Štefan Schwabik * Inst. of Mathematics Acad. Sci. Czech Republic, Žitná 25, 115 67 Praha 1 (e-mail: schwabik@math.cas.cz)

Variational measures and extensions of the integral

Some concepts of integration theories are recollected and used especially for the Kurzweil-Henstock integral.

The general integral. Put $E = [a, b], -\infty < a < b < +\infty$ and denote Sub(E) the set of compact subintervals in E.

A functional S is a set of pairs (f, γ) $(f : E \to \mathbb{R}, \gamma \in \mathbb{R}$ the value of S), γ is uniquely determined by $f, \gamma = S(f)$.

The set of all f for which the functional S is defined is Dom(S).

The functional S is *additive* if

A) $0 \in \text{Dom}(S)$ and S(0) = 0,

B) if $c \in [a, b] = E$, $I_1 = [a, c], I_2 = [c, b]$ then $f \in \text{Dom}(S) \iff f \cdot \chi(I_1), f \cdot \chi(I_2) \in \text{Dom}(S)$ and $S(f) = S(f, I_1) + S(f, I_2)$.

If S is an additive and $f \in \text{Dom}(S)$, then $F : E \to \mathbb{R}$ is an S-primitive to f provided $F[I] = F(d) - F(c) = S(f, I) = S(f \cdot \chi_I), \forall I = [c, d] \in \text{Sub}(E).$

An additive S is an *integral* in E if all S-primitive functions to $f \in \text{Dom}(S)$ are continuous in E ($F \in C(E)$).

Denote the set of all integrals in E by \mathfrak{S} . If $S \in \mathfrak{S}$ and $f \in \text{Dom}(S)$ then f is called S- integrable.

Comparing integrals. If $T, S \in \mathfrak{S}$ then T includes S $(S \sqsubset T)$ if $\text{Dom}(S) \subset \text{Dom}(T)$ and if for $f \in \text{Dom}(S)$ and $I \in \text{Sub}(E)$ the equality T(f, I) = S(f, I) holds.

By the relation \sqsubset a partial ordering in \mathfrak{S} is given.

The Henstock-Kurzweil integral. A *division* is a finite system $D = \{I_j \in Sub(E); j \in \Gamma\}$, where $Int(I_j) \cap I_k = \emptyset$ for $j \neq k$.

A map τ from Sub(E) into E is a tag if $\tau(I) \in I$ for $I \in \text{Dom}(\tau)$.

A tagged system is a pair (D, τ) , where $D = \{I_j; j \in \Gamma\}$ is a division and τ is a tag defined for all $I_j, j \in \Gamma$. $\tau_j = \tau(I_j)$.

Mathematical Reviews subject classification: 26A39 *Supported by the grant IAA100190702 GA AV.

Supported by the grant IAA100190702 GA AV.

For $M \subset E$ the tagged system $(\{I_j; j \in \Gamma\}, \tau)$ is *M*-tagged if $\tau_j = \tau(I_j) \in$ M. The tagged system $({I_j; j \in \Gamma}, \tau)$ is a division of E if $\bigcup_{j \in \Gamma} I_j = E$.

A gauge is any function on E with values in $(0, +\infty)$.

If δ is a gauge, then a tagged system (D, τ) $(D = \{I_i; j \in \Gamma\})$ is δ -fine if $|I_i| < \delta(\tau_i)$ for $j \in \Gamma$.

Cousin's lemma. For any gauge δ there exists a δ -fine division of E.

Denote K the set of all pairs $(f, \gamma), f : E \to \mathbb{R}, \gamma \in \mathbb{R}$, for which to any $\varepsilon > 0$ there exists a gauge δ such that

$$|\sum_{j\in\Gamma} f(\tau_j)|I_j| - \gamma| < \varepsilon$$

for any δ -fine division $(\{I_i; j \in \Gamma\}, \tau)$ of E.

 $\gamma \in \mathbb{R}$ is the Kurzweil-Henstock integral of f over E and $K(f) = \gamma = \gamma$ $(K) \int_E f.$

If $f \in \text{Dom}(K)$, then the K-primitive $F : E \to \mathbb{R}$ is continuous. F[I] =K(f, I) for $I \in \operatorname{Sub}(E)$. We have $K \in \mathfrak{S}$.

It is known that

 $N \sqsubset K$

and

$$R \sqsubset L \sqsubset K, \ K = P = D_*$$

where N, R, L, P, D_* stands for the Newton, Riemann, Lebesgue, Perron and Denjoy-Perron integrals, respectively.

Let $F \in C(E)$ and $M \subset E$. The function F is called to be of *negligible* variation on M if for any $\varepsilon > 0$ there is a $\delta \in \Delta(E)$ such that $|\sum_{i \in \Gamma} F[I_i]| < \varepsilon$

$$\sum_{j \in \Gamma} F[I_j] | <$$

for any δ -fine *M*-tagged division ($\{I_i; j \in \Gamma\}, \tau$).

The Kurzweil-Henstock integral has the following properties: \circledast If $\mu(N) = 0$ then $f \cdot \chi(N) \in \text{Dom}(K)$ and K(f, N) = 0. \circledast If $f \in \text{Dom}(K)$ then F is of negligible variation on $N \subset E$ with $\mu(N) = 0$. \circledast If $f \in \text{Dom}(K)$ then f is measurable. \circledast If $f \in \text{Dom}(K)$, F its K-primitive. Then $W_F(M) \le 2|E||f|_M = 2|E|\sup_{x \in M} |f(x)|$ for $M \subset E$. \circledast K is a linear functional, i.e. $K(\alpha f + \beta g) = \alpha K(f) + \beta K(g)$. **Variational measures.** The oscillation of $F \in C(E)$ on an interval $I \in$ Sub(E) is given by

 $\omega(F, I) = \sup\{|F(x) - F(y)|; x, y \in I\} = \sup\{|F[J]|; J \in \operatorname{Sub}(I)\}.$ For $F \in C(E)$ and a division $D = \{I_j; j \in \Gamma\}$ define
$$\begin{split} \Omega(F,D) &= \sum_{j \in \Gamma} \omega(F,I_j) \text{ and } A(F,D) = \sum_{j \in \Gamma} |F[I_j]|. \end{split}$$
 If $F \in C(E)$ and $M \subset E$ then for any gauge δ set

2

$$W_{\delta}(F, M) = \sup\{\Omega(F, D); D \text{ is } \delta\text{-fine}, M\text{-tagged}\}, V_{\delta}(F, M) = \sup\{A(F, D); D \text{ is } \delta\text{-fine}, M\text{-tagged}\}$$

and put

 $W_F(M) = \inf\{W_{\delta}(F, M); \ \delta \in \Delta(E)\} = \inf_{\delta}\{\sup_D\{\Omega(F, D)\}\},\ V_F(M) = \inf\{V_{\delta}(F, M); \ \delta \in \Delta(E)\} = \inf_{\delta}\{\sup_D\{A(F, D)\}\}.$

For $F \in C(E)$, $W_F(\cdot)$ and $V_F(\cdot)$ are set functions. Using the terms presented by **B.S.Thomson** (Mem. AMS, 1991) we identify $W_F(M)$ and $V_F(M)$ as *full variational measures* generated by the continuous interval functions given for $I \in \text{Sub}(E)$ by $\omega(F, I)$, F[I], respectively. $(W_F(\cdot) \text{ and } V_F(\cdot) \text{ are}$ metric outer measures (B. Thomson).)

It is easy to show that

$V_F(M) \le W_F(M) \le 2V_F(M)$

and this means that F is of negligible variation on M if and only if $W_F(M) = 0$.

Denote by $C^*(E)$ the set of all continuous functions on E which are of negligible variation on sets of Lebesgue measure zero (the *strong Luzin condition*) $C^*(E) = \{F \in C(E); W_F(N) = 0 \text{ whenever } \mu(N) = 0\}.$

A descriptive characterization of the Kurzweil-Henstock integral given by **B. Bongiorno, L. Di Piazza** and **V. Skvortsov**:

 $F: E \to \mathbb{R}$ is a K-primitive function to some $f: E \to \mathbb{R}$ if and only if $F \in C^*(E)$.

This means that $F \in C^*(E) \iff F \in ACG_*$ (see the book of **S. Saks**).

The class \mathfrak{T} . \mathfrak{T} denotes the set of integrals $S \in \mathfrak{S}$ fulfilling the following $(N, A \subset E, \mu(A)$ is the Lebesgue measure of a set A, f is a function on E and F is an S-primitive function to f):

- 1. If $\mu(N) = 0$ then $f \cdot \chi(N) \in \text{Dom}(S)$ and S(f, N) = 0.
- 2. If $f \in \text{Dom}(S)$ then $F \in C(E)^*$.
- 3. If $f \in \text{Dom}(S)$ then f is measurable.
- 4. There exists $\lambda < \infty$ such that
 - $W_F(A) \le \lambda |f|_A = \lambda \sup_{x \in A} |f(x)|$
 - if $f \in \text{Dom}(S)$ and A is a closed set.
- 5. S is a linear functional.

Looking at the properties above, marked by \circledast , we get for the Henstock-Kurzweil integral $K \in \mathfrak{T}$ and, of course, the same holds for any $S \in \mathfrak{S}$, $S \sqsubset K$.

Extension of integrals. A mapping $Q : \mathfrak{S} \to \mathfrak{S}$ defined on $\text{Dom}(Q) \subset \mathfrak{S}$ is an *extension* if for every $S \in \text{Dom}(Q)$ we have $S \sqsubset Q(S), Q(S) \in \text{Dom}(Q)$ and if $S_1, S_2 \in \text{Dom}(Q) \subset \mathfrak{S}$ then $S_1 \sqsubset S_2 \implies Q(S_1) \sqsubset Q(S_2)$. The extension Q is called *effective* if $Q^2 = Q$, i.e. Q(Q(S)) = Q(S) for every $S \in \text{Dom}(Q)$.

An integral S is called *invariant with respect to an extension* Q if $S \in Dom(Q)$ and Q(S) = S.

 $\mathfrak{R} \subset \mathfrak{S}$ is some set of integrals.

If $S \in \mathfrak{R}$ and \mathcal{P} is a set of extensions with $\operatorname{Dom}(P) = \mathfrak{R}$ for $P \in \mathcal{P}$, then $\operatorname{Min}(\mathcal{P}; S)$ is the minimal \mathcal{P} -invariant integral containing S (if it exists), i.e. $T = \operatorname{Min}(\mathcal{P}; S)$ if and only if

(i)
$$S \sqsubset T$$
 and

(ii) $T \sqsubset R$ whenever $R \in \mathfrak{R}$ is such that $S \sqsubset R$ and P(R) = R for all $P \in \mathcal{P}$. **Extension of integrals.** If f is a function on E and $S \in \mathfrak{S}$, then $x \in E$ is called an *S*-regular point of f if there is a $I \in \mathrm{Sub}(E)$ such that $x \in \mathrm{Int}(I)$ and $f \cdot \chi(I) \in \mathrm{Dom}(S)$.

The set of all S-regular points of f is denoted by $\rho(f, S)$.

The complement $\sigma(f, S) = E \setminus \rho(f, S)$ of $\rho(f, S)$ in E is the set of S-singular points of f. The set $\sigma(f, S)$ is closed.

Cauchy extension. For $S \in \mathfrak{S}$ denote by S_C the set of all pairs (f, γ) for which $\sigma(f, S)$ is a finite set and for which there is a function $F \in C(E)$ such that $\gamma = F[E] = F(b) - F(a)$ and for every interval $I \subset \rho(f, S)$ we have $f \cdot \chi(I) \in \text{Dom }(S)$ and F[I] = S(f, I).

The set $\{(S, S_C); S \in \mathfrak{S}, S_C \text{ exists }\}$ is denoted by P_C .

 $S \in \mathfrak{S}$ is P_C -invariant $(P_C(S) = S_C \sqsubset S)$ if and only if for S the following statement holds.

Hake's Theorem. If $I = [c, d] \in \text{Sub}(E)$ then $f \cdot \chi(I) \in \text{Dom}(S)$ if and only if for every $c < \alpha < \beta < d$ we have $f \cdot \chi_{[\alpha,\beta]} \in \text{Dom}(S)$ and

$$\lim_{\alpha \to c+, \beta \to d-} S(f \cdot \chi_{[\alpha, \beta]}) = A \in \mathbb{R}.$$

In this case S(f, I) = A.

Harnack extension. For $S \in \mathfrak{S}$ denote by S_H the set of all pairs (f, γ) for which there is a closed set $Q \subset E$ such that $f \cdot \chi(Q) \in \text{Dom}(S)$ and $f \cdot \chi(U_j) \in \text{Dom}(S)$ for $j \in \Gamma$ where $\{U_j; j \in \Gamma\} = \text{Comp}(E, Q)$ and for which there is a function $F \in C(E)$ such that $\gamma = F[E] = F(b) - F(a)$,

$$\sum_{U \in \operatorname{Comp}(E,Q)} \omega(F,\overline{U}) < \infty$$

and

$$F[I] = S(f, I \cap Q) + \sum_{j \in \Gamma} S(f, I \cap \overline{U_j})$$

for any $I \in \operatorname{Sub}(E)$.

The set $\{(S, S_H); S \in \mathfrak{S}, S_H \text{ exists }\}$ is denoted by P_H .

Using the tools given before it can be shown that

 $K = D_* = Min(\{P_C, P_H\}; L), L$ is the Lebesgue integral.

Extensions Q_X and Q_Z . For $S \in \mathfrak{T}$ denote by S_X the set of all (f, γ) for which there exist $F \in C(E)^*$, measurable sets $N_1, N_2 \subset E$ with $\mu(N_1) = \mu(N_2) = 0$, a sequence (f_j) in $\text{Dom}(S), j \in \mathbb{N}$ and a sequence (M_k) of measurable subsets of E such that $\gamma = F[E]$ and

$$f(x) = \lim_{j \to \infty} f_j(x) \text{ for } x \in E \setminus N_1,$$

$$M_k \nearrow E \setminus N_2,$$

if $k \in \mathbb{N}$ then $W_{F-F_j}(M_k) \to 0$ for $j \to \infty,$

$$F_j \text{ is an } S \text{-primitive to } f_j.$$

The set $\{(S, S_X); S \in \mathfrak{T}, S_X \text{ exists }\}$ is denoted by Q_X .

 $Q_X : \mathfrak{T} \to \mathfrak{T}$ is an effective extension.

If $S \in \mathfrak{T}$ then S_Z denotes the set of all pairs (f, γ) for which there exists a function $F \in C(E)^*$ and a sequence (A_k) of closed subsets of E such that $\gamma = F[E]$ and

$$A_k \nearrow E,$$

$$f_j = f \cdot \chi(A_j) \in \text{Dom}(S) \text{ for } j \in \mathbb{N},$$

$$W_{F-F_j}(A_k) = 0 \text{ for } j \ge k,$$

if
$$k \in \mathbb{N}$$
 then $\sum_{U \in \text{Comp}(E,A_k} \omega(F - F_j, \overline{U}) \to 0 \text{ for } j \to \infty$

where F_i is an S-primitive function to f_i .

The set $\{(S, S_Z); S \in \mathfrak{T}, S_Z \text{ exists }\}$ is denoted by Q_Z .

 $Q_Z : \mathfrak{T} \to \mathfrak{T}$ is an extension and $Q_Z(S) \sqsubset Q_X(S)$. $Q_Z(S)$ is P_C - and P_H -invariant for $S \in \mathfrak{T}$.

We have

$$Q_Z(L) = Q_X(L) = K.$$

This result makes it possible to describe the Kurzweil-Henstock integral via sequences of Lebesgue integrable functions.

The extensions Q_X and Q_Z are close to the method of describing the Perron-Denjoy (=Kurzweil-Henstock) integral by successive approximation given by **S. Nakanishi** (*Math. Japonica* 41 (1995)). In fact S. Nakanishi presents four slightly different extensions of this type. The examples given there concern mainly extensions of L which lead to the Kurzweil-Henstock integral.

There is another extension of L given by **B. Bongiorno, L. DiPiazza** and **D. Preiss**, the so called C-integral, which is strictly between L and K and is taylored to integrate derivatives. Other possibilities of integrals between L and K presents **J. Kurzweil** in his 2002 book.

The way how to describe formally extensions leading to such intermediate integrals, using the abstract concepts presented, is at this moment open.