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Abstract. For the Kurzweil-Henstock integral the equiintegrability of a pointwise conver-
gent sequence of integrable functions implies the integrability of the limit function and the

relation . .
lim / fm(s)ds = / lim fm(s)ds.
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m— 00

Conditions for the equiintegrability of a sequence of functions pointwise convergent to an
integrable function are presented. These conditions are given in terms of convergence of
some sequences of integrals.
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A finite system of points
a<HSaGa<N <L <O <n <m <D

is called a P-system in the interval [a, b].
This P-system is called a P-partition of the interval [a, b] if

m

18,7 = [a,b]

i=1

Any positive function 4: [a,b] — (0,00) is called a gauge on [a, b].

* This work was supported by the grants No. 201/94/1068 and 201/95/0629 of the Grant
Agency of the Czech Republic
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If
[Bi, 7] €& —0(&):& +6(&)l, j=1,....m,
then the P-system is called §-fine.

In other words, a finite system of points

{a07717a1>72>---,ak—1>7'lc>ak}
such that
a=qp<or <...<ap1<ar=2>b

and

T; € loyo1,05] for j=1,...,k

is a P-partition of the interval [a, b].
For a given gauge ¢ on [a, b] a P-partition {ag,71,01,72,...,Qk—1, Tk, @x} of [a,b]
is d-fine if
[Oéj_l,Oéj] C (Tj - (5(7']'),7']' + (5(7'])) forj=1,...,k.

Cousin’s Lemma. Given an arbitrary gauge § on [a,b] there is a J-fine P-
partition of [a, b].

(See e.g. [3], Lemma 9.2 or [4], [5], [7], [9].) Cousin’s lemma is crucial for the
following definition.

1. Definition. Assume that a function f: [a,b] — R is given. The Kurzweil-
Henstock integral fab f(s) ds exists if there is an element I € R such that for every
€ > 0 there is a gauge ¢ on [a, b] such that for

S(£,D) =Y f(rj)(ej — aj 1)
we have
|S(f,D)—1I|<e¢

provided D is a d-fine P-partition of [a,b]. We denote I = ff f(s)ds. For the case
a = b it is convenient to set f: f(s)ds=0.

The following proposition is easy to show by the definition of the integral.

2. Proposition. Assume that f,g: [a,b] — R are given such that the integrals
f: f(s)ds, fab g(s) ds exist.
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Then for every c1,co € R the function c¢1 f + cag: [a,b] — R is integrable and

/ab[clf(s) +cag(s)]ds = &1 /abf(s)ds+c2 /abg(s)ds.

If g(7) < f(7) for T € [a,b] then

/ () ds < / " f(s) ds.

If [c,d] C [a,b] then the integral fcd f(s)ds exists.

The next statement provides an operative tool in the theory of Kurzweil-Henstock
integral. Its original version belongs to S. Saks and it was formulated for generalized
integrals using Riemann-like sums by R. Henstock.

3. Lemma (Saks-Henstock). Assume that a function f: [a,b] — R is given such
that the integral f: f(s)ds exists. Given e > 0 assume that the gauge ¢ on [a,b] is
such that

k b
> fr)as —asa) - [ f(s)ds| <
j=1 a
for every §-fine P-partition D = {ag, 71,01, ...,Qk—1, Tk, } of [a,b]. If

aShSa<N <AL SO < STm Sh

represents a 0-fine system {(&;,[35,7;]), 1 =1,...,m}, ie.

& € (Bl Clé —0(&),& +0(&)], d=1,...,m,

then

m

> [f(@-)(vj ) - /ﬁ 7 f(s)ds}

i=1

Le.

Proof. Without any loss of generality it can be assumed that 3; < v; for every
j=1,...,m.

Denote 79 = a and B4 = b. If 5 < Bj41 for some j = 0,1,...,m then the
integral f€j+1 f(s)ds exists and therefore for every n > 0 there exists a gauge J; on
[vj, Bi+1] such that §;(7) < () for 7 € [y, Bj+1] and for every §;-fine P-partition
DI of [y, Bj+1] we have

Bi+1

‘S(f, - [ sy s

Yi

_n_
< prea Y
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If v; = Bj41 then we take S(f, D7) = 0.
The expression

m m

> FE) (v = By) + > S(f. DY)

=1 =1

represents an integral sum which corresponds to a certain d-fine P-partition of [a, b]
and consequently

i m b
Zf(ﬁj)(%'— j)+ZS(f,Dj)_/ f(s)ds| <e.
Hence
j; [f(sj)(vj - 0;) — /ﬂj f(s)ds]
S - ; b i . Bit+1
<o F&)0s -8+ 280D = [ fs)ds| + 30|50 - [ fs)ds

<e+t(m+1l) g =c+n

Since this inequality holds for every n > 0, we immediately obtain the inequality
from the statement. O

Convergence results for a given integration theory are important for estimating
the power of the theory. For the Kurzweil-Henstock integral we have a result given
by Theorem 4 bellow. It should be mentioned that this theorem is based on the
classical principle that “two limiting processes are interchangeable if one of them
is uniform with respect to the variable of the second”. Classical theorems known
for the Lebesgue integral (the dominated convergence theorem and the monotone
convergence result of B. Levi) can be derived from Theorem 4 (see e.g. [1], [3], [5],

[6], [8], [9])-

4. Theorem. Let functions f, fm: [a,b] — R, m = 1,2,... be given where the

integral fab fm(s) ds exists for every m = 1,2,.... Assume that
1) Tim_fu(r) = £(7)

for T € [a,b]. Assume further that
for every n > 0 there is a gauge § on [a,b] such that

<n

) 'S(me) -/ " f(s)ds
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for every d-fine P-partition D of [a,b] and every m =1,2,.. ..
Then the function f: [a,b] — R is integrable and

® [ futias= [ 100

m—0oQ

Proof. Let e > 0 be given. By (2) there is a gauge § on [a,b] such that for
every d-fine P-partition

D ={ao, 1,010, .., Qp—1, Tk, }

- [ e

for m=1,2,.... By (1) for every fixed P-partition D of [a, b] there exists a positive

of [a, b] we have

<_

integer mg such that for m > mg the inequality

|S(fm»D) -

k
= | o lm(m) = £l — a5-1)

holds and this means that
lim S(fm,D)=S(f,D).

Therefore for any d-fine P-partition D of [a,b] there is a positive integer mg such
that for m > mgp we have

(4) \su, D)~ [ " f(s)ds

First we get from (4) that for all positive integers m,l > mg the inequality

[ miras— [ isras

holds. This means that ( f fm(8)ds)2_, is a Cauchy sequence in R and therefore it

<E.

< 2e

has a limit

b
(5) lim [ fu(s)ds=1€R.

m— 00
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Another consequence of (4) is the inequality
b
+ / fm(s)ds—l'

b
<E+‘/fm(s)l' for m > mg.

IS(f,D) I < 's<f, D)= [ fnls)as

By (5) we obtain immediately from this inequality that for every d-fine P-partition
D of [a,b] we have
|S(f7D) _I| <e

and this means that the integral fab f(s)ds exists and (3) is satisfied. O

5. Definition. A sequence of integrable functions fp,: [a,b] = R, m =1,2,...
is called equiintegrable if the condition (2) of Theorem 4 is satisfied.

6. Remark. In some texts (see e.g. [4]) an equiintegrable sequence is called
uniformly integrable.

Theorem 4 gives a sufficient condition for a sequence of integrable functions to
tend to an integrable limit and for the integrals of the members of the sequence
to tend to the integral of the limit function. The convergence of the functions f,,
to f given by (1) is the pointwise convergence and the sufficient condition is the
equiintegrability (2) of the sequence (fp,).

Using the concept of an equiintegrable sequence of functions f,,: [a,b] — R The-
orem 4 can be reformulated as follows:

Let functions f, fm: [a,b] — R, m = 1,2,... be such that the functions f,, are
integrable for every m =1,2,.... Assume that

Tim_f(r) = J(7)
for 7 € [a,b]. Assume further that the sequence fn,: [a,b] — R, m = 1,2,... is
equiintegrable, then the function f: [a,b] — R is integrable and

b

lim fm(s)ds = / f(s)ds.

m—
oo a

7. Proposition. Let functions f,: [a,b] — R,n = 1,2,... be given where the
integrals fab fn(s)ds exist forn =1,2,.... Assume that

(6) HILII;O fa(T) =0
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for T € [a,b] and that the sequence of functions fy: [a,b] — R is equiintegrable.
Then
(C) for every e > 0 and for every finite system of nonoverlapping? intervals [3;, ;] C
[a,b],  =1,2,...,1 there is an N € N such that for every n > N the inequality

l

Y3
fn(s)ds
=1 Bj

<e€

holds.

Proof. Let e > 0 be given. By the equiintegrability given by the condition (2)
there is a gauge ¢ on [a, b] such that for every d-fine P-partition

D ={ag, 71,01, ., Q—1,Tk, Ok }

of [a,b] we have

<_

(7) ' (fas D / fals) ds

for n =1,2,.... Assume that an arbitrary finite system of nonoverlapping intervals
[Bj,7;) C a,b], j =1,2,...,1is given. Let

j— [ nd T A J JjoJ
D7 =A{og,m,0q,. .. 05, 4,7, ay, }

be a d-fine P-partition of [3;,~;] for j =1,2,...,1L.
Using (7) and the Saks-Henstock lemma we obtain

R

™S e — ol Z/” fuls) s

j=1 i=1

wlm
A
po|™

By (6) for every fixed system of P-partitions D7, j = 1,2,...,l with the properties
given above there exists a positive integer IV € N such that for n > N the inequality

<

o) 5 ST

j=11i=1

£
2

l
> S(fa, D7)
j=1

2 This means in our case that (3;,7v;) N (B;,7v:) = 0 provided i # j.
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holds. Hence using (8) we get

.Z [/ﬁ:j fn(s)ds — S(mej)} ' N

Jj=1

! Vi

S| fals)ds

j=1"Pi

<

for n > N. O

Remark. The proof of Proposition 7 is a slight modification of the proof of the
Convergence theorem 4.

8. Theorem. Let functions f,: [a,b] — R, n = 1,2,... be given where the
integrals fab fn(s)ds exist forn =1,2,.... Assume that

(9) lim f,(r)=0

n—oo

for T € [a,b] and that
(UC) for every € > 0 there is an N € N such that for every n > N and every finite
system of nonoverlapping intervals [3;,v;] C [a,b], 7 = 1,2,...,1 the inequality

1

Vi
(10) Z fa(s)ds| < e
j=1 Bj
Then the sequence of functions fy,: [a,b] — R, n =1,2,... is equiintegrable.

Proof. Let e >0 be given. Let us set
An={tel:|fn(t)| =€}

From (9) we get

(11) () An = 0.

n=1

By the definition of the integral, for the given € and n = 1,2, ... there exist gauges
0, such that

(12) 'sm,m -/ e dt' <

whenever the P-partition D is §,-fine. Setting | = 1 and [B1,v1] = [a,b] in (10) we
obtain

<e for n> N.

(13) \ / ) ds
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Let us define new gauges 8y such that 0x(t) = 64(t) if t € Ay and b (t) = 1 if
t & Ag.
Define further A: [a,b] — R by

(14) A(t) = inf On(t).

If t € [a,b] then by (9) there is an index M such that |f,(t)| < & for n > M; hence
t ¢ A, for n > M and this implies that ¢ belongs to a finite number of sets A,, only,

L . .
e.g. te 'ﬂ1 Ay, and therefore we have A(t) = min{oy, (¢),...0x, (t),1}. Hence

A(t) >0 for all t € [a,b]

and A is a gauge on [a,b]. We will prove that A is the required gauge from (2)
corresponding to €.

Assume that D = {ag,71,01,72,...,Qk_1,Tk, 0k} i a A-fine P-partition of the
interval [a, b]. Let us consider the integral sum S(fp, D) = Z?Zl fu(m)(a; — aj—1).
We have

k k k
(15) an(Tj)(aj —aj) = Y [y — i)+ Y falri) g — aja)
= Jaa, Jea,

For the first sum on the right hand side of (15) we have |f,(7;)| < €, hence

k k
> falri)a; —aj)| <€) (aj—aj 1) =e(b—a)
Jj=1 j=1
T An

while by (10) we get

k a
Z / fa(s)ds| < e for n > N.
=1 e
Ti ¢ An
Hence
k o
(16) s~ - [ peas|| <m0 re=so-ary
7 :

If 7; € A, then Sn(rj) = 0n(7;) and A(7;) < 0,(7;). Hence the system
Q-1 < T; < Qa; with T; € A,
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is such that [o_1, 5] C (75 — A(7;), 75 + A(73)) C (75 — 0n(75), 75 + 0n(7;)). Since
(12) holds for any d,-fine P-partition, Lemma 3 yields

il @;
(a7) > e —ag) = [ fale)ds]| <
=
Taking into account (15), by (16) and (17) we have
k b
S fulm) 0y —ajr) - / Fuls)ds
j=1 a
18 k o
(18) _ Z |:fn(Tj)(Oéj_Oéj—1)—/ fn(s)ds} <e+elb—a+1)
j=1 aj-1
=eb—a+2)
for n > N.

Let us now set
0(t) = min{01(¢), 62(t),...,0n(t), A(t)}

and assume that D is a d-fine P-partition of [a,b]. Then using (12) forn=1,...,N
and (18) we obtain

<e(B+b—a)

Y- falrp)as — ajo1) - / fu(s)ds

for every n € N and this means that the sequence of functions f,: [a,b] — R is
equiintegrable. O

9. Remark. It is easy to see that the conclusion (C) of Proposition 7 can be
stated in the form
(C) for every finite system of nonoverlapping intervals [3;,~;] C [a,b], j =1,2,...,1

1

i
lim Z fa(s)ds =0

j=1"0;
holds
while the condition (UC) from Theorem 8 can read
(UC)
Lo
lim Z fn(s)ds =0
n— o0 et ,3_7'
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uniformly with respect to finite systems of nonoverlapping intervals

[6]»7]] C [a’vb]v .7 = 172»"'71'

Looking at Proposition 7 we can ask whether the conclusion (C) can be replaced
by its uniform version (UC) given in Theorem 8. In other words: we are asking
whether for a sequence of functions f,: [a,b] — R, n =1,2,... with lim fa(t)=0
for 7 € [a,b] the equiintegrability of this sequence is equivalent ton‘choeO condition
(UC).

The following example shows that the answer to this question is negative.

10. Example. Let us define the function f: [0,1] — R by

for — <7< -, k=1,2,...

1
T k+1 k

(oW

s:(fl)k(ln% flnkil)

and
n—1 1 n—1
/lf(s)ds:Z/k f(s)ds:Z(—l)klnu.
» P == k=1 k

The series kzl(fl)k In 2L converges (to the value —In %) and therefore the limit

1
lim / f(s)ds=—In%

c—0+

3

exists. Using Hake’s theorem® we obtain the existence of the integral fol f(s)ds =

—InkE
ln2.

3 Hake’s theorem. If f: [a,b] — R is such that the integral fcb f(s)ds exists for every
¢ € (a,b] and that there exist a finite limit lim+ fcb f(s)ds = I, then the function f is

/abf(s)dszl.

integrable over [a, b] and

(See e.g. [9], Theorem 1.14)
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On the other hand we have |f(7)| = L for 7 € (0,1], |f(0)] = 0 and the integral

/01|f<s>|ds=/01§ds

1

1

/ —ds=Inl— lim Inc= +oo.
o S c—0+

does not exist because

The function f: [0,1] — R given above is a typical representative of functions
which are not absolutely integrable.
Let us now define a sequence of functions f,: [0,1] — R, n = 1,2,... in such a
way that
falr) = f(7) for T € [0, 5],
f(0)=0for 7 > .
Then lim f,(7) = 0 and the sequence (f,) is equiintegrable (see e.g. Theorem 8

in [1]).
If ng € N and n > ng, then

1

e % 1 1 1 o2n+1
/1 fno(s)dSZ/I —dSZID%fln :ln .

1 s 2n+1 2n
n+1 PTESY

Since the series Zln 241 diverges, for every ng € N there is a finite k(ng) € N,

=1
k(ng) > no such that

k(no)
Z ln
n=ng
and therefore also
Ek(no) k(no)
Z / fno (s Z / fno )ds > 1.
n=ng ¥ Zn n=ng ¥ Zn

Hence for every ng € N there is a finite system of nonoverlapping intervals

1 1 )
[85,75] = {m,z}» j=mng,...,k(no)
such that
no)
> / fro(s)ds| > 1
n=ng

and this shows that even if lim f,(7) = 0 and the sequence (f,) is equiintegrable,
the condition (UC) from Theorem 8 does not hold.
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11. Example. We construct a sequence of functions (f,(¢))32; defined and
integrable on the interval [0, 1] fulfilling

© Jim f,() =0
and

b
(19) lim [ fu(t)dt =0

a

for every interval [a, b] C [0,1] such that the sequence (f,,)52 is not equiintegrable.

Denote
Y =(0,47"),
I[-=(4,247).
Define
fat)= 4" for z eI},
fa(t)=—4" for z €I,
fa(t) = 0  otherwise.

Since I} U I, is monotone and

oo

@FurLy) =9,

n=1

the condition (6) is fulfilled.

Let 0 < a < b < 1 be fulfilled. There exists ny so that (I,F UI;) N [a,b] = 0 for
n > ny. The property (19) immediately follows for the interval [a, b].

Let 0 = a < b < 1 be fulfilled, then there exists no so that (I, UI,) C [a,b] for
n > ny and the property (19) for the interval [a, b] follows again. It is also easy to
see that our sequence (f,,) satisfies the condition (C) given in Proposition 7.

Assume now that the sequence {f,(¢)}°2, is equiintegrable, i.e. for every € > 0
there is a gauge ¢ on [0, 1] such that

<eg

0D - [ fn(s)ds

for every m = 1,2, ... and every d-fine P-partition D of [0, 1].
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Denote d = §(0). Choose an integer m so that 2-4~™ < d and let us set
f=0, y=4""

Then {3,0,~} is d-fine, i.e. [3,v] C [—0(0),d(0)]. The Saks-Henstock lemma yields

‘fm(O)(v—ﬁ)— /ﬁ " fulw)da| = 'fm(0)4‘m— / C e <o

On the contrary we have f,,(0) = 0 and form fm(z)dz = 1.
Taking into account the simple statement given in Remark 9, this example shows
that even if lim f,(7) = 0 and the sequence (f,) satisfies the condition (C), the

sequence (f,) is not equiintegrable.

12. Remark. For a given sequence of functions f,: [a,b] — R which are inte-
grable over [a, b] and such that lim f,(7) = 0, we denote by (EI) the property that
this sequence is equiintegrable in the sense of definition 5 and we denote by (L) the

property that
b

lim [ f(s)ds=0.

n—oo

Using the results given above, we have
(UC) = (EI) = (C) = (L).
The first implication is given by Theorem 8, the second by Proposition 7 and the

third is trivial ( (L) is in fact (C) for the case of the single interval [3,~] = [a, ]).

On the other hand by Example 10 we have
(UC) <« (EI)
and Example 11 shows that
(EI) < (C).

Hence we have also (L) % (UC). If it were (L) = (UC) then all (UC), (EI), (C)
and (L) would be equivalent but this cannot hold because of (EI) <« (C), or
(UC) < (EI).

13. Proposition. Let nonnegative functions fy,: [a,b] — [0,+00),n =1,2,... be
given where the integrals fab fn(s)ds exist forn =1,2,.... Assume that
(6) lim fo(r)=0
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for T € [a,b] and

b

(20) lim [ fa(s)ds=0.
Then the sequence of functions f,: [a,b] — R, n =1,2,... is equiintegrable.

Proof. By Theorem 8 it is sufficient to show that the condition (UC) is satisfied
in this case.
Since f,(17) = 0 for every 7 € [a,b] we get by Proposition 2 the inequality

f: fa(s)ds > 0 for n = 1,2,.... By (20) for every ¢ > 0 there exists N € N
such that for n > N we have f: fa(s)ds <e.
Assume that [8;,7;] C [a,b], 7 = 1,2, ...,1is an arbitrary finite system of nonover-

lapping intervals. Define

gn(T) = fn(7) for 7 € [B;, 7]

gn(r) =0 for 7 € [a,b] \ | J18;,7;]-

j=1
Then
0 < gn(7) < fu(r) for 7 € [a,b)

and
l

b i b
OS/ gm(s)ds:z ! fm(s)dss/ fm(s)ds < e

j=1"5j

for n > N and therefore also

/a  gn(s)ds

i.e. the condition (UC) from Theorem 8 is satisfied and by this proposition we obtain

1

Z h fm(s)ds

j=1"Pi

<e,

the equiintegrability of the sequence of functions f,: [a,b] = R, n=1,2,.... |

Remark. For a given sequence of nonnegative functions fy: [a,b] — R which
are integrable over [a,b] and such that lim f,(7) = 0 we have proved in fact that

(L) = (UC). Using the results given in Remark 12, we have
(UC) & (EI) & (C) < (L)
for a sequence of nonnegative functions f,: [a,b] — R.
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For a given function f: [a,b] — R and 7 € [a, b] define

f+(r) = max(f(7),0) = 5(If(7)| + f (7)),

f=(r) = max(=f(7),0) = 5(If (7)] = f(7))-
Clearly

0< f(7) <|f(7)] and 0< f(7) < |f(7)]
for T € [a,b].

If the functions f and |f| are integrable then, by Proposition 2 and the above
definition the functions f; and f_ are also integrable.

Let a sequence of functions fp,: [a,b] — R, m =1,2,... be given.

If for some 7 € [a,b] we have f,(7) — 0 for n — oo then also f,(7) — 0 and
frn—(1) = 0 for n — cc.

14. Proposition. Let functions fn: [a,b] — R,n = 1,2,... be given where the
integrals ff fa(s)ds, f: |fn(s)| ds exist forn =1,2,.... Assume that

(6) lim f.(7) =0

n—oo

for T € [a,b] and

b

(21) lim |fn(s)|ds = 0.
Then the sequence of functions f,: [a,b] — R, n =1,2,... is equiintegrable.

Proof. Let us consider the sequence of functions fn4: [a,b] = R, n=1,2,....
We have f,(7) > 0 for 7 € [a,b], the integrals fab frntr(s)ds, n = 1,2,... exist
and frn4(7) < |fn(7)] for 7 € [a,b]. Hence (see Proposition 2)

b b
0</ fn+(8)d8</ [fuls)]ds

and therefore ,

lim frnt(s)ds =0.

Moreover, by definition
lim fn+ (T) =0
for T € [a, b].
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By Proposition 13 we obtain that the sequence of functions fn4: [a,0] — R,
n=1,2,...is equiintegrable.

Similarly it can be shown that also the sequence of functions f,_: [a,0] — R
n = 1,2,... is equiintegrable. Hence for every ¢ > 0 there is a gauge ¢: [a,b] —
(0, +00) such that

k b
Mty —ajon) = [ far(s)ds| < §
j=1 a
and
Zf ~(1i)(@ — aj-1) / fn(s)ds| < §
Jj=1
for every n € N and any d-fine P-partition {ao, 71,01, 72,. .., Qk—1, Tk, Ok }.
Hence

() @ — 1) — / (s ds

b
(a5 — aj1) - / fut (5) ds
k

an i)y — aj—1) /fn

for every n € N, and by Definition 5 this yields the equiintegrability of the sequence
(fn)- a

15. Corollary. Let functions f, fn: [a,b] — R, n = 1,2,... be given where
the integrals fab f(s)ds, f: |f(s)|ds fab fn(s)ds, f | fn(s |ds exist forn = 1,2,....
Assume that

(22) lim f,(7) = f(7)

n—oo

for T € [a,b] and

b
(23) Jim [ 1fa(s) = f(5)]ds = 0.
Then the sequence of functions f,: [a,b] — R, n =1,2,... is equiintegrable.
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Proof. Let usset gn = fn— f:[a,0] = R, n = 1,2,.... Then the func-
tions f, — f are absolutely integrable and the sequence g,, n = 1,2, ... satisfies the
assumptions of Proposition 13 and by this proposition the sequence g, = f, — f,
n = 1,2,... is equiintegrable. Hence also the sequence f,, n = 1,2,... is equiinte-
grable. O

Remark. It is well known that f: [a,b] — R is Lebesgue integrable (McShane
integrable, see [3]) if and only if both f and |f| are Kurzweil-Henstock integrable in
the sense of Definition 1 (see e.g. [7], p. 22).

Therefore for example Corollary 15 can be reformulated as follows: If the functions
fyfnila,b) = R, n=1,2,... are Lebesgue integrable and

lim f(7) = f(7)

n—oo

for T € [a,b] and

b
lim [ |fn(s) — f(s)[ds =0
is satisfied, then the sequence of functions fy: [a,b] — R, n = 1,2,... is equiinte-
grable.

16. Example. Let us define a sequence of functions g,: [0,1] — R, n € N such

that
gn(7) =n for 7 € (0, %)
gn(7) =0 for 7 € [0,1] \ (0, %)

It is easy to check that fol gn(s)ds =1 for every n € N.

Define further
fn(T) = gn(7) for 7 € [0, 1]

fu(T) = — gn(—7) for 7 € [-1,0].

For the sequence of functions f,: [0,1] — R, n € N we have
lim f,(7) =0 for every r € [-1,1],

1
/ fn(s)ds =0 for every n € N
-1

and

1
/ |fn(s)|ds =2 for every n € N.
-1
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The sequence fy,: [0,1] — R, n € N is not equiintegrable. If it were equiintegrable,
then also its restriction to the interval [0, 1], i.e. the functions g,: [0,1] — R would
be equiintegrable and by Theorem 4 we would obtain lim fol gn(s)ds = 0 but this

contradicts the fact that fol gn(s)ds =1 for every n € N.
This example shows that in Proposition 14 the condition (21) cannot be replaced
by
b
lim [ fa(s)ds=0
a

n—oo

and also that (23) in Corollary 15 cannot be replaced by

b b
lim fn(s):/ f(s)ds.

n—oo
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