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1. INTRODUCTION

Decision-making under uncertainty is a natural part of everyday life of every human being. In
societal science, various aspects of decision-making were studied, mostly in the area of psy-
chology. In technical science, the process was formalized using probability theory yielding so
called Bayesian theory of decision making (Berger, 1985). However, one of the key assump-
tions of this theory is that the decision-maker is the only entity that intentionally influences
the system. This assumption is certainly violated in more complicated systems, such as human
society or distributed control. Recently, a serie of papers attempts to offer an extension of the
Bayesian theory for many decision-makers (Kárný and Guy, 2004), i.e. decentralized stochastic
control. Since there are no proofs of optimality of the proposed Bayesian distributed decision
making in the literature, we study this approach via experimental simulation studies. In this
paper we present the first experimental results of the approach.

2. SUMMARY OF DISTRIBUTED BAYESIAN DECISION MAKING

Bayesian decision making (DM) is based on the following principle (Berger, 1985): Incom-
plete knowledge and randomness have the same operational consequences for decision mak-
ing. Therefore, all unknown quantities are treated as random variables and formulation of the
problem and its solution are firmly based within the framework of probability calculus.

This task of designing of a decision-maker consists of the following sub-tasks:

Model Parametrization: Each agent must have its own model of its neighbourhood, i.e. part
of the overall environment. Uncertainty in the model is described by parametrized prob-
ability density functions.

Learning: Is an operation that reduces uncertainty in the neighbourhood model, using the
observed data. In Bayesian paradigm, this task is reduced to estimation of the model
parameters.

DM Strategy Design: Is an operation that produce a rule for generating decisions based on
the observations. The goal of this task is to design the best possible strategy in order to
reach presribed aims of the decision-maker.
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Figure 1: Illustration of Bayesian (left) and distributed Bayesian decision-making (right).

The previous operations are defined in standard Bayesian decision-making. In order extend the
paradigm for distributed decision-making, extra sub-task must be addressed:

Communication & Negotiation: Decision-makers echange messages with information about
models and aims. The goal of this sub-task is to design proper handling of this infor-
mation which ensures that individual decision-makers do not act against each other, but
cooperate whenever possible.

With this extra operation, the decision-makers behave like intelligent agents in multi-agent
systems (Weiss, 2000). Hence, we will refer to the extended decision-makers as agents. The
above sub-tasks will be now described in detail.

2.1 Model Parametrization

All quantities observable on the environment at time t will be denoted dt. These quantities can
be either data, yt, or actions, ut, dt = [y′t, u

′
t]
′. Θt is an unknown parameter of the model of the

environment. In Bayesian framework, the closed loop—i.e. the environment and the agent—is
described by the following probability density function:

f
(
d1:t,Θ1:t

)
=

t∏
τ=1

f (yτ |uτ ,Θτ ) f (Θτ |uτ ,Θτ−1) f
(
uτ |d1:τ−1

)
. (1)

Here, f (·) denotes probability density function (pdf) of its argument. d1:t denotes the obser-
vation history d1:t = [d1, . . . , dt]. The model represents the whole trajectory of the system,
including inputs ut which can be influenced by the agent. The chosen order of conditioning in
(1) distinguishes the following important pdfs: (i) observation model f (yt|ut,Θt) , (ii) internal
model f (Θt|ut,Θt−1) , and (iii) decision-making strategy f (ut|d1:t−1).

We suppose that the observation model and the internal model are given (or chosen from given
alternatives), while the decision-making strategy is being designed.

2.2 Learning via Bayesian filtering

In Bayesian paradigm, the task of learning is equivalent to evaluation of posterior distribution of
unknown parameters conditioned on the observed data, f (Θt|d1:t). This pdf can be computed



recursively as follows:

f
(
Θt|ut, d1:t−1

)
=

∫
f

(
Θt|ut, d1:t−1,Θt−1

)
f

(
Θt−1|d1:t−1

)
dΘt−1, (2)

f
(
Θt|d1:t

)
∝ f (yt|ut, d1:t−1,Θt) f (Θt|ut, d1:t−1)

f (yt|ut, d1:t−1)
, (3)

f
(
yt|ut, d1:t−1

)
=

∫
f

(
yt|ut, d1:t−1,Θt

)
f

(
Θt|ut, d1:t−1

)
dΘt. (4)

In general, evaluation of the above pdfs is a complicated task, which is often intractable and
many approximate techniques must be used (Chen, 2003). In this text, we are concerned with
conceptual issues and we assume that all operations (2)–(4) are tractable.

2.3 Design of DM strategy

In this Section, we review fully probabilistic design (FPD) of the DM strategy (Kárný, 1996).
This approach is an alternative to the standard stochastic control design, which is formulated as
minimization of an expected loss function with respect to decision making strategies (Astrom,
1970; Bertsekas, 2001). The FPD starts with specification of the decision making aim in the
form of ideal pdf of the closed loop. This ideal pdf—which is the key object of this approach—
is constructed in the same form as (1), from which it is distinguished by superscript I:

f
(
d1:t,Θ1:t

)
→ If

(
d1:t,Θ1:t

)
. (5)

Similarly to (1), the ideal distribution is decomposed into ideal observation model, internal
model, and ideal DM strategy. Recall, from Section 2.1, that model (1) contains the DM strat-
egy, which can be freely chosen. Therefore, the optimal DM strategy can be found by functional
optimization of the following loss function

L
(
f

(
ut|d1:t−1

)
, t̊

)
= D

(
f

(
d1:̊t,Θ1:̊t

)
|| If

(
d1:̊t,Θ1:̊t

))
, (6)

where D (·, ·) denotes the Kullback-Leibler divergence between the current (learnt) and the
ideal pdf (Kullback and Leibler, 1951), and t̊ > t is the decision making horizon.

Minimum of the loss (6)—i.e. the optimal DM strategy—is found in closed form:

f
(
ut|d1:t−1

)
= If(ut|d1:t−1))

exp[−ω(ut, d
1:t−1)]

γ(d1:t−1)
, (7)

ω(ut, d
1:t−1) =

∫
f(yt|ut, d1:t−1) ln

(
f(yt|ut, d1:t−1)

γ(d1:t) If(yt|ut, d1:t−1)

)
dyt. (8)

γ(d1:t−1) =

∫
If(ut|d1:t−1) exp[−ω(ut, d

1:t−1)] dut. (9)

The decisions are then generated backward in time starting at horizon t̊with initial value γ(̊t) =
1.

2.4 Communication & Negotiation

Cooperation between autonomously acting agents can arise if their aims an models are mutu-
ally compatible. This can be assured at the beginning of an experiment by design. However, the



models and aims can diverge, since each agent is continually updating them using the observed
data. The process of synchronizing of aims is known as negotiation in multi-agent systems
(Weiss, 2000). In Bayesian paradigm, this operation must also be formalized by means of
probabilistic calculus. No such operation exists in standard Bayesian theory. In (Kárný and
Guy, 2004), one possible formalization of negotiation was proposed using probabilistic merg-
ing. In general, merging refers to a process of creating one target pdf from two source pdfs.

When we want to synchronize the aims defined on the same variable, e.g. via ideal distribution
on observation yt, we seek a distribution defined on the same variable. For this purpose, we will
use direct merging operation (Kracík, 2004). Synchronization of models is more demanding,
since each decision maker may have different model, moreover its parametrization is unknown
to the neighbour. The agents may exchange only distributions on commonly known variables.
The task is then to use the neighbours distribution on the data d1:t to modify the posterior
distribution f (Θt|d1:t). This operation is known as indirect merging (Kracík, 2005).

Direct merging In this Section, we restrict our attention to cases where the sources, and thus
the target, are defined on the same multivariate variable. For merging of partially overlapping
multivariate variables see (Kracík, 2004). Merging is defined as optimization problem, where
the target distribution is found as follows:

f̃ (yt) = arg min
f

(αD (f1 (yt) ||f (yt)) + (1− α) D (f2 (yt) ||f (yt))) . (10)

Here, D denotes the Kullback-Leibler divergence, and scalar parameter α ∈ 〈0, 1〉 is used to
tune the importance of each source. Functional minimization of (10), yields the solution in the
form of probabilistic mixture:

f̃ (yt) = αf1 (yt) + (1− α) f2 (yt) . (11)

Note that complexity of this solution grows with repeated use of this rule, and soon it may
become computationally prohibitive. Therefore, an alternative approach is to minimize (10)
under the restriction of f() being from a class parametrized by multivariate parameter Φ. Then,
the necessary condition for an optimum is equality of all moments of f̃() that depends on Φ,
e.g.

Ef̃(yt|Φ)(yt) = Eαf1(yt)+(1−α)f2(yt)(yt), (12)

for the first moment and similarly for higher moments. Here, E [ ] denotes expected value of the
argument with respect to pdf defined in the subscript. The subscript can be omitted in situations
when it is clear which pdf is being used.

Alternatively, the problem can be formulated in the reverse KL divergence

f̃ (yt) = arg min
f

(αD (f (yt) ||f1 (yt)) + (1− α) D (f (yt) ||f2 (yt))) . (13)

Optimum of (13), is found in the form of a geometric mean of the source pdfs:

f̃ (yt) = (f1 (yt))
α (f2 (yt))

(1−α) . (14)



Indirect merging This operation is closely related to Bayesian estimation, and thus it can be
formalized using formula for evaluation of sufficient statistics (Kracík and Kárný, 2005) as
follows:

f̃
(
Θt|d1:t

)
= f1

(
Θt|d1:t

)
exp

[
β

∫
f2(Ψt) ln f1 (Ψt,Θt) dΨt

]
. (15)

Here, Ψt denotes the regressor, i.e. a vector of delayed observation Ψt = [d′t, d
′
t−1, . . .]

′, scalar
parameter β governs the importance of the communicated information.

Negotiation Is a process of finding such an aim (or model) that would be acceptable for both
agents. In distributed Bayesian DM, the task of negotiation is reduced to selection of weights α
and β for direct and indirect merging respectively. It is possible to formulate several strategies
how to choose these parameters (Kárný and Guy, 2004), however in this paper, we will assume
that they are chosen a priori.

3. ILLUSTRATIVE EXAMPLE: ROOM TEMPERATURE CONTROL

Consider the following autoregressive two-input one-output model of the environment:

yt = ayt−1 + byt−2 + cu1,t + du2,t + et, (16)

where a, b, c, d are scalar parameters and et ∼ N (0, σ) is a realization of normally distributed
noise with zero-mean and variance σ. The environment is influenced by two agents, each
controlling one of the inputs u in (16), i.e. A1 decides on strategy of u1,t and A2 on strategy of
u2,t. However, the agents have incomplete model of the environment:

A1 : yt = a1yt−1 + b1yt−2 + c1u1,t + 0u2,t + σ1e1,t, (17)
A2 : yt = a2yt−1 + b2yt−2 + 0u1,t + c2u2,t + σ2e2,t, (18)

Incompleteness of the model is hard-coded by zero coefficients of input actions of the other
agent, which means that the agents are, by design, unaware of the actions of the neighbour.
The task is to compensate for this ignorance via communication of knowledge.

3.1 Learning

Since both agents are using the same model structure, we derive the learning algorithm only for
one of them. The unknown parameters, a, b, c, and σ, are aggregated into a vector θt = [a, b, c] ,
Θt = [θt, σ]. The parameters are assumed to be stationary, i.e. the parameter evolution model
is

f (Θt|Θt−1) = δ (Θt −Θt−1) ,

where δ(·) denotes the Dirac delta function. Under the assumption of Gaussian noise, the
observation model is Normal distribution

f
(
yt|ut,Θt, d

1:t−1
)

= N (θ′tψt, rt) , (19)

where ψt = [yt−1, yt−2, ut]’. Since (19) is from the dynamic exponential family (Kárný et
al., 2005), it is reasonable to choose the prior distribution as conjugate to it, i.e. Normal-
inverse-gamma distribution:

f (Θt) = N iG (V0, ν0) . (20)



Then, the solution of one step update (3) has also the form of (20) with statistics Vt, νt updated
as follows:

Vt = Vt−1 + ϕtϕ
′
t, νt = νt−1 + 1.

Here, ϕt = [yt, ψ
′
t]
′. Using assignment λt = Vyy,t − Vψy,tV −1

ψψ,tVyψ,t and decomposition Vt =[
Vyy,t Vyψ,t
Vψy,t Vψψ,t

]
, moments of the posterior distribution are:

E [θt] = θ̂t = V −1
ψψ,tVyψ,t, E [rt] = r̂t =

1

ν − 7
λt.

The predictive distribution (4), is of Student-t type with νt − 1 degrees of freedom

f
(
yt+1|d1:t

)
= St

(
θ̂tψt+1,

1

1 + ζt
λt, νt − 1

)
, (21)

where ζt = ψ′
tV

−1
ψψ,tψ. Moments of (21) are

ŷt+1 = θ̂tψt+1,

E
[
(yt+1 − ŷt+1)

2] = r̂t(1 + ζt).

With growing t, (21) rapidly converges to a Gaussian distribution with the same mean and
variance, yielding a computationally tractable approximation.

3.2 Design of DM strategy

Ideal distributions Each agent assigns its own aims of decision making in the form of Gaus-
sian pdfs:

If (yt) = N
(
Iŷt,

Irt
)
, (22)

If (ut) = N
(
Iût,

Iρt
)
, (23)

where constants Iŷt,
Iût, and Iρt can be chosen arbitrarily, however, Irt is chosen as Irt = r̂t

for each participant. This choice reveals important computational simplifications in solution of
(7)–(9).

Fully probabilistic design Note that equation (7) involves predictive distribution f (yt|ut, d1:t−1)
which is the Student-t pdf (21) for the chosen model. Evaluation of (7) with for Student-t distri-
bution is computationally intractable, however, it is tractable for the following approximation:

f
(
yt|ut, d1:t−1

)
≈ N

(
θ̂′tψt,E

[
σ2
t

])
.

Under this simplification and the chosen ideal distributions, the functional recursions (7)–(9)
have the following algebraic form:

− log γ(yt, yt−1) = [yt, yt−1, 1]Jt[yt, yt−1, 1]′,

ω(ut, yt−1, yt−2) = [ut, yt−1, yt−2, 1]Kt[ut, yt−1, yt−2, 1]′.



Kernels Kt and Jt can be evaluated recursively:

Kt =
1

2 Irt

[
ĉ, â, b̂,− Iŷt

]′ [
ĉ, â, b̂,− Iŷt

]
+

[
ĉ, â, b̂,− Iŷt

]
Jt

 ĉ â b̂ 0
0 1 0 0
0 0 0 1



+


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0.5 ln(
Irt
r̂t

)− 1 + r̂t
Irt

+ J1,1;tr̂t

 ,

Xt = Kt +


1

2ρt
0 0 − Iût

2ρt

0 0 0 0
0 0 0 0

− Iût

2ρt
0 0

Iût

2ρt
+ 0.5 log(2πρt)

 =

[
Xuu Xuψ

Xψu Xψψ

]
,

Jt−1 = Xψψ −
XψuXuψ

XuuXuu

.

The stochastic controller is then:

f
(
ut|d1:t−1

)
= N (ût, ηt) , (24)

ût = −Xuψ

Xuu

,ηt =
1

sXuu

.

3.3 Direct Merging

In this application, direct merging will be applied for merging of ideal distributions on the
output yt,

If̃ i(yt)←− If i(yt),
If j(yt).

where j is used as an index of the neighbouring pdf, in our case j = 3− i. We will distinguish
two types of merging, each is optimal in one sense of Kullback-Leibler divergence.

Merging via linear combination Since the previous results heavily depends on the assumption
of Gaussian ideal distributions, we seek the best possible target distribution from this class. For
the case of linear combination, the optimal solution is found using moment matching (12) as
follows:

If̃ i(yt) = N
(
Iỹi,t,

Iσ̃
2

i,t

)
,

Iỹi,t = α Iyi,t + (1− α) Iyj,t,

Iσ̃
2

i,t = α
(
Iσ

2

i,t +
Iy2
i,t

)
+ (1− α)

(
Iσ

2

j,t +
Iy2
j,t

)
− Iỹ2

i,t.

Merging via geometric combination Geometric combination of Gaussian distributions in (14)
is again a Gaussian distribution, hence, the optimal distribution is:

If̃ i(yt) = N
(
Iỹi,t,

Iσ̃
2

i,t

)
,

Iỹi,t = Iσ̃
2

i,t

(
α Iσ

−2

i,t
Iyi,t + (1− α) Iσ

−2

j,t
Iyj,t,

)
,

Iσ̃
2

i,t =
(
α Iσ

−2

i,t + (1− α) Iσ
−2

j,t

)−1

.



3.4 Indirect merging

Indirect merging will be used for merging of information about the environment from one
agent to the other. An agent that receives knowledge from its neighbour will update its pos-
terior distribution using (15). Note however, that we can not use this formula directly, since
the agents can exchange information only about mutually known variables. In our case, ϕ1,t =
[yt, yt−1, yt−2, u1,t] andϕ2,t = [yt, yt−1, yt−2, u2,t], which have an intersection on ϕ̃t = [yt, yt−1, yt−2].
Therefore, in our experiment, we will use the following approximation.

1. ith agent send to its neighbour the following marginal:

fi (ϕ̃t) =

∫
f (yt, yt−1, yt−2, ui,t) dut =

∫
f (yt|u1,t, yt−1, yt−2) f (u1,t|yt−1, yt−2)×

f (yt−1|yt−2,yt−3) f (yt−2|yt−3,yt−4) dut.

Here, yt−3 denotes the observed value of yt at time t − 3. Note that the result depends
not only on the estimated parameters θ̂t,E [σ2

t ] via (21), but also on the designed strategy
(24). Hence, even if the agents observe the same data, their predictors f (ϕ̃t) will be
different if they follow different aims.

2. The recipient (jth agent) complements the obtained fi (ϕ̃t) by its own DM strategy

f i (ϕt) = f (u2,t|yt−1, yt−2) fi (ϕ̃t) ,

which can be substituted into (15).

Under the adopted approximation, the result of (15) for the jth agent is again in the Normal-
inverse-gamma form (20) with statistics:

Ṽj,t = Vj,t + βV i,t, ν̃j,t = νj,t + β.

Here, V i,t denotes matrix of expected values

V i,t = Ef i(ϕt)
[yt, yt−1, yt−2, ut]

′ [yt, yt−1, yt−2, ut],

which is easy to evaluate, since f i (ϕt) is a Gaussian pdf.

4. SIMULATION EXPERIMENTS

The example from Section was studied in simulation. The environment parameters were chosen
as follows: a = 0.8, b = 0.2, c = 1, d = −1 and σ = 0.1. The agents were initialized with
flat non-informative prior knowledge on the model, and prior aims Iŷ1,t = 20, Iŷ2,t = 10,
and Iσ1,t = Iσ2,t = 1. These parameters were chosen intentionally to yield conflict when both
agents act in autonomous mode. The devices are chosen to have the same power, which is
restricted by ideal pdf on input signal (24) with assignments Iû1,t = Iû2,t = 0, and Iρ̂1,t =
Iρ̂2,t = 1.

In the first experiment, the first 40 steps of the operation are used as training period when the
agents do not apply their DM strategy, but generate their actions randomly. The agents start to
apply their strategy at times t = 50 and t = 80. The resulting temperatures, y1:t, and control
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Figure 2: Simulation results for two agents with conflicting aims.

actions, u1:t
1 and u1:t

2 , are displayed in Figure 2. Note that since the devices have the same
power, shortly after the second agent starts applying its strategy, both agents are running at
(almost) full power, but none of them is able to reach its aim. This conflicting situation results
in waste of energy.

The second experiment was designed to remedy this situation by merging of agents aims at
time t = 90. The agents fully cooperate, i.e. they both of them choose the negotiation weight
α = 0.5. Two merging techniques were studied: linear and geometric combination of aims.
Results are displayed in Figures 3 and 4 respectively. Note that in this case, after t = 90 the
power generated by both agents drops significantly, and they both cooperate in order to main-
tain the negotiated temperature which is 15◦ C. The difference between linear and geometric
combination is in the variance of the aim. Linear combination yields wider margins on the ideal
distribution and thus the temperature varies within this range. Geometric combination yields
tighter margins and the agents must apply more aggressive control to keep the temperature
within the limits, Figure 4.

Even with synchronised aims, the agents may still be in conflict since they may predict different
behaviour of the observed system. Therefore, the third experiment was designed to merge
agents models at t = 140, see Figure 5. This operation has less dramatic effect, however, it also
results in decrease of generated power while preserving the ability to control the temperature.

5. CONCLUSION

The theory of distributed Bayesian decision-making was applied to the task of control of an
ARX model with two inputs using two autonomous agents. It was shown that in this case, the
proposed techniques of probabilistic merging are able to resolve possible conflicts of the two
agents. This result is encouraging for further development of the methodology.

Acknowledgement: This work was supported by grants MŠMT 1M0572, AVČR 1ET 100 750
401.
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Figure 4: Conflict resolution using geometric combination of aims.
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