∈ C(E); WF (N) = 0 whenever µ(N) = 0}.

(See Lemma 3.9.)
It should be mentioned that functions F ∈ C∗(E) are called in the literature also functions

satisfying the strong Luzin condition on E (see e.g. [7, Definition 4.1.1] ).
If E = [0, 1] and F : E → R is the well known Cantor function (cf. [3, Theorem 1.21]) then

F ∈ C(E) but F /∈ C∗(E).

The following well known assertion will be also needed in the sequel.

Proposition 3.12. Let M be a (Lebesgue) measurable subset of E. Then there exists a sequence
{Aj , j ∈ N} of closed sets, for which Aj ⊂ Aj+1 ⊂ M for j ∈ N and

(3.18) µ(M \
∞⋃

j=1

Aj) = 0.

This statement means that there is an Fσ set F such that F ⊂ M and µ(M \ F ) = 0. (See e.
g. [3, Theorem 1.12].)

Lemma 3.13. Let F ∈ C∗(E), M a measurable subset of E and assume that {Aj , j ∈ N} is a
sequence of closed sets, for which Aj ⊂ Aj+1 ⊂ M for j ∈ N and

µ(M \
∞⋃

j=1

Aj) = 0.

Then
WF (M) = lim

j→∞
WF (Aj).

Proof. Clearly

M = (M \
∞⋃

j=1

Aj) ∪
∞⋃

j=1

Aj .

Since F ∈ C∗(E), we have WF (M \⋃∞
j=1 Aj) = 0. This yields by (3.14) in Theorem 3.10 and by

Proposition 3.7

WF (M) ≤ WF (M \
∞⋃

j=1

Aj) + WF (
∞⋃

j=1

Aj) =

= WF (
∞⋃

j=1

Aj) = lim
j→∞

WF (Aj).

On the other hand, by (3.13) in Theorem 3.10 we have

WF (Aj) ≤ WF (Aj+1) ≤ WF (M)

for every j ∈ N and therefore
lim

j→∞
WF (Aj) ≤ WF (M).

This together with the previous inequality gives the statement of the lemma.
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Theorem 3.14. Assume that F ∈ C∗(E) and that {Mk; k ∈ N} is a sequence of measurable
subsets of E.

If Mk ∩Mn = ∅ for k 6= n, then

WF (
∞⋃

k=1

Mk) =
∞∑

k=1

WF (Mk).

Proof. Let Mk ∩Mn = ∅ for k, n ∈ N and k 6= n.
First let us show that

WF (M1 ∪M2) = WF (M1) + WF (M2)

holds.
If {Aj ; j ∈ N} and {Bj ; j ∈ N} are sequences of closed sets such that Aj ⊂ Aj+1 ⊂ M1,

Bj ⊂ Bj+1 ⊂ M2 for j ∈ N and

µ(M1 \
∞⋃

j=1

Aj) = 0, µ(M2 \
∞⋃

j=1

Bj) = 0,

(cf. Proposition 3.12) then by Lemma 3.13 we have

WF (M1) = lim
j→∞

WF (Aj), WF (M2) = lim
j→∞

WF (Bj).

Further clearly

µ((M1 ∪M2) \
∞⋃

j=1

(Aj ∪Bj)) = 0

and again by Lemma 3.13 we get

WF (M1 ∪M2) = lim
j→∞

WF (Aj ∪Bj) =

= lim
j→∞

WF (Aj) + lim
j→∞

WF (Bj) = WF (M1) + WF (M2)

because
WF (Aj ∪Bj) = WF (Aj) + WF (Bj)

for every j ∈ N by Corollary 3.6.
This easily implies that

WF (
n⋃

k=1

Mk) =
n∑

k=1

WF (Mk)

holds for every n ∈ N. By (3.13) we have

WF (
n⋃

k=1

Mk) ≤ WF (
∞⋃

k=1

Mk)

for every n ∈ N and therefore
∞∑

k=1

WF (Mk) ≤ WF (
∞⋃

k=1

Mk).

From (3.14) in Theorem 3.10 we have

WF (
∞⋃

k=1

Mk) ≤
∞∑

k=1

WF (Mk)

and the assertion follows.

Theorem 3.14 shows that if F ∈ C∗(E) then the variational measure WF (·) generated by F is
countably additive on the σ-algebra of measurable subsets of E.
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4 The Kurzweil-Henstock integral K

Let us start with the basic definition of the integral.

Definition 4.1. K denotes the set of all pairs (f, γ), where f is a function on E and γ ∈ R, for
which to any ε > 0 there exists a gauge δ such that

|
∑

j∈Γ

f(τj)|Ij | − γ| < ε

for any δ-fine division ({Ij ; j ∈ Γ}, τ) of the interval E.
The value γ ∈ R is called the Kurzweil-Henstock integral of f over E and it will be denoted by

K(f) or (K)
∫

E
f .

K is in fact a mapping from a set of functions on E into R (a functional).
Denote by Dom(K) the set of all f for which the functional K is defined.
If f ∈ Dom(K) then f is called K-integrable over E.
Denote the characteristic function of a set M ⊂ E by χ(M), i.e. χ(M) = 1 on M and χ(M) = 0

on E \M .
The characteristic function of the empty set ∅ may be denoted simply by 0 if no confusion can

arise.
If the product f · χ(M) belongs to Dom(K), then K(f, M) (or (K)

∫
M

f) denotes the value of
the functional K on f · χ(M), i.e. K(f,M) = K(f · χ(M)) and of course K(f,E) = K(f).

Definition 4.2. If f ∈ Dom(K), then a function F : E → R is called a K-primitive (or the
indefinite K-integral) to f provided

F [I] = K(f, I)

holds for every I ∈ Sub(E).

Now we present a collection of basic properties of the Kurzweil-Henstock integral which will be
used in the framework of this paper and in subsequent work.

Proposition 4.3.

(4.1) 0 ∈ Dom(K) and K(0) = 0.

If c ∈ [a, b] = E and I1 = [a, c], I2 = [c, b] then f ∈ Dom(K) if and only if f · χ(I1), f · χ(I2) ∈
Dom(K) and

(4.2) K(f) = K(f, I1) + K(f, I2).

If f = 0 almost everywhere (with respect to the Lebesgue measure) then

(4.3) f ∈ Dom(K) and K(f) = 0.

(4.4) If f ∈ Dom(K) and F is a K-primitive to f then F ∈ C∗(E).

(4.5) If f ∈ Dom(K) then f is (Lebesgue) measurable.

K is a linear functional, i.e. if f, g ∈ Dom(K) and α, β ∈ R then αf + βg ∈ Dom(K) and

(4.6) K(αf + βg) = αK(f) + βK(g).
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Proof. The properties (4.1), (4.2) and (4.6) are easy to prove.
In [3, Theorem 9.5] it is shown that (4.3) holds.
In [7, Theorem 3.9.2] it is proved that a K-primitive function F to f ∈ Dom(K) is continuous

and of negligible variation on sets of zero (Lebesgue) measure and this means that (4.4) is satisfied
(cf. Definition 3.11).

The Lebesgue measurability of every f ∈ Dom(K) is proved e.g. in [3, Theorem 9.12] ).

Let us mention that a K-primitive function to f ∈ Dom(K) always exists (e.g. F (x) =
K(f, [a, x]) for x ∈ E = [a, b] is a K-primitive to f) and it is determined uniquely up to a constant.

If M ∈ Alg(E) and {Ij ; j ∈ Γ} is a division of M , then f · χ(M) ∈ Dom(K) if and only if
f · χ(Ij) ∈ Dom(K) for all j ∈ Γ and

K(f,M) =
∑

j∈Γ

K(f, Ij).

In connection with the property (4.4) from Proposition 4.3 the following beautiful descriptive
characterization of the Kurzweil-Henstock integral presented by Bongiorno, Di Piazza an Skvortsov
in [1, Theorem 3] should be mentioned.

Theorem 4.4. A function F : E → R is a K-primitive function to some f : E → R if and only
if F ∈ C∗(E).

In other words the class of all functions F : E → R which are K-primitive to some f coincides
with the class of all F ∈ C(E) for which WF (N) = 0 if N ⊂ E and µ(N) = 0.

For more detail see [1] and also [8], [9].
From Gordon’s book [3] it is known that a function F : E → R is K-primitive to some f : E → R

if and only if F is an ACG∗ function on E. This leads immediately to the conclusion of Theorem
4 in [1] which says that the class of all ACG∗ functions on E coincides with the class C∗(E) of
functions satisfying the strong Luzin condition.

Similar problems are dealt with also in the posthumous paper [2] of Vasile Ene in connection
with an older result of Jarńık and Kurzweil from [4].

The following assertion known as the Saks-Henstock lemma plays an important role in the
theory (see e.g. [3, Lemma 9.11], [5, Lemma 5.3] , etc.).

Proposition 4.5. Let f ∈ Dom(K). Then to any ε > 0 there is a gauge δ such that for any δ-fine
tagged division ({Ij ; j ∈ Γ}, τ) in E the inequality

(4.7) |
∑

j∈Γ

f(τj)|Ij | −K(f,
⋃

j∈Γ

Ij)| < ε

holds.
In other words (F being the K-primitive to f) we have

(4.8) |
∑

j∈Γ

f(τj)|Ij | −
∑

j∈Γ

F [Ij ]| < ε.

In [3, Theorem 9.21] the following is presented.

Theorem 4.6 (Hake). Let f : E → R be given. Suppose that f · χ([c, d]) ∈ Dom(K) for each
[c, d] ⊂ E, a < c < d < b. If K(f, [c, d]) has a finite limit as c → a+ and d → b− then f ∈ Dom(K)
and

K(f) = lim
c→a+, d→b−

K(f, [c, d]).

Now we give another property of the Kurzweil-Henstock integral.
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Lemma 4.7. Assume that f ∈ Dom(K) and let F be its K-primitive function. Then

(4.9) WF (M) ≤ 2|E||f |M
holds for M ⊂ E.

Proof. Proof Let ε > 0 be given. Let δ ∈ ∆(E) be such that (4.8) holds. Assume that ({Ij ; j ∈
Γ}, τ) is a δ-fine M -tagged division and let Jj ⊂ Ij be such that τj ∈ Jj and ω(F, Ij) ≤ 2|F [Jj ]|
for j ∈ Γ (see Lemma 3.3).

Assume that Γ1 = {j ∈ Γ;F [Jj ] ≥ 0} and set Γ2 = Γ \ Γ1. Evidently ({Ij ; j ∈ Γ1}, τ) and
({Ij ; j ∈ Γ2}, τ) are δ-fine divisions in E.

We have ∑

j∈Γ

ω(F, Ij) ≤ 2
∑

j∈Γ

|F [Jj ]| = 2|
∑

j∈Γ1

F [Jj ]|+ 2|
∑

j∈Γ2

F [Jj ]|

and by (4.8)
∑

j∈Γ1

|F [Jj ]| =
∑

j∈Γ1

F [Jj ] =
∑

j∈Γ1

f(τj)|Jj |+
∑

j∈Γ1

(F [Jj ]− f(τj)|Jj |) ≤

≤ |
∑

j∈Γ1

f(τj)|Jj ||+ |
∑

j∈Γ1

(F [Jj ]− f(τj)|Jj |)| <
∑

j∈Γ1

|f(τj)|Jj |+ ε.

Similarly ∑

j∈Γ2

|F [Jj ]| = −
∑

j∈Γ2

F [Jj ] =
∑

j∈Γ2

f(τj)|Jj | −
∑

j∈Γ2

(F [Jj ]− f(τj)|Jj |) ≤

≤ |
∑

j∈Γ2

f(τj)|Jj ||+ |
∑

j∈Γ2

(F [Jj ]− f(τj)|Jj |)| <
∑

j∈Γ1

|f(τj)||Jj |+ ε.

Therefore ∑

j∈Γ

ω(F, Ij) < 2
∑

j∈Γ

|f(τj)||Jj |+ 4ε ≤

≤ 2|f |M
∑

j∈Γ

|Jj |+ 4ε ≤ 2|f |M |E|+ 4ε

and
Wδ(F, M) < 2|f |M |E|+ 4ε.

Hence
WF (M) < 2|f |M |E|+ 4ε

for every ε > 0 and this implies (4.9).

Definition 4.8. If I ∈ Sub(E) and A ⊂ E is closed then Comp(I,A) denotes the set of all
(maximal and nonempty) connected components of the set I \A.

The set Comp(I,A) is always at most countable and any element

U ∈ Comp(I, A)

is an interval, i.e. U ∈ Sub(E).

Lemma 4.9. Let A ⊂ E be a closed set, f, F : E → R.
Assume that

1) f = 0 on A,
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2) for every [c, d] ⊂ U ∈ Comp(E, A) we have f · χ([c, d]) ∈ Dom(K) and

K(f, [c, d]) = F (d)− F (c),

3) F ∈ C(E),

4) WF (A) = 0.

Then f ∈ Dom(K) and F is a K-primitive to f .

Proof. By 4) to any ε > 0 there is a δ0 ∈ ∆(E) such that

Ω(F, D) =
∑

j∈Γ

ω(F, Ij) < ε

for every δ0-fine A-tagged division ({Ij ; j ∈ Γ}, τ). Therefore

|
∑

j∈Γ

F [Ij ]| ≤
∑

j∈Γ

|F [Ij ]| ≤
∑

j∈Γ

ω(F, Ij) < ε

for every δ0-fine A-tagged division ({Ij ; j ∈ Γ}, τ).
The conditions 2) and 3) together with Hake’s Theorem 4.6 yield

f · χ(U) ∈ Dom(K)

for every U ∈ Comp(E, A) and

K(f, U) = F [U ] = F (r(U))− F (l(U))

by the continuity of F which is required by 3).
Comp(E,A) is at most countable, Comp(E, A) = {Uj ; j ∈ N}, because A is closed.
Since f · χ(Uj) ∈ Dom(K) for every j ∈ N and K(f, I) = F [I] for every I ∈ Sub(Uj), there is

a δj ∈ ∆(Uj) such that

|
∑

l∈Γj

(f(τl)|Il| − F [Il])| < ε

2j

holds for every δj-fine division ({Il; l ∈ Γj}, τ) in Uj , j ∈ N. This follows from the Saks-Henstock
lemma 4.5.

Define

δ(t) =
{

min{δj(t), 1
2dist(t, A)} for t ∈ Uj , j ∈ N,

δ0(t) for t ∈ A.

Clearly δ ∈ ∆(E). Assume that ({Jk; k ∈ Φ}, τ) is a δ-fine division of E. Denote Γ0 = {k ∈ Φ; τk ∈
A}, Γj = {k ∈ Φ; τk ∈ Uj}. By the definition of δ ∈ ∆(E) we have Jk ⊂ Uj for k ∈ Γj and

|
∑

k∈Φ

f(τk)|Jk| − F [E]| = |
∑

k∈Φ

(f(τk)|Jk| − F [Jk]| ≤

≤ |
∑

k∈Γ0

F [Jk]|+
∑

j∈N
|
∑

k∈Γj

(f(τk)|Jk| − F [Jk]| < ε +
∑

j∈N

ε

2j
= 2ε.

Hence f ∈ Dom(K) and K(f) = F [E].
If I ∈ Sub(E) then the same procedure can be used for the interval I and the closed set

A ∩ I ⊂ E to show that f · χ([I]) ∈ Dom(K) and that K(f, I) = F [I]. This yields the statement.
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Corollary 4.10. Let A ⊂ E be a closed set, f, F : E → R.
Assume that

1) f = 0 on A,

2) for every interval I = [c, d] ⊂ U ∈ Comp(E,A) we have f · χ(I) ∈ Dom(K) and

K(f, I) = F [I] = F (d)− F (c),

3) F ∈ C(E).

Then f ∈ Dom(K) and F is a K-primitive to f if and only if WF (A) = 0.

Proof. Lemma 4.9 gives one of the implications an therefore it suffices to show that if f ∈ Dom(K)
and F is a K-primitive to f then WF (A) = 0. But this is clear by (4.9) from Lemma 4.7 because
by 1) we have |f |A = 0.

Theorem 4.11. Let A ⊂ E be a closed set, g, F : E → R.
Assume that

1) g · χ(A) ∈ Dom(K),

2) for every interval I ⊂ U ∈ Comp(E, A) we have g · χ(I) ∈ Dom(K) and

K(g, I) = F [I],

3) F ∈ C(E).

Then g ∈ Dom(K) if and only if WF (A) = 0 and in this case we have

K(g) = K(g, A) + F [E] = K(g,A) + F (b)− F (a).

Proof. Let us set f = g− g · χ(A). Then clearly f = 0 on A and f = g on every U ∈ Comp(E, A).
By 2) we obtain that f · χ(I) ∈ Dom(K) for every I ⊂ U ∈ Comp(E, A) and

K(f, I) = F [I].

This together with 3) implies by Corollary 4.10 that f ∈ Dom(K) if and only if WF (A) = 0
and F is a K-primitive to f . This implies also K(f) = F [E].

By (4.6) and by the definition of f we obtain g ∈ Dom(K) if and only if WF (A) = 0 and

K(g) = K(g · χ(A)) + K(f) = K(g, A) + F [E].

The theorem is proved.

Remark. Let us mention that if G is a K-primitive to g · χ(M) ∈ Dom(K), then G + F is a
K-primitive to g.

In [7, Theorem 3.4.1] the following statement was proved.

Theorem 4.12. If g is K-integrable over I ∈ Sub(E) and G is its K-primitive then |g| is K-
integrable over I if and only if V (G, I) < ∞ and

V (G, I) = K(|g|, I).

In this situation we have G ∈ C(E) and using Lemma 3.2 we get the following.
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Lemma 4.13. If g is K-integrable over I ∈ Sub(E) and G is its K-primitive then |g| is K-
integrable over I if and only if W (G, I) < ∞ and

WG(I) = K(|g|, I)

in this case.

Lemma 4.14. If M ⊂ E and f, g = f ·χ(M) ∈ Dom(K) where F, G are K-primitives to f, g then

(4.10) WF (M) = WG(M)

Proof. Proof Since f − g ∈ Dom(K) and F − G is a K-primitive to f − g we have by (4.9) in
Lemma 4.7

WF−G(M) ≤ 2|E||f − g|M = 0.

Hence by (3.14) from Theorem 3.10 we get

WF (M) = WF−G+G(M) ≤ WF−G(M) + WG(M) = WG(M).

Similarly also WG(M) ≤ WF (M) and (4.10) holds.

Lemma 4.15. Assume that f ∈ Dom(K) with F being its K-primitive, M ⊂ E (Lebesgue)
measurable and g = |f | · χ(M) ∈ Dom(K) with the K-primitive G. Then

(4.11) WF (M) = K(|f |,M) = K(g).

Proof. Proof By (4.5) f is measurable and therefore f · χ(M) is measurable as well.
Since |f · χ(M)| = |f | · χ(M) ∈ Dom(K) we have f · χ(M) ∈ Dom(K) (see e.g. [7, Theorem

3.11.2] ).
Hence by Lemma 4.14 we have WF (M) = WG(M).
Since M ⊂ E we have WG(M) ≤ WG(E) by (3.13) and on the other hand by (3.14) we get

WG(E) ≤ WG(M) + WG(E \M) = WG(M)

because by Lemma 4.7 we have WG(E \M) ≤ 2|E||g|E\M = 0. This yields WG(M) = WG(E) and
therefore

WF (M) = WG(E).

By Lemma 4.13 we have

WG(E) = K(g) = K(|f | · χ(M)) = K(|f |,M)

because g = |g| and (4.11) is proved.

For f ∈ Dom(K), M ⊂ E measurable, denote

K(|f |,M) = K(|f |,M) if |f | · χ(M) ∈ Dom(K),
K(|f |,M) = ∞ otherwise.

Using Lemma 4.15 we have

(4.12) WF (M) ≤ K(|f |, M)

for every f ∈ Dom(K) with F being its K-primitive.

Proposition 4.16. If f ∈ Dom(K), F a K-primitive to f and M ⊂ E measurable, then

(4.13) WF (M) = K(|f |,M).
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Proof. Since (4.12) holds, the equality (4.13) holds for the case when WF (M) = ∞.
Assume that WF (M) < ∞. By (4.12) for proving (4.13) it suffices to show that

(4.14) K(|f |,M) ≤ WF (M).

Denote g = |f | · χ(M) and assume that ε > 0 is given.
Since f ∈ Dom(K), by the Saks-Henstock lemma (Proposition 4.5) there is a δ1 ∈ ∆(E) such

that

(4.15) |
∑

j∈Γ

(f(τj)|Ij | − FIj)| < ε

for any δ1-fine division ({Ij , j ∈ Γ}, τ) in E. Using the definition of WF (M) assume further that
δ2 ∈ ∆(E) is such that

(4.16)
∑

j∈Γ

ω(F, Ij) < WF (M) + ε

for every δ2-fine M -tagged division ({Ij , j ∈ Γ}, τ) in E and put

δ = min{δ1, δ2}.

Let ({Ij , j ∈ Γ}, τ) be an arbitrary δ-fine division in E. Denote Γ̃ = {j ∈ Γ; g(τj) 6= 0}. For j ∈ Γ̃
we have clearly τj ∈ M and {Ij , j ∈ Γ̃} forms an M -tagged division in E which is both δ1- and
δ2-fine.

Then ∑

j∈Γ

g(τj)|Ij | =
∑

j∈eΓ g(τj)|Ij | =
∑

j∈eΓ f(τj)|Ij |

=
∑

j∈Γ+

f(τj)|Ij | −
∑

j∈Γ−

f(τj)|Ij |

where Γ+ = {j ∈ Γ̃, f(τj) > 0}, Γ− = {j ∈ Γ̃, f(τj) < 0}.
Hence by (4.15) and (4.16) we obtain

∑

j∈Γ

g(τj)|Ij | ≤

|
∑

j∈Γ+

f(τj)|Ij | − F [Ij ]|+ |
∑

j∈Γ−

f(τj)|Ij | − F [Ij ]|+

|
∑

j∈Γ+

F [Ij ]|+ |
∑

j∈Γ−

F [Ij ]| <

2ε +
∑

j∈eΓ |F [Ij ]| ≤ 2ε +
∑

j∈eΓ ω(F, Ij) < WF (M) + 3ε.

Since all the integral sums corresponding to the nonnegative function g = |f | · χ(M) and to the
δ1-fine tagged division ({Ij , j ∈ Γ}, τ) are bounded by WF (M) + 3ε we obtain that the integral
K(g) = K(|f |,M) exists and satisfies the estimate

K(g) = K(|f |,M) < WF (M) + 3ε

for an arbitrary ε > 0. Hence
K(|f |,M) ≤ WF (M)

and (4.14) holds.
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