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Abstrac: An advanced pattern recognition based supervision algorithm for an indirect 
adaptive controller is proposed. It was developed to improve control performance under 
certain conditions that are common in the industrial environment, in which indirect 
adaptive controllers with simple supervision are known to perform poorly or unreliably. 
Specifically, the problem of large invasive unmeasured disturbances of short or longer 
duration is addressed. The supervisor is designed recognize such events by analysis of 
recent control signals with no additional measurements used. Based on predefined features 
and thresholds, it switches to appropriate strategy. This way it prevents model degradation 
by learning from misleading data and to maintain acceptable performance under 
unfavorable conditions. As an illustration, it has been applied to the control of a model of 
a semi-cleanroom HVAC installation subsystem. 

1. INTRODUCTION 

Adaptive control was introduced to handle processes with varying parameters and it is still the 
subject of scientific examination. An adaptive controller adjusts its parameters in order to 
retain good performance throughout the varying operating conditions operation. The main 
advantages and disadvantages of several common approaches to adaptation are presented in a 
survey study [6] and a comprehensive description of adaptive control methods is given in [1]. 
There are two main types of adaptive controllers: 

• indirect adaptive controllers that compute controller parameters based on on-line 
identified plant model parameters, and 

• direct adaptive controllers that directly update controller parameters from process 
signals. 

Adaptive controllers are present in industrial applications but are not as widespread as was 
once expected. Despite the obvious need for controller self-tuning and adaptation, the 
percentage of adaptive controllers remains small due to their complexity and the practical 
problems associated with application to specific processes [7], [9]. 
Available industrial adaptive controllers typically belong to the direct type [4], where the 
tuning rules for adaptation of controller parameters are based on features of the process 
signals, such as rise-time, overshoot, damping ratio and noise band, determined using 
heuristics and pattern recognition techniques [3], [8], [11]. Usually they are pre-configured for 
specific applications in order to decrease the complexity of implementation. One comparison 
study of such algorithms is given in [7]. 
Indirect adaptive controllers are not as common as the direct type in industrial use, mostly 
because they are less suitable for handling specific problems of practical process operations 
and exceptional working conditions. Short unmeasured invasive disturbances are examples of 



 
 

 

situations where most indirect adaptive controllers fail to stop the adaptation and consequently 
degrade the model. Several methods of adaptation supervision were developed, such as 
conditional start/stop of adaptation, exponential and directional forgetting, leakage and 
covariance resetting ([1], p. 465-480; [9]). However, these methods appear to be less effective 
and robust in selecting useful signal segments for tuning than pattern recognition based 
approaches used by industrial direct adaptive controllers. On the other hand, for certain 
industrial applications there is a need for indirect adaptation since it does not require the 
special step-like shape of excitation signals, for example in cascade control inner loops.  
Related literature on the supervision of adaptive controllers was found, but the issue of 
response to short unmeasured invasive disturbances is not elaborated in detail. Comprehensive 
work concerning the building of higher-level information and using it for adaptation 
supervision is presented in [12]. Expert control is applied to a self-tuning voltage regulator in 
a case study [5]. A supervisory scheme for an indirect adaptive controller for fermentation 
control is presented by Babuška et al. [2], in which a supervisor based on a state automaton 
with a fuzzy rule-based inference system is used. Related approaches are also found in fault 
detection and isolation literature [18], [19]. 
Most supervision algorithms for indirect adaptive controllers only decide whether to update 
the model parameters or freeze adaptation based on current data and possibly the state of the 
supervisor automaton. This approach extends the decision-making with the detection of events 
in the buffer of process signals, using pattern recognition techniques [22] and predefined 
expert knowledge about the process. It is able to recognize critical events (e.g. unmeasured 
disturbances) from the shape of the signals and react quickly with appropriate action. 
The proposed adaptive system consists of a basic adaptive controller, a diagnostic module and 
supervision module. The diagnostic module scans the signal buffer, analyzing recent values, 
statistics and the transient behavior of the process signals to detect characteristic events. The 
supervisor is a finite state machine (FSM) [20], [21]. Based on the calculated features, the 
supervisor evaluates the situation in light of predefined knowledge about the characteristic 
disturbances. Therefore, the whole adaptive system may be seen as a discrete hybrid 
automaton. 
For performance illustration, the operation of the system is presented in a simulation case-
study of a heating-ventilating-air conditioning (HVAC) process. Nevertheless, the 
phenomenon of short invasive disturbances is common in many industrial processes, and the 
approach is essentially not model-specific, so it can be easily modified for other applications.  
The outline of the paper is as follows: in Section 2, the model of the HVAC subsystem is 
presented. Sections 3 and 4 briefly present a fixed outer cascade loop controller and a basic 
adaptive inner loop controller, respectively. Section 5 focuses on the advanced diagnostic and 
supervision modules of the adaptive controller. The simulation study in Section 6 compares 
control performance with fixed parameters, the basic adaptive controller and the supervised 
adaptive controller. Finally, conclusions are given in Section 7.  

2. PROCESS DESCRIPTION 

The performance of the adaptive system is evaluated on a model of the relevant subsystem of 
a semi-cleanroom HVAC installation in Fig. 1.  
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Fig. 1.  Process scheme. 

 
The model describes the hall heating process using hot air with constant flow ΦmA, which is 
defined by the ventilation requirements. The air path starts with the fan blowing air (at 
temperature TAin of outside (environmental) air) into the heat exchanger. Heated air at TAout 
then flows through the duct (whose length causes a time delay; in reality it also affects the 
temperature, which is neglected here) leading to the hall. Finally the air exits the hall at the 
outlet. In the heat exchanger, the air is heated by water coming from the heating station with a 
mean temperature TWin of 85°C. Two sensors measure hall temperature Thall and hall inlet air 
temperature TAout before it enters the hall. 
A counter-flow heat exchanger ([15], [16], [17]) is used. Its model is based on the following 
equation 
 TOTATP ⋅∆⋅= lnµ  (1) 

where P is the heat transfer rate [W], µ the overall heat transfer coefficient [W/m2K], ∆Tln the 
logarithmic mean temperature difference [K], and ATOT the total effective heating surface area 
[m2]. 
The logarithmic mean temperature difference is calculated via 
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with 
 AinWoutAoutWin TTTTTT −=∆−=∆ 21 , (3) 

where: 
 TAin, TAout are the heat exchanger inlet and outlet air (cold side) temperatures and 
 TWin, TWout are the heat exchanger inlet and outlet water (hot side) temperatures. 
Presuming known hot (water) and cold (air) stream mass flows in the heat-exchanger ΦmW and 
ΦmA, respectively, the output temperatures are calculated from the power transfer equation 
 ( ) pmoutin cTTP ⋅Φ⋅−= , (4) 

yielding 
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The water flow ΦmW is set by the valve position u and the relation 
 max,mWmW u Φ⋅=Φ , (6) 

where the range of u is from 0 to 1. The hall heating model is represented by 
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where Thall is the hall temperature, Toutside the outside air temperature, m the mass of air in the 



 
 

 

hall, cpA the heat capacity of the air, Cth the thermal capacity of the hall and Gth the thermal 
conductivity of the hall walls. 
The nature of the process is time-varying and non-linear. The process dynamics can be 
divided into two parts: the faster – heating of the hall inlet air by water, and the slower – 
heating of the hall by the hall inlet air. A cascade control scheme is used. The outer loop 
controls the temperature of the hall by setting a reference for the hall inlet air temperature. The 
latter is controlled in the inner loop by the heating water flow valve. In the inner loop, 
adaptive control is applied with the purpose of achieving efficient control over a wide range of 
operating conditions and reducing the effect of disturbances as quickly as possible. 
Two types of external influence on local process dynamics must be considered. Firstly, there 
are several gradually changing parameters that are considered as regular, and the controller is 
expected to adapt to them. Two of them are considered in the model:  

• outside air temperature (daily and yearly cycle, noise) 
• heating water temperature (small step changes represent switching on/off of other 

systems connected to the heating station).  
The second type is short invasive disturbances. In this process, such disturbances are caused 

by temporary cut-outs of the heating station, which is a common problem due to switching of 
another large consumer of heat. These disturbances have large amplitudes but short duration 
and require special treatment in order to minimize deviation from the set-point and the 
degradation of model parameters in the adaptive controller.  

3. OUTER LOOP CONTROLLER 

The hall temperature is controlled using a constant continuous-time PI (proportional-integral) 
controller (proportional gain K = 2.2, integral constant Ti = 2.75). The controller reads the 
room temperature sensor and sets a reference temperature for the air blown into the hall. This 
temperature represents the set-point for the inner heat exchanger loop. The outer loop 
controller also includes an anti-windup function [14]. The control scheme is given in Fig. 2. 
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Fig. 2.  Scheme of supervision and adaptation modules applied to the inner loop controller 

4. INNER LOOP CONTROLLER – BASIC INDIRECT ADAPTIVE CONTROL 

In the inner loop, a P controller is used. The integral term is omitted for the sake of simplicity, 
because offset-free tracking is not required in the inner loop, since it is provided in the outer 
loop controller. Due to the presence of noise, the use of the derivative term is not in place.  

A. Identification and controller tuning 

A standard recursive least-squares (RLS) method is used for estimation of the model 
parameters from on-line data [10]. After a thorough examination, the structure of a first order 
model with offset and predefined time delay was selected, due to the nonlinear nature of the 
process. 



 
 

 

The RLS estimator is executed as follows: 
 

 

[ ]

( )

( ) ( ) ( )

( ) ( )
λ

ϑϑϑ

λ

PKI
kP

yKkk

P

P
K

dkyku

'
1

'1

'

1)1()(

Ψ−=+

⋅Ψ−+=+

ΨΨ+
Ψ⋅=

−−=Ψ

, (8) 

where Ψ  is the regressor vector, P the covariance matrix, K the correction factor, and θ the 
vector of estimated parameters. Basic supervision of adaptation is employed: if the freshly 
updated model parameters are outside specified limits (unstable, too high or negative gain), 
then the last good θ and P are retained. Sufficient excitation is provided by the outer loop. 
Based on the estimated parameters, the inner loop proportional gain is tuned using the 
Magnitude Optimum Multiple Integration (MOMI) method [13] (PI or PID tuning would also 
be possible). To prevent the rapid change of controller parameters, the tuned controller 
parameters are passed to the controller through a low-pass filter. 

5. INNER LOOP CONTROLLER – DIAGNOSTICS AND SUPERVISION 

A. Diagnostic module 

The function of this module is to gather as much information as possible from the process 
signals. It maintains a memory buffer of the recent values of the process signals (reference r, 
process input u and output y); see Fig. 2. Its length is set so that it includes approximately 5–
10 dominant time constants of the process. The module examines the buffer and calculates 
certain signal features, listed in Table 1. At the end their values are compared to prescribed 
thresholds and converted to logic variables for the decision-making procedures in Table 2. 

 
TABLE 1 

SIGNAL FEATURES PREPARED BY THE DIAGNOSTIC MODULE 

 
 

TABLE 2 
LOGIC VARIABLES CALCULATED FROM THE FEATURES FOR AUTOMATON STATE TRANSITION 

CONDITIONS 

 



 
 

 

Since a P controller is used, efficient supervision is even more difficult because the steady-
state offset is not eliminated. Therefore, the calculation of the moving average (MA) of the 
error was introduced to evaluate process condition, as the error value alone is not relevant. 
The MA of the control error signal stays within limits during slow changes due to adaptation, 
while it changes considerably in a more radical change of the environment. 

B. Supervision module 

This module monitors controller operation and controls the adaptation of model parameters in 
order to retain good performance in spite of imperfect conditions for adaptation. It is 
structured as an FSM that changes between modes of operation based on performance analysis 
logic signals from the diagnostic module and a table of expert rules.  
Signs of short disturbance can be read from the data in the closed loop. Several test statements 
were made to distinguish invasive disturbances from regular conditions: 

• change of y is fast and large enough 
• change in u follows after a change of y 
• u changes in the opposite direction of y with almost no lag – compensates for the 

disturbance (presuming a minimum-phase process with positive gain) 
• u comes into saturation. 
When an invasive disturbance is recognized, the adaptation of model parameters is stopped 

until the disturbance is over. By design the controller and the actuator are not required to 
maintain control performance under such conditions. It is important to retain control as soon 
as possible after the disturbance stops. In case of a short invasive disturbance, this is best 
achieved by continuing operation from the last set of model parameters. If the disturbance 
remains present for a longer time, a reset of model parameters and covariance is required.  

The FSM consists of four states, summarizing the process operating conditions. In these 
states different types of control are executed as shown in Table 3. 

 
TABLE 3 

FSM STATES AND CONTROL MODES 

 
 

The states, and possible (admissible) transitions between them, are shown in the hybrid 
automaton state graph in Fig. 3. In case of disturbance, the supervisor switches from an 
operational (1) to a disturbance-wait state (3) for a short time. There, the estimator and 
consequently controller parameters are held and no checking is performed. After a defined 
amount of time the automaton switches to state 4 (estimation and tuning still held), where it 
waits until all signals return to near-normal values before it switches back to normal 
operation. If control performance degrades, the estimator covariance is reset at the switch to 
speed up controller retuning. 
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Fig. 3.  Transition diagram of the finite state machine (FSM) and control modes. 

 

6. SIMULATION STUDY 

Three different types of inner loop controllers were compared: a fixed P-controller, a 
conventional indirect adaptive P controller (with basic supervision only) and an adaptive 
controller with advanced supervision. The model described in Section 2 was used. The sample 
time was 36 s. 

First the comparison of both adaptive controllers and the fixed controller under the influence 
of the gradually changing environment is shown across a longer time interval. Time plots of 
outside temperature and heating water temperature are shown in Fig. 4.  
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Fig. 4.  Inputs to the heat exchanger representing disturbances 

 
Fig. 5 of the fixed controller indicates that the process parameters change considerably during 

process operation. While controller output uinner is sluggish at the beginning of the simulation, 

it becomes oscillatory towards the end of the simulation. The estimated process gain (K) rises 

from 50 at the beginning towards 300 at the end of simulation and the estimated time constant 

(τ) from 15 to almost 100.  
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Fig. 5.  Simulation using a fixed-gain controller in the inner loop. 

 
The adaptive controller in Fig. 6 lowers its gain over time and provides more uniform 
performance over the whole range of operation. Aside from the visible difference, the measure 
I was used to evaluate control performance. 

 [ ]∑ ∆⋅+−=
k

kuwkykrI )())()(( 2
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2
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The measure I comprises a sum of squared outer loop tracking errors and a weighted sum of 
squared changes of the inner loop actuator signal uinner(k), where w = 100 is a weighing factor. 
The results are Ifixed P, 1 = 13170 and Iadv_superv, 1 = 12796. 
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Fig. 6.  Plots of simulation using a basic adaptive controller. 

 

The second set of experiments in Fig. 7 is focused on a shorter time interval to test the ability 
of the two adaptive controllers to overcome short invasive disturbances. At time 0.9 day, a 
short drop in the temperature of the heating water supply appears (Fig. 7 d). The adaptive 
controller with advanced supervision (black line) freezes adaptation under inappropriate 
conditions and restores normal operation immediately after the signals settle to near-normal 



 
 

 

working conditions in less than 0.3 day. The adaptive controller with basic supervision (grey 
line) continues adaptation during the presence of the disturbance, which results in model 
degradation and a rise of controller gain lasting over 1 day. The performance measure I results 
for this test are: Ibasic adapt, 2 = 7554, Iadv_adapt, 2 = 5918. 
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Fig. 7.  a) Outer loop set-point and response to short invasive disturbance for the adaptive 
controller (gray line) and supervised AC (black line), b) Inner loop actuator signal, c) Inner 
loop controller gain, d) Disturbance: temperature of heat exchanger hot water input TWin. 
 

The next test in Fig. 8 shows the performance comparison of the two adaptive controllers in 
the case of an invasive disturbance of longer duration, starting at 0.5 day. The basic adaptive 
controller adapts the parameters relatively slowly, which results in some performance 
degradation for 1.6 day. The supervised adaptive controller recognizes the disturbance from 
the rapidly rising MA of the inner loop error signal, although the actuator does not saturate. 
Then, it waits until TAout returns close to the set-point. Since the error MA is above the 
specified threshold, the supervisor resets the covariance matrix P, allowing the estimator to 
obtain new parameters in less than 0.5 day. The comparison of the cost function I shows: Ibasic 

adapt, 3 = 6429, Iadv_adapt, 3 =4839. 
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Fig. 8.  System response to a moderate disturbance of longer duration (chart d).  Signals are 
the same as in Fig. 7. 



 
 

 

7. CONCLUSION 

In this paper, an advanced algorithm for indirect adaptation supervision based on pattern 
recognition was described. The simulation study on an HVAC installation subsystem model 
shows that the supervised adaptive controller is able to cope with time-varying and nonlinear 
conditions as well as the invasive disturbances which are characteristic for the process. 
Comparisons made for three typical scenarios show that the supervised adaptive controller 
performs better than the basic adaptive controller and the controller with fixed parameters. 
The advanced supervisor successfully prevented estimator model degradation in the case of a 
short invasive disturbance and facilitated rapid learning after a change of the operating point.  
As is typical in adaptive control practice, considerable performance improvements are 
achieved by tailoring the supervision system to the needs of the particular process, which 
requires a great deal of expert knowledge and time. However, the solutions presented are 
useful for a wider range of industrial control problems where invasive disturbances are present 
(massive load changes, temporarily unreliable measurements, etc.). Furthermore, the analysis 
is based on examining control signals r, u and y only, without the need for first-principles 
process modelling and additional measurements. 
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