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Abstract: Abstract: The estimation of queue lengths via local �lters is depend on

initial settings of covariances and state parameters if they are unknown. In the

tra�c, it is possible used the old measurements for initial setting. In the tra�c

data, the uncertainties are and the noise is not correlated and so it is not suitable

using the method of least squares. Using of Subspace methods looks as a good

possibilities for initial settings. The tra�c problem is so complicated that it is not

used the Subspace generally algorithm for estimation.
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1 INTRODUCTION

The main problem in tra�c are congested situation. The problem can be solved by the
control of the tra�c network instead of the control of the one intersection. For tra�c
control we need on-line information from the road. One of the possibility, it is monitoring
the queue lengths in the region and than optimizing the �ow of vehicles through the tra�c
network. The queue length gives us the good knowledge about the real situation on the
roads and in the network. In these days, the queue length is unmeasured and so it must
be estimated.

The queue lengths are estimated via the tra�c model (?). The tra�c model is state
space model which describe the situation in the tra�c networks or in the section of the
networks so-called micro-regions. The model is based on physical principle and it must
be valid that the vehicles entering the system must be identical to the vehicles leave or
present the system. The basic problem with estimation of queue length was described in
(?; ?). For the better estimation of the queue lengths, it is necessary to solve another
problems.



The tra�c is described by a linear state space model where the state includes the un-
measured queue lengths (?). For this case, it is possible to estimate queue lengths using
the Kalman �lter (KF) (?).The state transition matrix includes the unknown parameters
that can not be determined from physical relations and so they need to be estimated
too. The parameters can be estimated by on-line or o�-line methods. In case that the
o�-line methods was used, the KF can be used for estimation of queue lengths otherwise
we need the current estimation of the state and the model parameters which is solved
by the suitable nonlinear estimation methods, in our case Sigma Point Kalman Filters
(SP-KF) (?).

The both ways (linear and nonlinear estimation methods, respectively) need the good
initial setting of state and measurement covariance matrix which can be determined via
o�-line method. Methods, which can be used for initial setting, are Subspace methods.

The paper is organized as follows. In section 2, the Subspace methods for estimation
the parameters are described. In section 3, the parameters of the state matrices and the
covariances are estimated. In section 4, the results are summarized in conclusion.

2 SUBSPACE METHODS (SMS)

State estimation of state-space models is widely used in a variety of computer science
and application problems. The famous algorithms deal with these problems, the Kalman
�lter (KF) is but it is applicable to linear-Gaussian models and models with �nite state
spaces only. For KF, it is necessary to know the prior setting of state and covariance
matrices.

The subspace methods allow us to estimate the state-space matrices A, B, C, D and
covariance matrices directly without �rst specifying any another parameters. The aim of
these methods is found the state-space model with knowledge input-output data only (?)
.

SMs are useful for di�erent type of systems. There are 3 basic types of algorithms
according to the system for which they are to used. The deterministic algorithm is
for the systems without noises, the stochastic algorithm is available for auto-regression
systems and combined algorithm is su�cient for system with inputs and noises.

The SMs are divided into three types of algorithms by sort of system:

2.1 Deterministic algorithm (DA)

The deterministic algorithm is not su�cient for real systems under uncertainty. Although
this type is not suitable for tra�c model, we introduce them for completeness.

DA is su�cient for unknown deterministic system of order n:

xd
k+1 = Axd

k + Buk

yk = Cxd
k + Duk
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2.2 Stochastic algorithm (SA)

The stochastic algorithm works with noises but it is autonomous system. The new state
is in�uenced upon only the last state and with the noises (state and process). The tra�c
model is not autonomous system and so this algorithm is not su�cient.

SA is su�cient for unknown stochastic system of order n:

xs
k+1 = Axs

k + wk

yk = Cxs
k + vk

where wk and vk are mutually independence. wk and vk have zero mean with covariance
matrix:

E[

(
wk

vk

)
( wT

k vT
k )] =

(
Q S
ST R

)

2.3 Combined Deterministic-Stochastic Algorithm (CA)

For complete description of tra�c model, we must used the combined deterministic-
stochastic algorithm. The CA obtain both external inputs uk, the process noise wk and
the measurement noise vk and so it is suitable for tra�c model.

CA is su�cient for unknown system of order n:

xk+1 = Axk + Buk + wk

yk = Cxk + Duk + vk

with wk a vk are mutually independence. wk and vk have zero mean with covariance
matrix:

E[

(
wk

vk

)
( wT

k vT
k )] =

(
Q S
ST R

)

2.4 SMs and the tra�c model

The tra�c model has some speci�cities. The model is based on physical model and so
the variables in state and measurement matrices must be non-negative and we do not
need to estimated all values in matrices because some of them are known. The main
disadvantage of SMs can be summarized into two areas.

1. problem with the parameter δ. The parameter δ is depend on the queue lengths
only.
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2. problem with the non-negative parameters α, β, κ and sometimes λ. For solution
of this problem it is need made soma changes and added some restrictions SMs
algorithm.

3 EXPERIMENTS

3.1 Simulated system

The original system The notation of state-space model is:

xk+1 =

 0.9 −1 0.7
1 0 0
0 1 0.1


︸ ︷︷ ︸

A

·xk +

 1
0.5
0.4

 · uk + wk

yk =
[

0.8 0.3 −0.1
]

︸ ︷︷ ︸
C

·xk + vk

where

wk is state noise at time k and Q =

 0.15
0.15
0.15

,
vk is the process noise at time k and R = 0.15.

The estimation of matrices The estimated matrix A, B, C and covariances for
system order 3

A =

 0.0865 1.0117 0.1366
−0.9145 0.0763 0.2224
0.0154 −0.0969 0.8443

, B =

 −0.7439
−0.2220
−0.8414

,
C =

[
−0.9591 0.4591 −0.3872

]
, D = −0.0929

K =
[
−0.0252 0.5658 −0.2670

]
, R = 0.6716

Time demand: td = 1.1250 s

Comparison the estimation matrices and the original model This systems ob-
tain the state and measurement noises and the the parameters. For the estimation from
corrupted data, it is necessary to have bigger amount of data. In this case, the 3000 time
steps is su�cient.

We compare the data via eigenvalues, canonical form of models and output prediction
which is made on models in canonical form by reason of the using the same prior state.

Eigenvalues (L)

4



1. the original model

LO =

 0.0809 + 0.9736i
0.0809 − 0.9736i

0.8382


2. the SMs model

LSM =

 0.0809 + 0.9736i
0.0809 − 0.9736i

0.8382


Canonical form

1. the original model

A
(c)
O =

 0.08089 0.9736 0
−0.9736 0.08089 0

0 0 0.8382

, B
(c)
O =

 0.2752
0.9065
−1.394

,
C

(c)
O =

[
−0.5122 0.2014 0.444

]
, D

(c)
O = 0

2. the SMs model

A
(c)
SM =

 0.08108 0.9722 0
−0.9722 0.08108 0

0 0 0.8449

, B
(c)
SM =

 −0.7668
−0.2823
−0.8916

,
C

(c)
SM =

[
−0.6725 0.3065 −0.57

]
, D

(c)
SM = −0.0929

Output prediction

The initial condition of state is x0 =
[

0 0 0
]T
. The models are in canonical form and

so the initial conditions can not be recalculated. The results of estimations is seen on
�gure 1.

Figure 1: Output prediction

Summary: The identi�cation of combined model via SMs is su�cient exact but for good
estimation it is necessary to have enough data. For this case, it was needed circa 3000
data items.

3.2 Tra�c system

The original system The original system is unknown because it was used the data
from tra�c network. Inputs are input intensities and outputs are output intensities. The
intensities are measured by magnetics loops which are cover in the roads.

5



The estimation of matrices We have one input and output and so the order equals
1. In the tra�c model, we assumed, that the state space model has minimal dimension
2 because there is queue length and occupancy. In this case, we assumed that we do not
have any knowledge about the system.

1. The estimated matrix A, B, C, D and covariances:

(a) A = −0.6648,

(b) B = −0.2232,

(c) C = −1.4508,

(d) D = 0.7253,

(e) K = 0.2368,

(f) R = 12.509,

(g) time demand: td = 1.5625 s.

Comparison the estimation matrices and the original model

This system is real system and so we do not have possibility how to compare the original
model with SMs model. The comparison by eigenvalues it is impossible. The main
comparison is made by the output prediction. The results looks very well because we know
that the tra�c system is very complicated. The measurement covariance R = 12.509
shows that the intensities on input and output are very di�erent. It can be cause by the
time delay. Figure 2 shows the di�erence between outputs with the covariances in SM
model.

Figure 2: CA - order 1 with noise

Summary : The SMs model, which was applicated on the tra�c data, give relatively
good results. The noises are bigger than we assumed for this tra�c system. The input
covariance R = 12, 509 looks unreliably.
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4 CONCLUSION

In this paper, the SM methods and its using in the tra�c model was described. The
main aim of this paper was evaluation as estimator of state parameters and covariances.
The SMs estimated the state parameters and covariances from knowledge of input and
output. Using this method for on-line estimation and estimation of parameters β, κ etc.
, it is not probable because the SMs estimate all values in matrices A, B, C and D and
not only which we need. The using for o�-line estimation of covariances does not looks
believably because the covariances are strong depend on estimate of others matrices.

On the other hand, the prediction output for tra�c system looks well. It is possible that
the estimate of output intensity on roads where we do not have the output detectors or
in case when the detectors break down can be made via SMs. This using will be more
closely described in the next works.

REFERENCES

[1] J. Homolová and I. Nagy. Tra�c model of a microregion. In P. Horá£ek, M. �imandl, and
P. Zítek, editors, Preprints of the 16th IFAC World Congress, pages 1�6, Prague, Czech
Republic, July 2005. IFAC.

[2] R. E. Kalman. New results in linear �ltering and prediction theory. Journal of Basic

Engineering, pages 34�45, 1960. Transactions ASME.

[3] J. Kratochvílová and I. Nagy. Tra�c control of microregion. In J. Andrýsek, M. Kárný,
and J.. Kracík, editors, CMP'04: Multiple Participant Decision Making, Theory, algorithms,

software and applications, pages 161�171, Adelaide, May 2004. Advanced Knowledge Inter-
national.

[4] P. Pecherková. Using the innovations of extended Kalman �lter in tra�c. In Proceedings of

Abstracts of the 6th International PhD Workshop on Systems and Control a Young Genera-

tion Viewpoint, page 76, Ljubljana, October 2005. Jozef Stefan Institute.

[5] P. Pecherková, I. Nagy, and J. Duník. Queue Length Estimation, (in czech). Technical
Report 2149, ÚTIA AV �R, Prague, 2005.

[6] R. van der Merwe and E. A. Wan. Sigma-point kalman �lters for probabilistic inference
in dynamic state-space models. In Proceedings of the Workshop On Advances in Machine

Learning, Montreal, Canada, 6 2003.

[7] P. van Overschee and B. de Moor. Subspace Identi�cation for Linear Systems. Kluwer
Academic Publischers, Boston/London/Dordrecht, 1996.

7


	Introduction
	Subspace methods (SMs)
	Deterministic algorithm (DA)
	Stochastic algorithm (SA)
	Combined Deterministic-Stochastic Algorithm (CA)
	SMs and the traffic model

	Experiments
	Simulated system
	Traffic system

	Conclusion

