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Abstract: In this paper, we study some convergence results for the McShane integral of

functions mapping the interval [0, 1] into a Banach space X from the point of view of an

open problem proposed by D.H.Fremlin and J. Mendoza in [2], also we give a negative

answer to this open problem..
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1 Introduction

The McShane integral as it was described in [2] - [5] an [8] - [13] is a Riemann-type integral

using ”gauge-limit”. It is equivalent to the Lebesgue integral for real functions. The Dunford,

Pettis and Bochner integrals are generalizations of the Lebesgue integral to Banach-valued

functions. The McShane integral of a vector-valued function and its relationship to the Bochner

integral, Pettis integral were discussed in [2] - [4], [8] - [10], [13]. An interesting convergence

theorem for the McShane integral was proved by D.H.Fremlin and J. Mendoza in [2]. The

statement of this theorem is as follows (see Theorem 2I, p. 135 in [2]).

Theorem A. Let X be a Banach space. Let fn, n ∈ N be a sequence of McShane integrable

functions from [0, 1] to X , and suppose that f(t) = limn→∞ fn(t) exists in X for every t ∈ [0, 1].

If moreover the limit

F (E) = lim
n→∞

∫

E

fn(t)

exists in X , for the weak topology, for every measurable E ⊂ [0, 1], then f is McShane integrable

and
∫ 1

0
f = F ([0, 1]).

At the same time, an open problem was left in [2] (see Problem formulated on p. 138 in

[2]):

In the above Theorem A it is supposed that f(t) = limn→∞ fn(t) in the norm topology for

every t. Is it enough if f(t) is the weak limit of fn(t), n ∈ N for every t?

In other words the problem is if the following theorem holds?
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Theorem B. Let X be a Banach space. Let fn, n ∈ N be a sequence of McShane integrable

functions from [0, 1] to X , and suppose that the weak limit f(t) of fn(t) exists in X for every

t ∈ [0, 1]. If moreover the limit

F (E) = lim
n→∞

∫

E

fn(t)

exists in X , for the weak topology, for every measurable E ⊂ [0, 1], then f is McShane integrable

and
∫ 1

0 f = F ([0, 1])?

Remark. In fact, in the theorem A the condition ” f(t) = limn→∞ fn(t) exists in X for

every t ∈ [0, 1]” is instead of the condition ”f(t) = limn→∞ fn(t) exists in X for almost every

t ∈ [0, 1]”, then the result is still holds. Because the integrability and integral of a function f

are invariant if we change its value on the set with measure zero. So the Theorem A can be

stated as the following

Theorem A′. Let X be a Banach space. Let fn, n ∈ N be a sequence of McShane integrable

functions from [0, 1] to X , and suppose that f(t) = limn→∞ fn(t) exists in X for almost every

t ∈ [0, 1]. If moreover the limit

F (E) = lim
n→∞

∫

E

fn(t)

exists in X , for the weak topology, for every measurable E ⊂ [0, 1], then f is McShane integrable

and
∫ 1

0
f = F ([0, 1]).

Corresponding the Theorem B can be stated as the following

Theorem B′. Let X be a Banach space. Let fn, n ∈ N be a sequence of McShane integrable

functions from [0, 1] to X , and suppose that the weak limit f(t) of fn(t) exists in X for almost

every t ∈ [0, 1]. If moreover the limit

F (E) = lim
n→∞

∫

E

fn(t)

exists in X , for the weak topology, for every measurable E ⊂ [0, 1], then f is McShane integrable

and
∫ 1

0 f = F ([0, 1])?

Remark. Because Theorem A and Theorem A′ are equivalent, so our question become that

is the Theorem B′ true?

In this paper we will concentrate on this problem using some results from our paper [9]

and [6]. We answer the problem concerning the validity of Theorem B and Theorem B′ in the

case of a separable Banach space or a reflexive Banach space with an additional condition (P )

concerning the unit ball of the dual X∗. On the other hand, in the general case we prove that

the Theorem B′ is not true. So we give a negative answer to Theorem B′.

2 Definitions and basic concepts

By X we denote a real Banach space with the norm ‖ · ‖ and by X∗ its dual.

[0, 1] is the compact interval in R , Σ is the set of all µ-measurable subsets of [0, 1], µ stands

for the Lebesgue measure.
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A partial M -partition D in [0, 1] is a finite collection of interval-point pairs (I, ξ) with non-

overlapping intervals I ⊂ [0, 1], ξ ∈ [0, 1] being the associated point of I.

We write D = {(I, ξ)}.

A partial M -partition D = {(I, ξ)} in [0, 1] is a M -partition of [0, 1] if the union of all the

intervals I from D equals [0, 1].

Let δ be a positive function defined on the interval [0, 1] called a gauge on [0, 1]. A partial

M -partition D = {(I, ξ)} is said to be δ-fine if for each interval-point pair (I, ξ) ∈ D we have

I ⊂ B(ξ, δ(ξ)) where B(ξ, δ(ξ)) = (ξ − δ(ξ), ξ + δ(ξ)).

Given a M -partition D = {(I, ξ)} we write

f(D) = (D)
∑

f(ξ)µ(I)

for integral sum over D, whenever f : [0, 1] → X and µ(I) is the length of the interval I.

Definition 1. An X-valued function f is said to be McShane integrable on [0, 1] if there

exists an Sf ∈ X such that for every ε > 0, there exists a gauge δ on [0, 1] such that for every

δ-fine M -partition D = {(I, ξ)} of [0, 1], we have

‖(D)
∑

f(ξ)µ(I) − Sf‖ < ε.

We write (M)
∫

[0,1] f = Sf and Sf is the McShane integral of f over [0, 1].

f is McShane integrable on a set E ⊂ [0, 1] if the function f · χE is McShane integrable on

[0, 1], where χE denotes the characteristic function of E.

We write (M)
∫

E
f = (M)

∫

[0,1]
fχE = F (E) for the McShane integral of f on E and F is

the primitive of f .

Denote the set of all McShane integrable functions f : [0, 1] → X by M.

The basic properties of the McShane integral, for example, the linearity of integrals, etc.,

can be found in [2] - [4], [8] - [9].

Definition 2. A set K ⊂ M is called M -equiintegrable if for every ε > 0 there is a

δ : [0, 1] → (0, +∞) such that

‖(D)
∑

f(ξ)µ(I) −

∫

[0,1]

f‖ < ε

for every δ-fine M -partition D = {(I, ξ)} of [0, 1] and every f ∈ K.

Using the concept of M -equiintegrability the following convergence result for the McShane

integral holds (see e.g. [3]).

Theorem 3. If the sequence of functions fn : [0, 1] → X, n ∈ N is M -equiintegrable and

lim
n→∞

fn(t) = f(t) exists in X for every t ∈ [0, 1]

then f ∈ M and

lim
n→∞

∫

[0,1]

fn =

∫

[0,1]

f.
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Denoting by L the set of Lebesgue integrable real functions on [0, 1] (with respect to the

Lebesgue measure µ) let us mention that a real function f belongs to L if and only if it belongs

to M, i.e. L = M (see e.g. [5]).

Definition 4. A function f : [0, 1] → X is called measurable if there is a sequence of simple

functions (fn) with limn→∞ ‖fn(t) − f(t)‖ = 0 for almost all t ∈ [0, 1].

f : [0, 1] → X is called weakly measurable if for each x∗ ∈ X∗ the real function x∗(f) :

[0, 1] → R is measurable.

In [9] it was shown that the following holds.

Theorem 5. If f : [0, 1] → X is McShane integrable on [0, 1], then

(a) for each x∗ in X∗, x∗(f) is McShane integrable on [0, 1] and
∫

[0,1]
x∗(f) = x∗(

∫

[0,1]
f),

(b) {x∗(f); x∗ ∈ B(X∗)} is M -equiintegrable on [0, 1],

(c) f is weakly measurable,

(d) for every subinterval I ⊂ [0, 1] and for every x∗ ∈ X∗ the function x∗(f) is McShane

integrable on I and
∫

I

x∗(f) = x∗(

∫

I

f),

(e) if E =
⋃p

j=1 Ij, where Ij are non-overlapping subintervals of [0, 1], then f is McShane

integrable on E with
∫

E

f =

p
∑

j=1

∫

Ij

f

and for every x∗ ∈ X∗ we have

∫

E

x∗(f) =

p
∑

j=1

∫

Ij

x∗(f) = x∗(

p
∑

j=1

∫

Ij

f) = x∗(

∫

E

f).

Finally, let us recall the concept of Pettis integral.

Definition 6. If f : [0, 1] → X is weakly measurable such that x∗(f) ∈ L for all x∗ ∈ X∗

and if for every measurable E ⊂ [0, 1] there is an element xE ∈ X such that

x∗(xE) =

∫

E

x∗(f)

then f is called Pettis integrable and the Pettis integral of f over E is the element xE ∈ X . We

write xE = (P )
∫

E
f and denote by P the set of all Pettis integrable functions.

3 Some convergence results

In the situation presented in the previous parts of this paper the following Vitali-Hahn-Saks

result holds (see Corollary 6 on p. 29 in [1]).

Theorem 7. If Fn, n ∈ N is a sequence of X-valued µ-continuous measures on Σ and

limn→∞ Fn(E) exists for each E ∈ Σ, then

lim
µ(E)→0

Fn(E) = 0
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uniformly in n ∈ N.

Assuming fn : [0, 1] → R, fn ∈ L, n ∈ N, put Fn(E) =
∫

E
fn. Using Theorem 7 we obtain

immediately the following version of the Vitali-Hahn-Saks theorem.

Corollary 8. If fn : [0, 1] → R, fn ∈ L = M, n ∈ N and the limit

lim
n→∞

Fn(E) = lim
n→∞

∫

E

fn

exists for every E ∈ Σ, then

lim
µ(E)→0

Fn(E) = lim
µ(E)→0

∫

E

fn = 0

uniformly in n ∈ N.

The following Vitali convergence theorem is well known (see Theorem 2, p. 168 in [7]).

Theorem 9. If fn : [0, 1] → R, fn ∈ L, n ∈ N converges in measure to f : [0, 1] → R and

lim
µ(E)→0

∫

E

fn = 0

uniformly in n ∈ N then f ∈ L and

lim
n→∞

∫

E

fn =

∫

E

f

for every E ∈ Σ.

Using Corollary 8 we obtain from this the following.

Corollary 10. If fn : [0, 1] → R, fn ∈ L, n ∈ N converges in measure to f : [0, 1] → R

and the limit

lim
n→∞

Fn(E) = lim
n→∞

∫

E

fn

exists for every E ∈ Σ then f ∈ L and

lim
n→∞

∫

E

fn =

∫

E

f

for every E ∈ Σ.

Theorem 11. Let fn : [0, 1] → X, n ∈ N be a sequence of McShane integrable functions

and f : [0, 1] → X. Suppose that

1) for every x∗ ∈ X∗ the limit limn→∞ x∗(fn) = x∗(f) exists in measure in [0, 1],

2) the limit

lim
n→∞

∫

E

fn(t) = xE ∈ X

exists in X, for the weak topology, for every measurable E ⊂ [0, 1].

Then f is Pettis integrable and (P )
∫ 1

0 f = x[0,1].

Proof. Assume that x∗ ∈ X∗ is arbitrary. Then for x∗(fn), x∗(f) : [0, 1] → R we have by

(a) in Theorem 5 with x∗(fn) ∈ L = M for n ∈ N. By 1) and 2) the assumptions of Corollary

10 are satisfied and therefore x∗(f) ∈ L, x∗(f) is measurable and
∫

E

x∗(f) = lim
n→∞

∫

E

x∗(fn) = lim
n→∞

x∗(

∫

E

fn) = x∗(xE)

5



for every E ∈ Σ. This yields the Pettis integrability of f and the theorem is proved.

A evident special case of Theorem 11 is the following.

Corollary 12. Let fn : [0, 1] → X, n ∈ N be a sequence of McShane integrable functions

and f : [0, 1] → X. Suppose that

1) for every x∗ ∈ X∗ the limit limn→∞ x∗(fn) = x∗(f) exists for every t ∈ [0, 1],

2) the limit

lim
n→∞

∫

E

fn(t) = xE ∈ X

exists in X, for the weak topology, for every measurable E ⊂ [0, 1].

Then f is Pettis integrable and (P )
∫ 1

0
f = x[0,1].

This Corollary shows that if the assumptions of Theorem B presented in the introduction

are fulfilled, the function f is Pettis integrable.

Now a partial answer to the problem of Fremlin and Mendoza from [2] can be given using

results concerning conditions under which a Pettis integrable function is also McShane inte-

grable. Conditions of this type have been studied in [4] and [9]. We present them in the

following statement.

Denote B(X∗) = {x∗ ∈ X∗; ‖x∗‖ ≤ 1} the unit ball in X∗.

Theorem 13. If f : [0, 1] → X is Pettis integrable and one of the following conditions

a) f is measurable,

b) the Banach space X is separable,

c) the Banach space X is reflexive and X has the property (P), i.e., there exists a sequence

{x∗
m ∈ B(X∗); m ∈ N} such that for every x∗ ∈ B(X∗) there exists a subsequence {x∗

k ∈

B(X∗); k ∈ N} of {x∗
m ∈ B(X∗); m ∈ N} such that

x∗
k(x) → x∗(x) forevery x ∈ X if k → ∞,

holds, then f is McShane integrable.

Using Corollary 12 and Theorem 13 we obtain the following partial answer to the problem

presented in the introduction to this paper.

Theorem 14. Let fn : [0, 1] → X, n ∈ N be a sequence of McShane integrable functions

and f : [0, 1] → X. Suppose that one of the conditions a), b), c) from Theorem 13 is satisfied

and that

1) for every x∗ ∈ X∗ the limit limn→∞ x∗(fn) = x∗(f) exists for every t ∈ [0, 1],

2) the limit

lim
n→∞

∫

E

fn(t)

exists in X, for the weak topology, for every measurable E ⊂ [0, 1].

Then f is McShane integrable and (M)
∫ 1

0 f = W − limn→∞

∫

[0,1] fn(t).

4 A negative answer to the problem of Theorem B
′

In the following, at first we will show an interesting example which is Pettis integrable and

not McShane integrable. Then we will give a negative answer to the problem of Theorem B′.
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Proposition 15. The Theorem B′ is not true.

Let us look at the following example belonging to Prof. Di Piazza and L., Preiss, D..

Example 16. There exists a function f ; [0, 1] → X , X is a Banach space, satisfying the

following properties:

(1) f is Pettis integrable;

(2) f is not McShane integrable.

We take an example as the Example (CH) of [10] P.1184 which was given by Di Piazza, L.

and Preiss, D. as following.

Let X = l∞(ω1), where ω1 is the first uncountable ordinal. Let {Nα}α∈ω1
and {Cα}α∈ω1

be two collections of subsets of [0, 1] satisfying the following properties:

(j1) for each α ∈ ω1, {Nα}α∈ω1
is a set of zero Lebesgue measure’

(j2) Nα ⊂ Nβ, if α < β;

(j3) every subset of [0, 1] of zero Lebesgue measure is contained in some set Nα;

(j4) for each α ∈ ω1, Cα is a countable set;

(j5) Cα ⊂ Cβ , if α < β;

(j6) every countable subset of [0, 1] is contained in some set Cα.

Now define f : [0, 1] → l∞(ω1) by

f(t)(α) =
{

1 if t ∈ Nα \ Cα,
0 otherwise.

It follows from the proof of the example (CH) in [10] that f is Pettis integrable and not

McShane integrable. This means there exists a function f such that f is Pettis integrable and

not McShane integrable.

Remark. Another more complicated example was given by Fremlin and Mendoza in [2].

Here we do not present it. For details, see the 3C example of [2] P.143.

In order to prove the Proposition 15, we first need well-known results.

Lemma 17. If a function f : [0, 1] 7→ X is a simple function, then f is McShane integrable.

See [4].

Lemma 18. If a function f : [0, 1] 7→ X is Pettis integrable, the set {x∗f ; x∗ ∈ B(X∗), n ∈

N} is uniformly integrable, i.e., limµ(E)→0

∫

E
|x∗f | = 0 uniformly in x∗ ∈ B(X∗).

See the Proposition 17 in [9].

The following result is important and it is the Theorem 6 of [6].

Lemma 19. The function f : I0 7→ X is Pettis integrable if and only if there is a sequence

(fn) of simple functions from I0 into X such that

(a) for each x∗ in X∗, limn→∞ x∗(fn) = x∗(f) a.e. on I0,

(b) the set {x∗(fn); x∗ ∈ B(X∗), n ∈ N} is uniformly integrable.

Now we return our attention to the Proposition 15.

Proof of the Proposition 15. If the Theorem B′ holds. This means that if fn, n ∈ N is

a sequence of McShane integrable functions from [0, 1] to X , and suppose that the weak limit

f(t) of fn(t) exists in X for almost every t ∈ [0, 1]. If moreover the limit

F (E) = lim
n→∞

∫

E

fn(t)
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exists in X , for the weak topology, for every measurable E ⊂ [0, 1], then f is McShane integrable

and
∫ 1

0 f = F ([0, 1]).

By the example 16, there is a function f : [0, 1] → X such that f is Pettis integrable and

not McShane integrable on [0, 1]. So we choose the function f in the example 16, since f is

Pettis integrable, by Lemma 19, there exists a sequence {fn}n of simple functions fn from [0, 1]

to X such that

a) for every x∗ ∈ X∗ limn→∞ x∗fn(t) = x∗f(t) exists for almost every t ∈ [0, 1];

b) the set {x∗(fn); x∗ ∈ B(X∗), n ∈ N} is uniformly integrable.

By Theorem 9 and f is Pettis integrable, we have

2) the limit

F (E) = lim
n→∞

∫

E

fn(t)

exists in X , for the weak topology, for every measurable E ⊂ [0, 1] and
∫ 1

0
f = F ([0, 1]).

From Lemma 17 the simple function fn(t) is McShane integrable. So the sequence {fn}

of McShane integrable functions satisfies the conditions of Theorem B′. Thus, if Theorem B′

holds, f is McShane integrable. But f is not McShane integrable. This is a contradiction.

Therefore, Theorem B′ is not true.

Remark. a) The condition of the Theorem B′ ”the weak limit f(t) of fn(t) exists in X for

almost every t ∈ [0, 1]” can be written as ”for every x∗ ∈ X∗ limn→∞ x∗fn(t) = x∗f(t) exists

for each t ∈ [0, 1] − e, here e ⊂ [0, 1] is a zero-measurable set and depends on x∗ in X∗.

b) If the zero-measurable set e ⊂ [0, 1] doesn’t depends on x∗ in X∗ the Theorem B′ in fact

is Theorem B. Because the integrability and integral of a function f over [0, 1] are invariant if

we change its value on the set with measure zero.

Remark. D. H. Fremlin in [3] discussed the convergence theorem B′ again, however, the

example 16 shows it is not true.
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