Seminar on Differential Equations and Integration Theory
Seminars in 2004
25.11.2004Bohdan Maslowski:
Exponential and geometrical ergodicity in infinite dimensions IV.
18.11.2004Bohdan Maslowski:
Exponential and geometrical ergodicity in infinite dimensions III.
11.11.2004Petru Jebelean (West University of Timisoara,
Romania):
Existence results for vector p-Laplacian with general boundary conditions.
4.11.2004Bohdan Maslowski:
Exponential and geometrical ergodicity in infinite dimensions II.
21.10.2004Zdeněk Oplustil:
Nonlocal boundary value problem for linear functional differential equation of the first order.
14.10.2004Bohdan Maslowski:
Exponential and geometrical ergodicity in infinite dimensions II.
27. 05. 2004Sulkhan Mukhigulashvili:
On Periodic Problem for Second Order Linear FDE's.
13. 05. 2004 Luisa Di Piazza
(Universita di Palermo):
Non absolutely convergent integrals for Banach valued functions. Valeria Marraffa
(Universita di Palermo):
Riemann type integrals and stochastic processes of vector valued functions.
15. 04. 2004Petr Vodstrčil (MU Brno):
On nonlocal boundary value problem for linear functional differential equations
of the second order.
08. 04. 2004Jan Andres (UP Olomouc):
Derivo-periodic functions and multifunctions.
01. 04. 2004Jiří Benedikt
(ZČU Plzeň):
Initial and boundary value problems for higher-order quasilinear equations.
25. 03. 2004tefan Schwabik:
On one interesting example to the theory of HK-integral and McShane-integral.
18. 03. 2004Zuzana Dolá a Ivo
Vrkoč:
Generalized Fubini theorem and its applications in differential equations.
11. 03. 2004Milan Tvrdý:
Second order periodic problem with phi-Laplacian (and impulses) II.
26. 02. 2004Milan Tvrdý:
Second order periodic problem with phi-Laplacian (and impulses) I.
19. 02. 2004Sulkhan Mukhigulashvili
(Razmadze Mathematical Institute, Tbilisi, Georgia):
On two-point boundary value problems for two-dimensional differential systems
with singularities.
12. 02. 2004Jaroslav Kurzweil:
Convergence for HK-integrals.
05. 02. 2004Andrei Ronto:
Method of test elements and solvability of infinite-dimensional initial value problems.