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Let an interval [a,b] C R, —0o < a < b < +00 be given. A pair (7, J) of
a point 7 € [a,b] and a compact interval J C [a, b] is called a tagged interval,
where 7 is the tag of J.
A finite collection {(7;,.J;), j = 1,...,k} of tagged intervals is called an
M -system if
Int(J;) N Int(J;) =0 for ¢ # j

(where Int(J) denotes the interior of interval J). M -partition is an M-system
which moreover satisfies

k
U7 = la.b).
j=1
An M-system (M-partition) {(7;,J;), j = 1,...,k} for which
TjGJj, 1=1,...,k

is called a K-system (K -partition) on [a,b]. Clearly every K-system is also
an M-system.

In the sequel we assume that every system of tagged intervals {(7;, J;)}%_,
is ordered in such a way that

SuinSianiH, Zzl,,]{}—l
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In other words, the notation {(7;, [a;_1, ;])}F_, implies
a<og<ogp <o <o <

Given a positive function 0 : [a,b] — (0,400) called a gauge on [a,b],
a tagged interval (7, J) is said to be d-fine if

J Clr—=46(r), 7+ 0(1)].

Using this concept we can speak about d-fine systems and d-fine partitions
{(15,J;), 3 =1,...,k} of the interval [a, b] whenever (7}, J;) is d-fine for every
j=1,... .k

It is a well-known fact that given a gauge ¢ : [a,b] — (0, +00) there exists
a d-fine K-partition of [a,b]. This result is called Cousin’s lemma, see e.g.
[11, Theorem on p. 119].

Assume that Y is a real Banach space with the norm ||-||y. Let us consider
a function f : [a,b] — Y and assume that p is the Lebesgue measure on the
real line.

Definition 1. Assume that f : [a,b] — Y is given. The function f is called
McShane integrable if there is an element My € Y such that for every ¢ > 0
there exists a gauge d on [a, b] such that

k

S F(t)u(g) — M;

=1

<e€
Y

for every o-fine M-partition {(¢;, J;), i =1,...,k} of [a,b].
The operator My is called the McShane integral of f over [a,b] and we
use the notation M; = (M) f; f.

Definition 2. Assume that f : [a,b] — Y is given. The function f is called
Henstock-Kurzweil integrable if there is an element K; € Y such that for
every € > 0 there exists a gauge 0 on [a, b] such that

Y
for every o-fine K-partition {(¢;,J;), i = 1,...,k} of [a,b].

The operator Ky is called the Henstock-Kurzweil integral of f over [a,b]
and we use the notation K; = (HK) ff f
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1 Henstock-Kurzweil and McShane product
integrals

Assume now that X is a real Banach space. Denote by L(X) the Banach
space of bounded linear operators on X with the usual operator norm given
by
[A[F =N Allzeo = sup [REIPN

for A € L(X). By I the identity operator in L(X) will be denoted.

Let J be the set of all compact subintervals in [a,b]. Assume that a
point-interval function V' : [a,b] x J — L(X) is given.

For a given M-partition D = {(¢;,J;), i =1,...,k} of [a,b] define

P(V,D) = [[V(ti, Ji) = V(te, Jo)V (tr-1, Ju-1) ... V(t1, J1).

i=k
Definition 3. A function V : [a,b] x J — L(X) is called McShane product

integrable over [a, b] if there exists ) € L(X) such that for every € > 0 there
is a gauge 0 : [a, b] — (0, +00) on [a,b] such that

IP(V.D) - Q| <e

for every o-fine M-partition D = {(¢;, J;), i = 1,...,k} of [a,b].
The operator @ is called the McShane product integral of V over [a, b] and
we use the notation Q = (M) [ V (¢, dt).

Definition 4. A function V : [a,b] x J — L(X) is called Henstock-Kurzweil
product integrable over [a,b] if there exists ) € L(X) such that for every
e > 0 there is a gauge 0 : [a,b] — (0,4+00) on [a,b] such that

IP(V,D) - Q| <e

for every o-fine K-partition D = {(¢;,J;), i =1,...,k} of [a,b)].
The operator Q) is called the Henstock-Kurzweil product integral of V' over
[a, 0] and we use the notation Q = (HK) [[° V (¢, dt).

Remark 5. A similar concept of product integration was introduced by J.
Jarnik and J. Kurzweil in [6] (see also [9]) for the case of n x n-matrix valued
point-interval functions V' with K-partitions. The corresponding product
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integral was called the Perron product integral in [6]. This terminology orig-
inates in the well known fact that a real function ¢ : [a,b] — R is Perron
integrable to the value ff g(t)dt € R if and only if to every £ > 0 there is a
gauge d on [a, b] such that

k

b
S gltu() — / o(t) dt

i=1

<e€

for every o-fine K-partition D = {(t;,J;), i =1,...,k} of [a,b].

Since evidently every J-fine K-partition is also a d-fine M-partition we
obtain the following statement.

Proposition 6. IfV : [a,b] x J — L(X) is McShane product integrable then
V' is also Henstock-Kurzweil product integrable and

(HK) f[ V(t,dt) = (M) f[ V(t, dt).

Let us mention that a similar statement holds also for the integrals based
on integral sums presented in Definitions 1 and 2.

Proposition 7. Let V : [a,b] x J — L(X) be given. Then V is McShane
(Henstock-Kurzweil) product integrable if and only if for every e > 0 there is
a gauge 0 on [a,b] such that

|P(V.Dy) = P(V,Ds)|| <e (1)
for every 0-fine M -partitions (K-partitions) Dy, Dy of [a,b].

Proof. If V' is McShane product integrable then the condition (1) is clearly
satisfied.

Assume that (1) holds. Let 6, : [a,b] — (0,400) be the gauge on [a, b]
which corresponds to € = 1/n (n € N) by (1). Denote

P,={P(V,D) € L(X);D is a 0,-fine M-partition}.

Clearly P,y C P, for every n and by (1) also

1
diam P, = sup{||A — B||;A,B € P,} < —.
n



January 30, 2006 D

Since the space L(X) is complete, the intersection [, P, consists of exactly
one point ) € L(X) (P, is the closure of the set P, in L(X)) and

1
IP(V,D) - Q) < -

for every 0,-fine M-partition D of [a,b]. This proves the statement. O

Let us introduce the following condition concerning the point-interval
function V' : [a,b] x § — L(X).
Condition (C). For every t € [a,b] and ( > 0 there exists o = o(t) > 0
such that
V&, J) = 1]l <¢

for any interval J C |a,b] such that J C (t — o,t + o).
Typical cases of V satisfying condition (C) are for example

Vit, J) = I+ A(t)u(J)

or
‘/2(157 J) — AWDu(J)

where A : [a,b] — L(X), p being the Lebesgue measure on the real line. We
denote the corresponding product integrals HZ([ + A(t)dt) and HZ eAlt)dt
respectively.

The following result was proved in [8] for McShane product integral and
in [6] for Henstock-Kurzweil product integral (in the case X = R").

Theorem 8. Let V : [a,b] x § — L(X) be McShane (Henstock-Kurzweil)
product integrable over [a,b] with [V (t,dt) = Q € L(X) where Q is an
invertible operator. Assume that V satisfies condition (C).

Then for every s € [a,b] the McShane (Henstock-Kurzweil) product inte-
grals

f[ V(tdt), [TVt dt)

exist, the equality

b b

[Tva) H V(t,dt) =]Vt d)

S a
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holds and there exists a constant K > 0 such that
ITTV(eanl < & [[]Viedo) ) < K

for s € [a,b].

2 The indefinite product integral

Let us start with the following lemma (see [6] and [9]).
Lemma 9. Let A, Ay, ..., Ay € L(X) with S ||A;]] < 1. Put

B=(I+A)I+Ap_1)...(I+A)—

and .
i=1
Then
k
IBIl <2) |l Al
i=1
and

€1 < (3 114

Proof. Put \; = ||A;|| for i=1,...,kand A =3¥ A, <1. Then

L+ X)L+ Xmr) oo (L4 ) =

= 1+Z)\ NN D AR e Ak A <

J2>01 J3>Jj2>g1
< MMkt oM = et

Hence

IN

Z/\ NN D N+ M A

J2>71 J3>72>71
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<et—1<2) (2)

and
DAt D A+ Ak A

J2>71 J3>J2>71
<et—1-A< N (3)
because A < 1. Now

B=(IT4+A)I+A1)...(I+A)—-I=

= ZA Y ARAL+ Y AR ARAL e A Ay A
J2>j1 J3>j2>j1

and

k
C=B- ZA’L = Z AjzAj1 + Z Aj:SAJQAj1+
=1

J2>7j1 J3>j2>j1
+ - AgAp 1. AL
Therefore by (2) we get

1B < ZHA I+ >0 HARNAL T+ D A AL A 1+

J2>01 J3>je2>g

Al A=l - - AL =

- Z)‘ + Z AjaAjy + Z Njs Aja Ajy +

J2>J1 J3>j2>71

o MMt A < 2)\:2Z]|Ai\|
i=1
and similarly by (3) we obtain
O < D7 M4+ D TALIALIIA; I+

J2>i1 J3>Jje>g1

k
o A Al A < A% = O Al
i=1
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Assume that V : [a,b] x §J — L(X) satisfies condition (C) and that
(ML V(t,dt) € L(X) (HK)T[2V(t,dt) € L(X)) is an invertible opera-
tor. Denote

Un(s) = (M) [ V(t.dt) € L(X), s € (a,b], Un(a) =1 (4)

a

and
Unk(s) = (HK) ﬁV(t,dt) € L(X), se (a,b], Ugk(a) =1 (5)

the ”indefinite” product integrals of V' defined for s € [a,b]. By Theorem 8
the above notions make sense.
First let us note that

15}
(M) [] V¢, dt) = Un(B)Uy (),

e

B8
(HE)[[V(t.dt) = Unk(B) Uz ().

Secondly, let us mention that by Proposition 6 we have Uy/(s) = Unk(s) if

Uy is defined by (4) and the properties of Uk hold also for Uy,.

Theorem 10. Let V : [a,b] x J — L(X) be McShane (Henstock-Kurzweil)
product integrable over [a,b] with [[°V (t,dt) = Q where Q € L(X) is an
invertible operator. Assume that V' satisfies the condition (C).

For e >0 find a gauge ¢ : [a,b] — (0,+00) on [a,b] such that

IP(V.D) - Q| <e

for every o-fine M-partition (K -partition) D of [a,b]. Let {7;,[&;,m;]}j=; be
a d-fine M-system (K-system). Define

U™ )V (5, [&,mDU &) =T+ Z;, j=1,...,7.

Then
I+ Z)(I + Zea) . (I + Zy) = I < [|Q7 e (6)
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Proof. Denote ny = a and &,,; = b. Since the product integral exists over all
intervals of the form [n;,&;41], j =0,...,r, for any w > 0 there exist gauges
d; on [n;,&;+1] such that 0,(t) < 6(t) and

&i+1
1PV, 25) = [TVt dt)ll = 1P(V, 25) = U(&a)U ()| <0 (7)
nj
for every §;-fine M-partition (K-partition) A; of [n;,&11].

Composing the partitions, we obtain that

D = A0 o (7_17 [51,771]) oAjo...A 0 (TT’ [67“7777"]) oA,

is a 0-fine M-partition (K-partition) of the interval [a, b] and therefore
I1P(V, D) = Ql

= |Q — P(V, AV (7, [&, ] )P(V, A1) ..
PV, ANV (11, [&1,m])P(V, Ao)|| < e.

This yields
11 = Q' P(V, AV (7, [ ) P(V Ara) . (8)

PV, AV (7, [&,m])P(V, Do)l
=1Q7'QU = QT P(V,A)V (7, &, ) P(V, Ay 1) - ..
PV, A)V (71, [&,m]) P(V; Ag)) |l
<Q7IQ — P(V, AV (7, [ m ) P(V, Ay 1) -
PV, AV (1, [&,mD PV, Aol < [Q7 e

The inequality (8) can be written in the form
17 = U@~ PV, AU ) U~ (0:)V (72, [, 1)) (9)
UE)U (&) PV, Ar)U (0r—)U ™ (1) -
U(&)U (&) P(V, AU (1)U (m)V (71, [€1,m])
UE)U () PV, M)l < |Q7"Je-

Now we take

U_l(fj+1)P(Va Aj)U(nj) —I=W;
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for j =0,1,...,r. Then using (7) we have
Wil = U7 (&) P(V.A)U () — I

< NG+ PV, A7) = UE) U () [1U ()
< NUTH &G+ )T () [lw
and by Theorem 8 we obtain
W]l < KPw (10)

for j=0,1,...,r.
Looking at the definition of Z; (in the formulation of the Theorem) and
at the definition of W; we rewrite the inequality (9) as follows

V= (I + W) (I + Z)(T+ W)+ Zoa) ...
(I + W)+ Z0)(I+ Wo)|| < 10 e

Now we have
W —(I+Z)I+Z—1)...(I+ 27|

<= (I W T+ Z)(I + Wy )T+ 7).
(I + W)+ Z1)(I + W)
P+ W(I 4 Z) 4 W)+ Zo) - T+ Wi)(I + Z0)(T + W)
I+ Z)I+Zea)...(I+ Z0)| < 11Q 7 |le
because (10) implies that

NI+W)I+Z) L+ W)L+ Zoq) ... (L + W)L+ Z7) (1 + W)

—(I+Z) I+ Z—1)...(I+ Z0)|

is arbitrarily small if w > 0 is small enough. [

Theorem 11. Let V : [a,b] x J — L(X) be McShane product integrable over
la,b] with (M) Hz V(t,dt) = Q € L(X) where Q € L(X) is an invertible
operator. Assume that V satisfies the condition (C).

Then the function Uy : [a,b] — L(X) given by (4) is continuous at every
point s € [a,b].

The same statement holds if the McShane case is replaced by the Henstock-
Kurzweil one.



January 30, 2006 11

Proof. We present the proof for the case of McShane product integral only;
the proof for the Henstock-Kurzweil case is similar and was given in [6] for
the case X = R", i.e. for the case of n X n matrices.
Looking at the Definition 3 let for ¢ > 0 the gauge 0 : [a,b] — (0, +00)
on [a, b] be such that
[P(V,D) Q| <e

for every o-fine M-partition D = {(¢;, J;), i = 1,...,k} of [a,b].
By the condition (C) for every s € [a, b] and € > 0 there exists o = o(s) >
0 such that
\V(s,J)—1I|| <e¢

for any interval J C [a, b] for which J C (s — 0,5+ o).

Assume that s € [a,b) is given and let t € (s, b] satisfies s <t < s+ do(s)
where 0 < dp(s) < min(d(s), o (s)).

Let D; be a -fine M-partition of [a, s] and let us set

Dy = Dy o (s,[s,t]).

Then D, is evidently a d-fine M-partition of [a, t].
Assume that Dy = {(t;, [a;_1,4])}, i =1,...,1. Then ag =a and oy = s.
We have
U~'(s)P(V,D1) = U™ () P(V, Dy)

= U N a)V(ty, w1, )V (tie1, w2, oq1]) .. V(ty, [ao, i)
= U YV (th, [ew—1, ) U(u-1)U™ )V (ti, [ara, 0 1)) U ()
U Nay_a) ... Ula)) U eV (ty, [ag, 1))

and
U Ns)P(V,Dy) — I

= U )V (t, i1, ))U (1)U 1)V (ti-1, [z, cg—1])) U (—2)
U N aya)...Ula)) U Hay)V(ts, [, a1])U(ag) — T

because U(ag) = U(a) = I.
Denote
U= o))V (t;, o1, o) U (1)

for j =1,...,1. Then Theorem 10 and especially (6) implies

|U= (s)P(V, D1) = I||
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=T+ Z)I+Zi) ... (T + Z0) = I < [|Q7 e
and by Theorem 8 we get
1P(V, Dy) = U)[U(s)[U(s)P(V, D) = 1]]| <
IT)HNT(s)P(V, Dy) = 1] < K[|Q™"|le
In a fully analogous way we also get
IP(V, D) = Ut < K[IQ"le.
Now by the form of condition (C) from the beginning of the proof we have
IU@) = U(s)]l <
1PV, Dy) =U@)[| + [|P(V, D1) = U(s)l[ + [[P(V, D2) = P(V, Dy
<2K(Q7 e +[|[P(V, D2) — P(V, Dy)| =
2K(Q e + IV (s, [s,1]) P(V, D1) = P(V, Dy)|
=2K1Q 7 e + IV (s, [s,1]) — I]P(V, Dy)|| <
2K(Q e + IV (s, [s,1]) — Il P(V, D)
<2K(|Q7'le + Ke = K(2|Q7'|| + 1)e

and this proves the continuity of U from the right at the point s. The left
continuity of U at s € (a,b] can be shown analogously and the result is
proved. Il

3 Finite-dimensional case

At this point we switch to the case X = R"; the operators in L(R™) are now
represented by real n X n matrices.
For a matrix A = (a;;)7,—; define the special norm

| Al = 12?@’%;’\- (11)

Let us mention that all the norms on L(R") are equivalent. This means
especially that if || - || is an arbitrary norm defined on the linear space of
matrices, then there is a constant L > 1 such that

1
1Al < 14] < Ll Allx.

The following important statement was presented in [6].
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Lemma 12. Let 0 < 0 < 1/9. Assume that Zy, Zs, ..., Z. € L(R"™) are such

that for every p-tuple {j1,...,jpr C{1,2,...,r} with j; < jo < -

inequality
I+ Z )T+ Zj,,) .- (I+Zy,) = Illx <0

holds. Then .
D 1Z;lx < 4n®0

j=1
Proof. By (1) we have
1Zille = [I(1 + Z5) = I]lx <0

forj=1,...,r.

If Z; = (2jik)ik=1,..n, J = 1,...,7 denote ¢(j),¥(j) € {1,...

that
175119 = max |z5k] = 12j:00)00)|

For [;m € {1,2,...,n} set

J(l,m) ={jef{l,....r}; o(j) = L,9() = m}.

In case (13) is not valid we get that there is a couple [, m € {1,2,...

that

> 1Zillx > 46.

JeJ(lm)

Put
Jy={jeJ(l,m); zjym >0}, J_=J(,m)\ J;.

Z Zjilom > 20

JjeJy

— Z Zjslom > 20.

jeJ

Then either

or

< Jp the

(12)

(13)

(14)

,n} such

,n} such

Assume e.g. that the first inequality occurs. By (14) we have zj;,, =
| Z;|l% < 6 for j € J; and therefore there is a subset J} C Jy such that

20 < ) Zjum < 36.

jeds

(15)
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Hence
20 < 1Y Zille =D N Zillw =D zjum < 30 (16)
JETE JEJE JETE
and 1
Z 1Z]lx < 3 < L
JETL

The matrices Z;, j € J} satisfy the assumptions of Lemma 9 and therefore

HTU+2) 1w <23 171«

JEJL JjeJL
and by (16)

ITIU+2) - 1= Zillw < (30 1Z51%)% < 96°.

jes jes jes
Hence by (12) we get

1D Zilw < I [T +2Z) =13 Zilw+ I [TU+2) —1lx <

jer: jerr jer: jer:
< 90°+0
and by (16) it is also

20 < || Y Zillx < 96° + 6.

jeJs
Therefore
! <0
9
and this contradicts the assumption. Hence (13) holds. [

At this moment it should be pointed out that an analog of the preceding
Lemma 12 does not hold for infinite-dimensional Banach spaces. In [9], p.
389 it was shown by an example that even if the norm in (12) is arbitrarily
small (< ) the inequality

>Nzl > Mo
j=1



January 30, 2006 15

holds for arbitrarily large M > 0 when taking a sufficiently large number
of factors in (1). The example from [9] concerns the infinite-dimensional
Banach space X = ¢.

For this reason we restrict our considerations to the case X = R" in the
sequel. Using Lemma 12 we prove the next result.

Theorem 13. Let V : [a,b] X § — L(R™) be McShane (Henstock-Kurzweil)
product integrable with HI; V(t,dt) = Q € L(R™) where Q is a reqular matriz.
Assume that V' satisfies condition (C).
Let 0 < e <1/(9-|Q 7 |l%) and find a gauge ¢ : [a,b] — (0,+00) on [a, b
such that
|P(V.D) — Qllx < =

for every 6-fine M-partition (K-partition) D of [a,b]. Let {7, [§;,m;]}=; be
a d-fine M-system (K-system). Define

Ut n)V (7, [&,m))U&) =1+ Z;, j=1,...,r

Then .
S 12l < 402Q 7 1we (1)
j=1
and .
Y|V lgonh - [Ivan|, <421 e (3)
J=1 &

where K is the constant from Theorem 8.

Proof. By (6) from Theorem 10 we have the inequality

_ 1
I+ Z3,) 0+ Z3y ) o (T + Z3) = Tl < 1@ g2 <

for every p-tuple {ji1,...,75,} C {1,2,...,r} with j; < jo <--- < j,. Hence
by Lemma 12 we obtain

D 1 Zillx < 4n?(1Q lxe
j=1

because all the assumptions of Lemma 12 are satisfied and (17) is proved.
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To show (18) we take into account that for j = 1,...,r we have

V(7,16 m3]) = Un)UHE) = V(75,[&5,m5]) HV (t,dt)

=U(n;)Z; (fj)

because U(n;)U~'(&;) = [1¢, V (¢, dt).
Hence

IV (75, 165, mi]) — H V(t,dt) e < 1T0) Il Zill 5 1T () -
&

Therefore (17) and Theorem 8 imply (18). O

Theorem 14. Let V : [a,b] x J — L(R") be Henstock-Kurzweil product
integrable over [a,b] with (HK)[[2V(t,dt) = Q € L(R") where Q € L(R")
is an invertible operator (a reqular n X n matriz). Assume that V satisfies
condition (C).

Then there exists a set E C [a,b], u(E) = 0 such that for every e > 0,
t € [a,b] \ E there is 9 > 0 such that

IV (¢ [z, y]) = Unk (9)Ugie (@)% < ey — ) (19)
providedt —9 <z <t <y<t+49, z,y € [a,b].

Proof. Assume that T' C [a, b] is the set of all t € [a, b] for which (19) holds
for and set E = [a,b] \ T. For t € E the relation (19) is not satisfied.

Given r € N denote by E, the set of ¢t € [a,b] such that there exist
sequences x; = xy(t), yp = y(t), | € N with

y<t<wy,y—x—0as [ — o0

and
1

IV [ 9]) = Unic () Upgie ()l = — (g0 = @) (20)
Then £ = J.2, E..
Assume that p.(E) > 0, where p.(F) is the outer measure of the set
E C [a,b]. Then there is an r € N such that p.(E,) > 0.
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Let € > 0 is such that € < §/|Q~'||x and

_ 1
AR Q e < il ) 21)

(K > 0 is the constant from Theorem 8) and according to Definition 4 find
a gauge J on [a, b] such that

I1P(V, D) = Qllx <€

for every d-fine K-partition D of [a, b].
For t € E find [y = ly(t) € N such that

t=0(t) <ay(t) <t <wylt) <t+d(t)
for all [ > [y. The system of intervals

{lz(t), w(0)]; t € E, 1> 1o(t)}

is a Vitali cover of the set F and by the Vitali covering theorem it contains
a finite subsystem of intervals

(&) §=1,2,....8}
for which
7= 0(m) <& ST <y <7 +0(m), ;EE, j=12,....s,

773 ng-‘rl? j:1,2,...78—1
and
° 1
pel BN g mi) < ghe( o)
j=1

Hence
S

S0~ ) = m(Ea gl > (B,

=1 j=1
This inequality together with (20) and (21) yields

Z IV (75, &, m3) = U (0) Ui (€5) [l



January 30, 2006 18

= V(. &) = [TV (& db)llx
j=1 &)

s

1 1 _
> ;Z(nj = &) > g pe(Er) = AK*n?)|Q 7 lne,

j=1
a contradiction to (18) from Theorem 13. Therefore p.(E,) = 0 for every
r € N and p.(F) = 0 which yields u(E) = 0. O

Let us now turn our attention to the classical case when
Vi(t,J) =1+ At)u(J]) (22)

with A : [a,0] — L(R") and p the Lebesgue measure on the real line. We
consider the product integrals of the form HZ(I + A(t)dt). As it was men-
tioned in Section 1 the function V' : [a,b] x J — L(R™) given by (22) satisfies
condition (C).

The first thing is the following corollary of Theorem 14.

Corollary 15. Assume that the Henstock-Kurzweil product integral
(HE)TI2(I + A(t)dt) = Q € L(R™) exists and is invertible.
Then for the indefinite product integral Uy : [a,b] — L(R™) given by

Unk(s) = (HK)[[o(I + A(t)dt) € L(R"), s € (a, ],

(23)
UHK(CL) =7
the derivative Uy (t) exists for almost all t € [a,b] and
Uni(t) = A(t)Unx (t) (24)

for almost all t € [a,b].

Proof. Given an € > 0, by Theorem 14 there exists a set F C [a,b], u(E) =0
such that for every e > 0, t € [a,b] \ E there is ¥ > 0 such that

I+ Ay — 2) = Unx (@)U (2) % < ey — @)

provided t —9 <z <t<y<t+49, z,y € [a,].
Take t ¢ E. Then

17+ AWy =) = Unx () U (O)llx < ely — 1)
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fort <y <t+49,y€[a,b]. Hence

' Unk(®)Ugi(t) — Un(y)Upic (2)
y—1

FA@D)| <e

*

and

Upk(t) — A@®)|| <e

Unk(y) — Unk(t)
|
*

y—1t
fort <y <t+41,y € |a,b]. This means that

‘ Unk(y) — Unk(t)

y—t
i.e. U, (t) (the derivative from the right of Upg at the point t) exists and
we have

< el|Unk ()%,
*

— A(t)Upk(t)

Ui (t) = A(t)Unc ().

A similar relation for the 'derivative from the left leads to the conclusion that
for t ¢ F the derivative Ug(t) exists and

Unk(t) = At)Unk(t).
This proves the corollary. O]

Theorem 16. Assume that the Henstock-Kurzweil product integral

(HK) [ + A(t)dt) = Q € L(R")

a

exists and is invertible.
Then Ugg : [a,b] — L(R™) from (23) satisfies the following condition:
(SL) Letn > 0, N C la,b], u(N) = 0. Then there exists A : N —
(0,400) such that if T; € N,

T — A1) <& <1 <my <75+ A7)

forj=1,2,...;r andn; <&y for j=1,2,...,r =1, then

Z Uk (nj) — Uk (&)l < - (25)
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Proof. For v € N put
No={teN:i—1< AWy < i}

Then N = J, N; and N; N N; = ) for i # j while pu(N;) = 0 for every i € N.
Therefore there exist functions ¢; : V; — (0, +00) such that

u(tyv.(t = 6i(t),t+5,(1)) < e (26)

where K > 0 is the constant from Theorem 8.
Assume that € > 0 is so small that 0 < € <

SR Q e < 11
Let A : [a,b] — (0, +00) be a gauge on [a, b] such that
[P(V.D) = Qllx <e¢

holds by Definition 4 for every A-fine K-partition D of [a,b]. Without loss
of generality we may assume that A(t) < 0;(t) for t € N;, i € N. Using (18)
from Theorem 13 we get

Z 1T+ A(m)(n; — &) — Unx () Ug e (§)[lxe < AK*n*[| Q71| wee.

By (26) and the choice of §; : N; — (0, +00) we have

Z AT (s = Dl =D > AT 15 = €)%

=1 TjGNi
< Zz Z (n; — &) < Z 2K 9K
i=1 7;EN; =1

Hence

ZHI Uk (n; UHK(§J)||*
=1

< Z 1+ A(m) (15 = &) = Unie(0)Uszie (65) | + D 1+ A7) (0 — &)1

=1
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< AK2n2O~} U < n
S ARQ lwe + 57 < 4o
N .
b < by th tion.
ecause € S 20 1y y the assumption

Since Unx (&) — Unr () = Unx (§) [ — Unw(n;) U (§;)] and by The-
orem 8 we have [|[Ugk(&;)]|x < K, we get

D MUk (&) = Uil < KD I = Ui (0;)Upric ()l <1
j=1

j=1
and the statement is proved. Il

Let us mention that the condition (SL) presented in Theorem 16 is the so
called strong Lusin condition. By the results of Corollary 15 and by Theorem
16 we know that the indefinite product integral Uy : [a, b] — L(R™) given by
(23) possesses a derivative almost everywhere in [a, b] and satisfies the strong
Lusin condition on [a, b]. Since every McShane product integrable function is
also Henstock-Kurzweil product integrable, the same can be stated also for
the McShane indefinite product integral. For the McShane indefinite product
integral we can state even more as it can be seen in the next theorem.

Theorem 17. Assume that the McShane product integral

b

(M) [+ At)dt) = Q € L(R™)

a

exists and is invertible.
Then the indefinite product integral Uy : [a,b] — L(R™) given by
Un(s) = (M) [[,(I + A(t)dt) € L(R"), s € (a, ], o
27
UM(CZ) =1

satisfies the following condition:
(AC) For every p > 0 there is a ¢ > 0 such that iof [&;,n;] C [a,b],
j=1,...,7 are non-overlapping intervals with Z;:1(77j — &) < o then

D Ui (n3) = Une &)l < -
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Proof. Given a p > 0 take € > 0 such that ¢ < d

1
— all
9Q %

P

AR Q ae < £

where K > 0 is the constant from Theorem 8.
To this € > 0 there is a gauge ¢ : [a, b] — (0, 4+00) such that (by Definition
3) for V(t,J) = A(t)u(J) we have

|P(V,D) —Q|lx <¢€
provided
D = {(tn [ ) i =1, a}

is a o-fine M-partition of [a, b].
Let us fix such an M-partition D and put

p
o

-----

Assume that [¢;,n;] C [a,b], j = 1,...,r are non-overlapping intervals with

> j—1(nj — &) < o and consider the sum 37| [Un(n;) — Uns (&)1

By subdividing the intervals [{;,n;] if necessary, it can be assumed that
every interval [¢;, ;] belongs to some interval [u;, v;] of the fixed partition D.
For each i =1,...,q let

M; = {j; 1 <j<r with [&,n;] C [us,v]}

and take 7; = t; if j € M,;. It is easy to check that for the points 7; and the
intervals [&;,7,], j = 1,...,r the assumption of Theorem 13 for the McShane
case is satisfied if ordering &; and n; properly. Therefore we have (18) in our
case.

Now we have

1Un (&) — Uni ()l = I = Une(;) Uzt (€100 (&) ||

<\ + A(m3) (5 = &) = U (0)Ung (E) e 1Uns (€5) 1
I+ A(7) (05 — E) I UM (&) |l
and by Theorem 8 we get

> U (ns) = Una(&) e
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< KZ 1T+ A(75) (n; — &) — Unt(0;)Usf (€)1

T

HK max A ]x > 0n - &)

.....

j=1
Using (18) from Theorem 13 we obtain by the properties of € and o stated
above the inequality

.....

and the statement is proved. Il

The condition (AC) in Theorem 17 says that the indefinite product in-
tegral Uy : [a,b] — L(R™) given by (27) is absolutely continuous in [a, b].

The special norm || - || of matrices was used in the previous parts for
technical reasons only. Note that according to (11) the proofs can be modified
in a straightforward way for any norm of matrices.

4 Bochner product integral

Assume that B : [a,b] — L(X) is a step-function, i.e. that there is a finite
system of points

a=8 <8 < < Sp1<8,=20b

such that B is constant on each (sj_1, sx) with the value By, € L(X),
k=1,2,...,m.
The product integral of this step-function is equal to

Ep = eBm(S'm_&mfl)eBm71(5m71_5m72) o BBI(Sl_SO).

Definition 18. A function f : [a,b] — Y is called Bochner integrable if there
is a sequence of step functions f : [a,b] — Y, k € N such that

tin () [ 1Aio) ~ o) dz =0,

where (L) denotes the Lebesgue integral.
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In the monograph [1, p. 54] the following definition of product integral
is given (in finite dimensional case).

Definition 19. Assume that A : [a,b] — L(X) is Bochner integrable. The
Bochner product integral (B) [2 eA®? is defined by

b
A(tydt _ q;
B) [[ " = lim Ey, (28)
a
where A,, n =1,2,... is any sequence of step-functions convergent to A in

the L! sense, i.e.

lim ( / 14, (s) — A(s)|lds = 0

TL—>OO

and F 4, is the product integral of the step-function A,.

It is known that a function f : [a,b] — R™ is Bochner integrable if and
only if it is Lebesgue integrable. For X = R™ we have L(X) = R™™" and a
function A : [a,b] — R™ ™ is Bochner product integrable if and only if its
components are Lebesgue integrable functions.

The following theorem was proved in [1]:

Theorem 20. Let A : [a,b] — L(R™) be Bochner integrable. Then the
Bochner product integral (B) [ e % is an invertible matriz.

Definition 21. A function f : [a,b] — Y has the property S*M if for every
e > 0 there is a gauge 9§ : [a,b] — (0, 00) such that
kool
D2 ) = Fspln(InLy) <
i=1 j=1

for any d-fine M-partitions {(t;, J;)}_; and {(s;, L;)}}—, of [a,D].

Theorem 22. Let Y be a finite dimensional Banach space, f : [a,b] — Y.
Then the following conditions are equivalent:

1) f is Bochner integrable,
2) f is McShane integrable,
3) f has the property S*M.
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Proof. A function f : [a,b] — Y is Bochner integrable if and only if it has the
property S*M (see Theorem 5.1.4 in [10]). Moreover, in a finite dimensional
Banach space, a function is McShane integrable if and only if it has the
property S* M (Proposition 5.2.1 in [10]). O

The following theorem was proved in [8]:
Theorem 23. If A:[a,b] — L(X) has the property S* M then the Bochner

product integral (B) [2 e*®W% the McShane product integral (M) . eA0d
and the McShane product integral (M) [2(I + A(t)dt) exist and

b

(B) [[ @ = (M) [ [ e*@* = (M) [ [ (T + A(t)dt).

a

Be aware that the paper [8] uses a different terminology: Our McShane
product integral is called Bochner product integral there, while our Bochner
product integral is reffered to as Lebesgue-type product integral and is de-

noted by (L) ]2 eA®,
Corollary 24. Let A : [a,b] — L(R™) be Bochner integrable. Then

b

b b
(B) [ [ e = (M) [[ e = (M) [ [ (I + A(t)dt)

(where the above product integrals are gquaranteed to exist).

Theorem 25. Let A : [a,b] — L(R™) be given. If there is an absolutely
continuous function U : [a,b] — L(R™) such that U~'(s) exists for every
s € [a,b] and U'(s) = A(s)U(s) for almost all s € |a,b], then A is Bochner

integrable.

Proof. The function U~' is measurable since the components wu;; (i,j =
1,...,n) of U are measurable and

U71<S) _ { <_1);—;1(2]e;8({]2(8) } (29)

ij=1

(where Uj;(s) is the minor obtained from U(s) by deleting j-th row and i-th
column). Since U is continuous and invertible on [a, b] we have

m := min |det U(z)| > 0.
z€[a,b]
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It is also possible to find a constant M > 0 such that |u;;(s)| < M for every
s € la,bl and i,j =1,...,n. From (29) we get

| det Uj;(s)| < (n— )Mt

|det U(s)| — m ’

1Tl <

i.e. the function U~! is bounded.

The components of U’ are Lebesgue integrable (because U is absolutely
continuous), U ™! is measurable and bounded. Therefore the components of
A(s) = U'(s)U~!(s) are Lebesgue integrable and A is Bochner integrable. [

The following theorem might be regarded as a descriptive definition of
the McShane product integral.

Theorem 26. Consider function A : |a,b] — L(R™). Then the McShane
product integral (M) HZ(I—l—A(t) dt) exists if and only if there is an absolutely
continuous function U : [a,b] — L(R™) such that U~'(s) exists for every
s € [a,b] and U'(s) = A(s)U(s) for almost all s € [a,b]; in this case

b
(M) H([ + A(t)dt) = U(D)U *(a).

Proof. The first part of the theorem is easily proved combining the results

from Corollary 15, Theorem 17, Theorem 25 and Corollary 24: The McShane

product integral (M) [12(I+A(t) dt) exists if and only if there is an absolutely

continuous function U : [a,b] — L(R") such that U~!(s) exists for every
s € [a,b] and U'(s) = A(s)U(s) for almost all s € [a, b].

Now take an arbitrary function U which satisfies the conditions stated

above. Define \

V(s)= (M) ]J( + At) dt)

a

and let W(s) = U~'(s)V(s) for s € [a,b]. The functions U and V are
absolutely continuous. Using again the formula

Ui(s) = { b %(tz)u) }

1,7=1

we see that U~! and consequently W are absolutely continuous functions.
The equality U'U~! = V'V ~! almost everywhere implies

W =Wy =U"YV+U WV =-U0UTVH+UV =
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=-U'wutv+u vty =ut(vvt Ut Hv =0

almost everywhere on [a,b], i.e. W is a constant function. The proof is
finished observing that

MY T + Aty dt) = V(b) = U)W (b) = U)W (a) = UBU(a).

a

Theorem 27. Consider function A : [a,b] — L(R"™) such that the McShane
product integral (M) HZ(I + A(t) dt) exists and is invertible. Then A is also
Bochner integrable and

f[ I+ A(t)dt) = (B) f[ At
Proof. Define
U(s) = (M) (I + A(t) dt).

. From Theorem 17 and Corollary 15 we know that U is absolutely continuous
and U'(s) = A(s)U(s) almost everywhere on [a,b]. According to Theorem 8
the matrix U~!(s) exists for every s € [a,b]. To complete the proof apply
Theorem 25. O

The following theorem describes the relation between McShane product
integral and Bochner product integral.

Theorem 28. For every A : [a,b] — L(R™) the following conditions are
equivalent:

1) A is Bochner integrable.
2) The McShane product integral (M) HZ(I—I—A(t) dt) ezists and is invertible.

If one of these conditions is fulfilled, then

b

(B) [ [T+ A(t)d M) [J(+ A(tyd

a a

Proof. An easy consequence of Theorem 24, Theorem 20 and Theorem 27.

]
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5 Examples

Example 29. We now demonstrate the existence of a function A : [a,b] —
L(R™) such that the McShane product integral (M) HZ eA®) 4 is not invert-
ible. According to Theorem 20 and Corollary 24 such a function cannot be

Bochner integrable.
Define f(x) = —1/z for x € (0,1] and f(0) = 0. We will show that

(M) [ e/ * =o.

0

Note that we have identified the real function z +— f(x) with a 1 x 1 matrix
valued function x — {f(x)}. Choose arbitrary N € N and define

1

z € [0,1].
This is a constant function and we can write A instead of A(z). Let
D ={(7,[aj-1,05]); 5 =1,...,m}
be a A-fine M-partition of [0, 1], i.e.
T, —A<aj <o <7+ A

forj=1,...,m. Since a; —aj_1 < 2-A=1/(8-2"), toeveryi € {1,...,N}
we can find indices j; (i) and js(7) such that

c 1+1 1 1+2 1
5 (4 - -, = - =,
A =N20 T8 202 TR 2
1 2 1 1 1 1
R P R T T
Consequently
1 <ji(N) <jo(N) < ji(N—=1) <ja(N —=1) <--- < 71(1) < ja(1) < m,

Sl o211 21 1
V() =) 2 5T T g 5 i g 21 g
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and for every j € N such that j; (i) + 1 < j < j»(i) we have

1 1 1 1 1 1
Tj>04j,1—A204j1(i)—A>§+§'§—E'2—N>§,

1 1 1 1 1 1

21 8 2 16 28 SagU

Tj<0éj+A§aj2(i)—|—A<

i.e. ]
2l <« — < 2%,
Tj
Finally
m N J2(4) 1
- Zf(TJ)(aj aj-1) = Z ;(O‘J aj_1) >
j=1 i=1 j=ji(i)+1 7
N N
1 i—1
> Z 27 (o) — (1) = Z 2 9it1 4
=1 i=1
and

If we choose N € N greater than —4log e we have
m

0 < Hef(Tj)(aj*ajﬂ) <&
j=1

for every A-fine M-partition of [0, 1], which means that

1
(M) [/ * =o0.
0

Observe that because A was a constant function, the Riemann product in-
tegral exists as well and

(R [/ =o0.

0
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Example 30. Define again f(x) = —1/z for x € (0,1] and f(0) = 0. We
will prove that

M) ]+ f(z)dz) = 0.

This will confirm that the invertibility condition in the statement of Theo-
rem 28 cannot be left out.

We have to show that to every € > 0 there is a gauge A : [0, 1] — (0, 00)
such that

m

[0+ rm)(a; —am)| <e
j=1
for every A-fine M-partition D = {(7;, [aj_1, a;])}72, of interval [0, 1].
The first condition that we impose on A is that A(z) < z/2 for z € (0, 1],
which will guarantee that

L+ f(m)(aj — aj1) > 0
for j =1,...,m. This is indeed true in case 7;=0. Otherwise the inequality
7 — A) < aja < <7+ A(T)
implies

L+ fm)es o) = 1=+ —ayo) > 1 - 220
Tj 7

The well-known inequality

:L' .. mm m
Ty, < (g)
m

(which holds for non-negative numbers 1, ..., x,,) yields the estimate
o L+ () (e — "
S ICERBORE (Z“( n)e “”) _

m

_ (1 N > iy f(m) (e — aj1)> '
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If we now require

1 1
A(I’)<E2—N, RS [0,1],
where N is an arbitrary fixed natural number, we have (see Example 29)
> fr)(ey —a;1) < —=N/4.
j=1
Since i
N/4
lim ( — —/> = ¢ N4
k—o00 k

there exists ko(N) € N such that

(%)

for every k > ko(N). If A(z) < 1/(2-ko(N)), then every A-fine M-partition
satisfies a; — a1 < 1/ko(N) and therefore consists of m > ky(IV) subinter-
vals of [0, 1].

. From these facts we conclude that

<1/N

0< ﬁ(1 + flm) (e — 1)) < (1 — N—/4>m <e MY 4 1/N.

m

It is now easy to complete the proof: Given ¢ > 0, the number N can be
chosen to be greater than max(2/e, —4log(¢/2)). The gauge A : [0,1] —
(0,00) is an arbitrary function such that

z 1 1 1
A 1 - = .- -
(x) < min (27 16 2N’ 2k0(N))

for z € (0, 1] and

111
AO) <min | — - —, ——.
<)<mm<16 2N’2-k0(N)>

m

0< ]+ fr)(ey — ) <e

Jj=1

Then
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for every A-fine M-partition of [0, 1], which means that

1
M) T](1+ f(x)dz) =0,
0

It is perhaps interesting to note that the Riemann product integral
1

R JJ(+ f(z) d

0

does not exist. This follows from Masani’s result (see [7]) that every Rie-
mann product integrable function is bounded, but can be also easily verified
directly: If the Riemann integral exists, it must be equal to the McShane
integral which is zero. Therefore to every € > 0 there is a 6 > 0 such that

m

IO+ s (0 —a;0))| <e

j=1
for every partition

O=ap<n<a < <7 <ap=1

such that a; —a;—1 <9, j =1,...,m. Take such a partition which moreover
satisfies a; > 0,

1—|—f(Tj)(aj—ozj_1)7é0, jzl,...,m

(this can achieved by choosing 7; # a; — ;1) and

O<m < i — )
I+ £ (s — )| +1
Then
m -1
14 J)(an = aa)l = 1= 2 = 21> T[4+ F()e, - ay-0)
j=2
and therefore -
[10+ 7 = a;a))| > 1
j=1

which is a contradiction.
This example shows (together with Example 29) that the Riemann prod-
uct integrals [[°(1 + A(z) dz) and []° eA® 9 do not always coincide.
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6 Equivalent functions

Now we follow the procedure from [6] (presented for the case of Henstock-
Kurzweil product integral) to show that the McShane product integrals

HZ(] + A(t)dt) and HZ eA®d have the same value provided one of them
exists and is invertible; in fact we prove a more general statement.

Theorem 31. Consider function V : [a,b] x J — L(R™). Assume there
erists K > 0 and a function W : |a,b] — L(R™) which satisfy the following
conditions:

1) W) < K and |W ()Y < K for every t € [a,b)].
2) For every € > 0 there is a gauge A : [a,b] — (0,00) such that

Z IV (75, [aj—1, 05]) = W(a)W (o) Y < e

for every A-fine M-partition {(75, [cj—1, a5]) }i2y of [a, b].
Then the function V is McShane product integrable and

(M) [V (t.dt) = W(k)W(a)™.

Proof. Choose ¢ > 0 and let A : [a,b] — (0,00) be the corresponding
gauge from the statement of the theorem. Take arbitrary A-fine M-partition
{(5, |1, ozj])};-”:l and define

Aj = W(ay) "V (75, g1, a5 )W (aj-1) — 1.

We calculate

Do l4l <
j=1

< W) IV (75 et ) = W ()W (egmn) - W ()| < K

j=1
Without loss of generality we can assume ¢ < 1/K? and using Lemma 9 we
obtain the estimate

m m 2
(1 + Ap) - (T4 A) = I <) 141+ (ZIIAjII) < K’ + K¢,
j=1 j=1
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Therefore

H ﬁ V(7 laj, a5]) = W(b)W(a)—lH _

=W (T4 Ap) - (I+A)—DW(a) | < K}(K% + K*?)
which implies
[[vdt) =wmyw(a)

]

Definition 32. Functions Vi, V; : [a,b] x § — L(R™) are called equivalent if
for every € > 0 there is a gauge A : [a,b] — (0,00) such that

> Vi, [ey-1, 05]) = Valry, loyr, ag)) || < &
=1

for every A-fine M-partition {(7;, [e;_1,a;])}7L, of [a,b].

Theorem 33. Let V1, V5 : [a,b]xJ — L(R™) be equivalent functions. Assume
that Vi satisfies condition (C) and that the integral (M) HZ Vi(t, dt) exists
and is an invertible matriz. Then (M) HZVQ(t,dt) exists as well and both
product integrals have the same value.

Proof. Choose ¢ > 0 and let A : [a,b] — (0,00) be a gauge such that
b
|Pvi, D) = () [T Vit at)| < &

and

> Vi, [eor, o5]) = Valm, logon, )| < &
=1

for every A-fine M-partition D = {(7}, [o;_1, a;])} 7L, of [a,b]. Denote

U(s) = () [T Vatt, ab).
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According to Theorem 13 there is a constant C' > 0 such that
i IVi(75, lajo1, ay]) = Ue)Ulay—a) 7| < Ce.
The triangle inequality yields
i 1Va(7j, [oj1, a]) — U(a;)U(aj_1) Y| < Ce+¢

and using Theorem 31 we conclude

) [ Valt.dt) = UB)U(a)™" = (M) [ V(. o).

]

Theorem 34. Consider function A : [a,b] — L(R™). Then the following
conditions are equivalent:

1) (M)TI2(I + A(t) dt) exists and is invertible.
2) (M) I eA® exists and is invertible.

If one of these conditions is fulfilled, then

b

b
M) + Aty dt) = (M) T ] e*®*.

a a

Proof. The functions
Vilt, [z,y]) = I+ A(t)(y — =),

Va(t, [z,y]) = e D)

satisfy condition (C). According to Theorem 33 it is sufficient to show that
V) and V5 are equivalent. For x < y we have

A< (y — x)*
3 (t)*(y — =)

7+ A@)(y — ) — X002 = 2

k=2

< [JA(®)|]2(y — z)%elA®Iy=2)
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Let A : [a,b] — (0,00) be an arbitrary function such that

A(¢) < min (2||A(t)||’ 2e(b — a)llA(t)H?)

whenever [|A(t)|| > 0. Then for every A-fine M-partition {(7;, [o;_1, oy]) }72,
we have
a; — o1 < 2A<T])

and
Z HI_|_A 7—] — oy 1) _ eA(TJ)(O‘J*O‘J 1)“ <
S 2_|lA()(a;—c - 5043—043 1 o
< DAy = oy el < 3 SR e
O
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