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— Printed by PV Press, Pod vrstevnićı 5, 140 00 Prague 4. — Orders and subscriptions
should be placed with: MYRIS TRADE Ltd., P.O.Box 2, V Št́ıhlách 1311, 142 01 Prague 4,
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EQUIVALENT FUZZY SETS

Branimir Šešelja and Andreja Tepavčević

Necessary and sufficient conditions under which two fuzzy sets (in the most general,
poset valued setting) with the same domain have equal families of cut sets are given. The
corresponding equivalence relation on the related fuzzy power set is investigated. Rela-
tionship of poset valued fuzzy sets and fuzzy sets for which the co-domain is Dedekind–
MacNeille completion of that posets is deduced.

Keywords: poset valued fuzzy set, cut, equivalent fuzzy sets, Dedekind–MacNeille comple-
tion

AMS Subject Classification: 03B52, 03E72, 06A15

1. INTRODUCTION

It is well known that fuzzy sets considered as functions are characterized by partic-
ular collections of crisp sets, known as cut sets. Among basic properties of fuzzy
structures are cutworthy ones, i. e., those which are preserved under cuts. If fuzzy
sets are endowed with some algebraic structure (group, ring, etc.), then the cuts are
substructures (subgroups, subrings etc.). It is also known that different functions –
fuzzy structures on the same domain can have equal collections of cut sets. There-
fore, there were many attempts to investigate and somehow classify fuzzy structures
on the same underlying set, which have equal collections cuts (see e. g., Murali and
Makamba [8], Makamba [7], Alkhamees [1], Šešelja, Tepavčević [10, 11, 12, 15]; see
also references in these). As it was pointed out in [10, 15], importance of the above
mentioned classification is based on the following simple property of functions. There
are uncountably many distinct functions (fuzzy sets) on the same (finite or infinite)
domain and uncountable co-domain (e. g., the real interval [0, 1]). The same holds
for algebraic structures: any group (even if it is of prim order) has uncountably
many fuzzy subgroups. Not all of these functions (fuzzy sets, fuzzy subgroups) can
be considered as essentially different and many of them have equal collections of cut
sets. This leads to the natural classification of fuzzy structures by equality of cuts.

In the paper [15] the above equality of fuzzy sets was characterized for fuzzy sets
whose domain is a (complete) lattice L. In the collection of all L-valued fuzzy sets
on the same domain, necessary and sufficient conditions were given, under which
two fuzzy sets from this collection have equal families of cuts. In particular, the
notion of equality of fuzzy sets given in [8] was generalized.
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In the present paper we consider the problem in its most general setting. Namely,
we focus on the class of fuzzy sets as mappings from some fixed domain X into an
arbitrary (also fixed) ordered set P . We present necessary and sufficient conditions
under which fuzzy sets from the mentioned class have equal families of cut sets.
Consequently, as special cases we deduce conditions concerning the correspond-
ing equality for other kinds of fuzzy sets: lattice valued and real interval valued
ones. It turns out that the solution of this problem is related to the well known
Dedekind–MacNeille completion of ordered sets; this connection is also investigated
and described.

Our investigation and results are formulated in terms of fuzzy sets, and not for
fuzzy algebraic structures (like e. g., fuzzy groups). The reason is that the equality
of cuts is essentially an order theoretic property. Therefore, our conditions are
universal in the sense that they can easily, without changes, be formulated for any
fuzzy algebraic or order-theoretic structure.

Notation and basic facts about L-valued fuzzy sets and lattices are given in Pre-
liminaries; we refer also to the survey papers [13, 14].

2. PRELIMINARIES

We advance some definitions and notation concerning ordered structures. For more
details, see e. g. [3].

If (P, 6) is a partially ordered set, poset, then infimum and supremum of a, b ∈ P
(if they exist) are denoted respectively by a∧b and a∨b. For imfimum or supremum
of a subset or a family of elements of P , we use the notation

∧

Q,
∨

xi, and so on.
For a ∈ P , we denote by ↓a the principal ideal generated by a: ↓a := {x ∈ P |x 6 a}.
Dually, a principal filter generated by a is defined by ↑a := {x ∈ P | a 6 x}. A poset
in which every two-element subset has infimum and supremum is a lattice. A lattice
L is complete if infimum and supremum exist for every subset of L.

Two posets (P, 6) and (Q,≤) are said to be order isomorphic if there is a bijection
f : P → Q such that f and f−1 are isotone.

The Dedekind–MacNeille completion of a poset (P, 6) is a collection of subsets of
P , defined by

DM(P ) := {X ⊆ P |Xuℓ = X},

where for X ⊆ P ,

Xu := {y ∈ P |x 6 y, for every x ∈ X}

and
Xℓ := {y ∈ P | y 6 x, for every x ∈ X}.

Obviously, by the consecutive application of the above two operators, we can get
operators uℓ and ℓu. Elementary properties of these operators are

X ⊆ Xuℓ and X ⊆ Xℓu.

Let P be a poset and Q ⊆ P . Then Q is said to be meet-dense in P if for every
x ∈ P there is a subset R of Q such that x =

∧

P R. A join-dense subset is defined
dually.
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We use some facts about DM -completions, given in the sequel.

Proposition 1. For any poset P , DM(P ) is a complete lattice under inclusion
and P can be order embedded into DM(P ) by the map φ : x 7→↓x. In addition:

(i) φ(P ) is both meet-dense and join-dense in DM(P ).

(ii) If P is a subset of a complete lattice L, in which it is both meet-dense and
join-dense, then L is isomorphic with DM(P ) under the order-isomorphism
whose restriction to P is φ.

Due to the order embedding φ, we sometimes consider P to be the sub-poset of
DM(P ) (in the proof of Theorem 1 and further in the text).

Let Z be a collection of subsets of a nonempty set X satisfying:

(i) Z is closed under componentwise intersections, i. e., for every x ∈ X ,
⋂

(Y ∈ Z |x ∈ Y ) ∈ Z,

(ii)
⋃

Z = X .

Then Z is called a point closure system on X .

Fuzzy sets

In this paper fuzzy sets are considered to be mappings from a non-empty set X (do-
main) into a poset P (co-domain). Special cases are obtained when P is a complete
lattice or the unit interval [0, 1] of real numbers. We sometimes use the term P -fuzzy

sets, or poset valued fuzzy sets, but in majority of cases we simply refer to fuzzy sets.
If µ : X → P is a fuzzy set on a set X then for p ∈ P , p-cut, or a cut set, (cut) is

the well known subset µp of X :

µp := {x ∈ X |µ(x) > p}.

The collection of all cuts of µ is denoted by µP :

µP := {µp | p ∈ P}.

We are recalling some known properties of poset valued fuzzy sets (see e. g.,
[13, 14]).

Proposition 2. Let µ : X → P be a fuzzy set on X . Then the collection µP =
{µp | p ∈ P} of cut subsets of µ is a point closure system on X under the set inclusion.

The image of the set X under µ is denoted as usual, by µ(X):

µ(X) = {p ∈ P | p = µ(x), for some x ∈ X}.

If a fuzzy set µ : X → P is given on X , then we define the relation ≈ on P : for
p, q ∈ P

p ≈ q if and only if µp = µq.

The relation ≈ is an equivalence on P , and it can be characterized as follows.
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Proposition 3. If µ is a fuzzy set on X and p, q ∈ P , then

p ≈ q if and only if ↑p ∩ µ(X) = ↑q ∩ µ(X).

The relation ≤ in the poset P induces an order on the set of equivalence classes
modulo ≈, i. e., on P/ ≈, in the following way: for p, q ∈ L, let

[p]≈ ≤ [q]≈ if and only if ↑q ∩ µ(X) ⊆ ↑p ∩ µ(X). (1)

The above relation 6 is an ordering relation on P/≈. This order is anti-isomorphic
with the set inclusion among cut sets of µ, as follows.

Proposition 4. If µ is an P -fuzzy set on X , then:

[p]≈ 6 [q]≈ if and only if µq ⊆ µp.

3. RESULTS

Let P be a poset, X a nonempty set, and FP (X) the collection of all fuzzy sets on
X whose co-domain is P .

In terms of ordered sets and functions FP (X) is the power denoted usually by
PX . This set can be ordered naturally, the order being induced by the one from the
poset P :

µ 6 ν if and only if for each x ∈ X µ(x) 6 ν(x).

The cardinality of the power FP (X) depends on the cardinality of the poset
P ; if it is an uncountable poset (like the unit interval [0, 1]), then also there are
uncountably many functions – fuzzy sets on X .

Recall that µP denotes the collection of all cuts of a fuzzy set µ ∈ FP (X):

µP = {µp | p ∈ P}.

Our aim is to find conditions under which different fuzzy sets (as functions) have
equal these collections.

We begin with a necessary condition for the foregoing equality. It connects fuzzy
sets having a poset for the domain with those for which the domain is a lattice.

Let µ : X → P be a fuzzy set and let L = DM(P ) be a lattice which is the
Dedekind–MacNeille completion of P (recall that this lattice consists of particular
subsets of P , ordered by set inclusion). Then, we define a fuzzy set µDM(P ) : X →
DM(P ), where

µDM(P )(x) =↓ (µ(x)).
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Proposition 5. If fuzzy sets µ : X → P and ν : X → P have equal families of cut
sets then also families of cut sets of fuzzy sets µDM(P ) and νDM(P ) coincide.

P r o o f . First we note that cuts µp in µ and µ
DM(P )
φ(p) in µDM(P ) coincide (recall

that φ : x 7→↓ x, as in Proposition 1). Indeed, x ∈ µp if and only if µ(x) > p if and

only if φ(µ(x)) > φ(p) if and only if µDM(P )(x) > φ(p) if and only if x ∈ µ
DM(P )
φ(p) .

Suppose that µ and ν have equal families of cut sets. Let p ∈ DM(P ). Then,
p =

∨

i∈I xi, where {xi | i ∈ I} is a family of images of elements of P under φ (this
is because of the density of φ(P ) in DM(P ), see Proposition 1). Now,

µDM(P )
p = µ

DM(P )
∨xi

=
⋂

(µDM(P )
xi

| i ∈ I) =
⋂

(νDM(P )
yi

| i ∈ I) = ν
DM(P )
∨yi

= νDM(P )
p ,

where for each µ
DM(P )
xi

, ν
DM(P )
yi

is the corresponding (equal) cut in fuzzy set µDM(P ).
2

The converse of this statement is not valid, which is illustrated by the following
example.

Example 1. Let P be the poset in Figure 1 and µ and ν fuzzy sets on X =
{x, y, z, t} defined by:

µ =

(

x y z t
c d g h

)

ν =

(

x y z t
a b e f

)

These fuzzy sets do not have equal cuts, more precisely, {c, d} is a cut set of µ but
not of ν.

c

c cc c

c

cccc

c
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@
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�

�
�

@
@

a b c d

e f g h

0

1

Fig. 1.

P

On the other hand, when we consider the extensions of these fuzzy sets to
Dedekind–MacNeille completion of the poset P (the lattice DM(P ) is given in Fig-
ure 2), then the corresponding lattice valued fuzzy sets have equal families of cut
sets, which can be easily checked.
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DM(P )

Starting with a fuzzy set µ from FP (X), we define a special poset ordered by set
inclusion, whose elements are certain subsets of the set of all images of µ.

For µ ∈ FP (X), let

Pµ := ({↑p ∩ µ(X) | p ∈ P},⊆).

In the following, the above collection is considered as a poset ordered by inclusion.
Recall that µP denotes the collection of cut set of µ:

µP := {µp | p ∈ P}.

This poset is also ordered by set inclusion.

Proposition 6. If µ : X → P is a fuzzy set on X , then there exists an order
isomorphism from the poset Pµ to the poset µP of cuts of µ.

P r o o f . The function f : µp 7→↑p∩µ(X) maps the collection µP of cuts of µ onto
the poset Pµ. By the definition of the relation ≈ on P and by Proposition 3, f is
a bijection. It is straightforward to prove that f and its inverse preserve the order
(set inclusion), so f is an order isomorphism. 2

Next we introduce our main definition by which we can classify fuzzy sets in the
collection FP (X).

Definition. Let ∼ be the relation on FP (X), defined as follows: µ ∼ ν if and only
if the correspondence f : µ(x) 7→ ν(x), x ∈ X is a bijection from µ(X) onto ν(X)
which has an extension to an isomorphism from Pµ onto the poset Pν , given by the
map

F (↑p ∩ µ(X)) := {ν(x) |µ(x) > p}ℓu ∩ ν(X), p ∈ P. (∗)

Remark. Within this definition we implicitly suppose that {ν(x) |µ(x) > p}ℓu ∩
ν(X) belongs to Pν . Therefore, for every p ∈ P , there is an element q ∈ P , such
that {ν(x) |µ(x) > p}ℓu ∩ ν(X) =↑q ∩ ν(X).
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Lemma 1. Let µ, ν ∈ FP (X) and for p ∈ P , let F (↑p ∩ µ(X)) =↑q ∩ ν(X). Now,
if µ ∼ ν, then for any y ∈ X ,

µ(y) > p if and only if ν(y) > q.

P r o o f . By the definition of F , {ν(x) |µ(x) > p}ℓu ∩ ν(X) =↑q ∩ ν(X).
Suppose that µ(y) > p for some y ∈ X . Since {ν(x) |µ(x) > p} ∩ ν(X) ⊆

{ν(x) |µ(x) > p}ℓu ∩ ν(X) =↑q ∩ ν(X), we have that ν(y) > q.
Conversely, let ν(y) > q. By the definition, F is an extension of the bijection

f : µ(x) → ν(x), i. e., extension of the mapping ↑µ(x)∩µ(X) 7→↑ ν(x)∩ν(X). Since
ν(y) ∈↑q ∩ ν(X), we have that ↑ν(y) ∩ ν(X) ⊆↑q ∩ ν(X). By the fact that F is
an isomorphism, ↑µ(y) ∩ µ(X) ⊆↑p ∩ µ(X), therefore µ(y) ∈↑p ∩ µ(X), and hence
µ(y) > p. 2

Theorem 1. The relation ∼ is an equivalence relation on FP (X).

P r o o f . Reflexivity of ∼ holds by virtue of the identity map on Pµ.
In the sequel, symmetry of ∼ is proved. If µ ∼ ν, then F is an isomorphism and

F (↑p ∩ µ(X)) = {ν(x) |µ(x) > p}ℓu ∩ ν(X) = ↑q ∩ ν(X).

Now, F−1 is also the isomorphism from Pν to Pµ and we have to prove that

F−1(↑q ∩ ν(X)) = {µ(x) | ν(x) > q}ℓu ∩ µ(X) (= ↑p ∩ µ(X)).

We consider the infimum of all elements µ(x) for which ν(x) > q in the Dedekind–
MacNeille completion of P . This completion is a complete lattice, and the following
is true:

↑
∧

DM(P )

{µ(x) | ν(x) > q} ∩ µ(X) = {µ(x) | ν(x) > q}ℓu ∩ µ(X).

Now, since for every µ(x) such that ν(x) > q, we have that µ(x) > p (by Lemma 1),
it follows that

∧

DM(P ){µ(x) | ν(x) > q} > p, and hence ↑
∧

DM(P ){µ(x) | ν(x) >

q} ∩ µ(X) ⊆↑p ∩ µ(X).
To prove the other inclusion, let µ(y) > p (i. e., µ(y) ∈↑ p ∩ µ(X)). Then, by

Lemma 1, ν(y) > q. Since {µ(x) | ν(x) > q} ⊆ {µ(x) | ν(x) > q}ℓu, we have that
µ(y) ∈ {µ(x) | ν(x) > q}ℓu ∩ µ(X), i. e., ↑p ∩ µ(X) ⊆ {µ(x) | ν(x) > q}ℓu ∩ µ(X),
which proves that ∼ is symmetric.

Finally, suppose µ ∼ ν and ν ∼ ρ, and F and G are the corresponding isomor-
phisms from Pµ to Pν and from Pν to Pρ, respectively. Directly by the definition of
F and G, it follows that F ◦ G is the isomorphism by which µ ∼ ρ. Therefore, ∼ is
transitive. 2

We say that fuzzy sets µ, ν ∈ FP (X) are equivalent if µ ∼ ν.
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If the poset P is replaced by a complete lattice L, then the above definition of
equivalent fuzzy sets coincides with the definition of equivalent lattice valued fuzzy
sets from [15]:

F (↑p ∩ µ(X)) = ↑
∧

{ν(x) |µ(x) > p} ∩ ν(X), p ∈ L. (∗′)

Indeed, in any lattice we have

{ν(x) |µ(x) > p}ℓu =
∧

{ν(x) |µ(x) > p},

hence in this case the last formula is equivalent with the formula (∗).
In particular, if we consider classical fuzzy sets with co-domain [0, 1], then the

isomorphism (∗) has the form

F ([p, 1] ∩ µ(X)) = [inf{ν(x) |µ(x) > p}, 1] ∩ ν(X), p ∈ [0, 1]. (∗′′)

Obviously, definition (∗) is the most general.
Recall that for equivalent fuzzy sets µ and ν, the correspondence f : µ(x) 7→ ν(x)

for x ∈ X , is by definition a bijection from µ(X) to ν(X). These sets of images are
ordered subsets of P and we prove that they are order isomorphic.

Theorem 2. Let µ, ν ∈ FP (X) and µ ∼ ν. Then for all x, y ∈ X

µ(x) 6 µ(y) if and only if ν(x) 6 ν(y). (∗∗)

P r o o f . Let µ(x) 6 µ(y). Then ↑µ(y) ⊆↑µ(x), hence ↑µ(y)∩µ(X) ⊆↑µ(x)∩µ(X)
and finally, since µ ∼ ν, we have ↑ν(y) ∩ ν(X) ⊆↑ν(x) ∩ ν(X). Therefore ν(x) 6

ν(y). By the symmetry of ∼, the opposite implication is also satisfied, and we are
done. 2

Remark. In the paper [8] condition (∗∗) and the notion of equivalent fuzzy sets
were used to characterize fuzzy sets with equal supports and only finite number of
values in the interval [0, 1].

Now we are able to prove our main result, namely that equivalent fuzzy sets have
equal families of cuts, which justifies the used terminology.

Theorem 3. Let µ, ν : X → L. Then µ ∼ ν if and only if fuzzy sets µ and ν have
equal families of cuts.

P r o o f . Let µ ∼ ν, and let p ∈ P . We prove that for every p ∈ L there is q ∈ L
such that µp = νq.

Since F (↑p ∩ µ(X)) := {ν(x) |µ(x) > p}ℓu ∩ ν(X), is a bijection from Pµ to Pν ,
there is an element q ∈ P , such that F (↑p∩ µ(X)) = ↑q ∩ ν(X). By Lemma 1, for p
and q, we have that for all y ∈ X , µ(y) > p if and only if ν(y) > q. Hence, µp = νq.
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By symmetry of ∼, we get the same result if we start from q.
To prove the converse, suppose that the families of cuts of µ and ν are equal.

Then, for every p ∈ P there is q ∈ P , such that µp = νq and vice-versa.
Now, we consider posets Pµ and Pν . They consist of the sets ↑p ∩ µ(X) and

↑p ∩ ν(X) (p ∈ P ), respectively and they are order isomorphic with the lattices µP

of cuts of µ and νP of cuts of ν (by Proposition 6). By the assumption, µP = νP ,
therefore, Pµ is isomorphic with the Pν . If µp = νq, then ↑p∩µ(X) 7→↑q∩µ(X) is the
required isomorphism by the proof of Proposition 6. Now, we have to prove that the
isomorphism is indeed the F from definition (*). By Proposition 5, families of cuts
of lattice valued fuzzy sets µDM(P ) and νDM(P ) are the same. By Theorem 1 from
[15], mapping F (↑p∩ µ(X)) :=↑

∧

DM(P ){ν(x) |µ(x) > p} ∩ ν(X), p ∈ DM(P ) is an

isomorphism from the lattice DM(P )µ onto the lattice DM(P )ν . This mapping is
the extension of the mapping F from Pµ to Pν , since images of fuzzy sets in both
cases belong to P , and mapping is given by F (↑p ∩ µ(X)) =↑q ∩ ν(X), for q for
which µp = νq. The theorem is now proved by ↑

∧

DM(P ){ν(x) |µ(x) > p} ∩ ν(X) =

{ν(x) |µ(x) > p}ℓu ∩ ν(X). 2

In the case of fuzzy sets with finite number of values in the interval [0, 1], condition
(∗∗) from Theorem 2 is also sufficient in order that µ and ν are equivalent (see [8]),
i. e., that they have equal collections of cut sets. The counter-example for the general
case is given in Example 2.

Example 2. Let p be a positive real number less then 1, and X the set of numbers
from p to 1:

p ∈ R, 0 < p < 1, X = [p, 1].

Consider fuzzy sets µ, ν : X → [0, 1], defined as follows: for every x ∈ X ,

µ(x) :=

{

x, x > p
0, x = p,

ν(x) := x.

Now it is easy to check that the condition (∗∗) is fulfilled: for all x, y ∈ X ,

µ(x) 6 µ(y) if and only if ν(x) 6 ν(y).

However, µ and ν do not have equal collections of cut sets. Indeed, observe the p-cut
of µ (recall that p is the smallest real number in the set X):

µp = {x ∈ X |µ(x) > p} = (p, 1],

but there is no q ∈ [0, 1] such that νq = µp.
The reason for the difference of cuts is that µ and ν are not equivalent in the

sense of our definition. Indeed, we have

µ(X) = {0} ∪ (p, 1], ν(X) = [p, 1].
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Hence

F ([0, 1] ∩ µ(X)) = F ({0} ∪ (p, 1]) = [inf{ν(x) |µ(x) > 0}, 1] ∩ ν(X) = [p, 1],

and similarly

F ([p, 1] ∩ µ(X)) = F ((p, 1]) = [p, 1].

Therefore, F is not injective, hence it is not an isomorphism. 2

Our last example illustrates the definition and properties of equivalent fuzzy sets
whose co-domain is a poset which is not a lattice.

Example 3. Consider a three-element set X = {x, y, z} and a seven element poset
P given by its diagram in Figure 3.

c

c

c

c

p

r s

u

v

(P, 6)

q

t

c

c

c

Fig. 3.

Let µ, ν and ρ be fuzzy sets as functions from X to P , defined as follows:

µ =

(

x y z
q t s

)

, ν =

(

x y z
r t s

)

, ρ =

(

x y z
t s v

)

The sets of images for these fuzzy sets are isomorphic order subsets of P (Fig-
ure 4), i. e., each pair of these fulfils the condition (∗∗).

c

c

c

c

c

c

c

c

c

q

t

s

r

t

s

s

v

t

µ(X) ν(X) ρ(X)

Fig. 4.

Still, only fuzzy sets µ and ν are equivalent in the sense of our definition. It
means that posets Pµ and Pν are isomorphic, and consequently collections of cut
sets coincide (Figure 5).
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c

c

c

c

c

c

c

c

c

c

{q, t} {q, s}

{x, y} {x, z}

{x}
{z}

∅

{q}
{s}

∅

µP = νP

Pµ

c

c

c

c

c

{r, t} {r, s}

{r}
{s}

∅
Pν

Fig. 5.

Fuzzy set ρ is not equivalent with the previous two, since its poset Pρ is not
isomorphic with the above ones; hence also its poset of cut set does not coincide
with theirs (Figure 6).

c

c

c

c

{x}

{y, z}

{y}

∅ρP

c

c

c

c

{t}

{s, v}

{s}

∅Pρ

Fig. 6.

4. CUTS OF LR FUZZY QUANTITIES

In this part the results of the previous sections are applied to a special type of fuzzy
sets – LR fuzzy quantities.

We consider fuzzy quantities (fuzzy real numbers) as mappings µ : R → [0, 1],
from set of reals to [0,1], such that there is exactly one a ∈ R, such that µ(a) = 1
and all the cut sets are intervals.

LR-representation of a fuzzy number µ : R → [0, 1] (where µ(a) = 1 for a ∈ R)
is an ordered pair of functions (µL, µR), where µL is a monotonously nondecreasing
function from (−∞, a) to [0,1] and µR is a monotonously nonincreasing function
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from (a,∞) to [0,1]. We consider functions µL and µR as fuzzy sets on sets (−∞, a)
and (a,∞), respectively.

Obviously, Theorem 3 is true for the case of fuzzy quantities and it can be easily
re-formulated in this setting.

However, one can raise a question whether it is possible to simplify conditions
from Theorem 3 and re-formulate the conditions using the fuzzy sets µL and µR

instead of µ. The following proposition is easy to verify:

Proposition 7. Let µ and ν be two fuzzy real numbers in LR representation. If
µ and ν are equivalent, then µ(a) = 1 if and only if ν(a) = 1 and the related fuzzy
sets µL and νL and µR and νR are (in pairs) equivalent.

The converse of this theorem is not true, which is illustrated in the following
example.

Example 4. Let µ and ν be fuzzy numbers, defined by:

µ(x) :=























0, x ≤ 0
0.5x, x ∈ (0, 2)
1, x = 2
−0.5x + 2, x ∈ (2, 4)
0, x ≥ 4,

ν(x) :=































0, x ≤ 0
x, x ∈ (0, 0.5)
1
3x + 1

3 , x ∈ (0.5, 2)
1, x = 2
−0.5x + 2, x ∈ (2, 4)
0, x ≥ 4.

Condition µ(a) = 1 if and only if ν(a) = 1 for all a ∈ R is satisfied.
Moreover, fuzzy set µL is equivalent with νL and fuzzy set µR is equivalent with

νR.
However, the conditions of Theorem 3 are not satisfied and fuzzy sets µ and ν

are not equivalent.

5. CONCLUSION

The above results completely characterize fuzzy sets according to the equality of
collections of cuts. As it is pointed out, this characterization is essentially set and
order theoretic. Therefore it can be used to classify e. g., all fuzzy algebraic and
ordered structures, fuzzy topologies, fuzzy relations, graphs etc.

According to some general approach to cut sets (see e. g., Liu and Luo [6]), some
further investigation could lead to analogue result concerning different generaliza-
tions of cut sets, or to some classification of cutworthy properties of fuzzy systems.
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