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A NOTE ON A CLASS OF EQUILIBRIUM PROBLEMS

WITH EQUILIBRIUM CONSTRAINTS1

Jiř́ı V. Outrata

This paper is dedicated to Prof. Dr. Dr.h.c. Frantǐsek Nožička on the occasion

of his 85th birthday.

The paper concerns a two-level hierarchical game, where the players on each level behave
noncooperatively. In this way one can model e. g. an oligopolistic market with several large
and several small firms. We derive two types of necessary conditions for a solution of this
game and discuss briefly the possibilities of its computation.

Keywords: hierarchical game, Nash equilibrium, stationarity conditions

AMS Subject Classification: 49J40, 49J52, 90C

1. INTRODUCTION

The behaviour of firms on an oligopolistic market is usually modeled via the Cournot–
Nash equilibrium concept ([13, 18]). In fact, it is the classical Nash equilibrium,
where each player (firm) maximizes its profit subject to production constraints. As-
suming that one from the firms has a temporal advantage over the others, this firm
can increase its profit by replacing a Cournot–Nash strategy by a Stackelberg strat-
egy ([6, 17, 18]). This firm (called Leader) computes its new strategy under the
assumption that the remaining firms (Followers) will share the rest of the market
again in the noncooperative way. One obtains a bilevel structure with a Cournot–
Nash equilibrium (parametrized by the Leader’s strategy) on the lower level. To
compute the Leader’s strategy, one has thus to solve a so-called mathematical pro-
gram with equilibrium constraints (MPEC) ([8]). It might happen, however, that the
standard Cournot–Nash strategy is simultaneously deserted by two or more firms.
In such a case each of them has to make some assumptions not only about the be-
haviour of the Followers, but also about the behaviour of the remaining Leaders.
Concerning this behaviour, two “extreme” situations can be distinguished:

(i) All Leaders cooperate;

1This research was supported by Grant A 1075005 of the Grant Agency of the Czech Academy
of Sciences.
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(ii) The Leaders act noncooperatively, i. e. their strategies belong to the Cournot–
Nash equilibrium on the upper level.

In the former case one has to do with a special multiobjective MPEC. Concerning
necessary optimality conditions, this case has been carefully investigated in [11, 12],
using the tools of the generalized differential calculus of B. Mordukhovich. The
latter case arises in [7], where the authors model deregulated electricity markets
under an independent system operator regime. One obtains a rather complex equi-
librium problem generated by a number of coupled MPECs. In both cases one can
speak, in accordance with [20], about equilibrium problems with equilibrium con-
straints (EPECs). This terminology could also be used in other situations where,
for example, the Leaders build some coalitions.

The aim of this note is to investigate the situation (ii), also using the above
mentioned generalized differential calculus. The organization is as follows:

In the next section we give a rigorous definition of a noncooperative solution to
EPEC. Thereby our model is not necessarily associated with an oligopolistic mar-
ket; we will consider a general game-theoretical framework. We will also pay a small
attention to the existence of such solutions, which seems to be a very difficult ques-
tion. Section 3 is then devoted to necessary conditions for a vector of strategies to
be a noncooperative solution to EPEC. We also apply the so-called implicit pro-
gramming approach ([18]) in this context, which leads to another type of necessary
conditions. At the end we discuss briefly two possible approaches to the computation
of a noncooperative solution.

Our notation is basically standard. For a multifunction Q[Rn Ã Rm], Gph Q :=
{(x, y) ∈ Rn × Rm | y ∈ Q(x)}. If D is a cone with vertex at the origin, then D0

is its negative polar cone. For a single-valued locally Lipschitz map f [Rn → Rm],
∂̄f(x) denotes the Clarke’s generalized Jacobian of f at x ([2, Def. 2.6.1]).

For the reader’s convenience, we close this section with three fundamental def-
initions from Mordukhovich’s generalized differential calculus used throughout the
paper.

Consider a set Π ⊂ Rp.

Definition 1.1. Let a ∈ clΠ. The nonempty cone

TΠ(a) := lim sup
t↓0

Π− a

t

is called the contingent cone to Π at a. The limiting normal cone to Π at a, denoted
NΠ(a), is defined by

NΠ(a) = lim sup
a′cl Π−→a

(TΠ(a′))0.

If Π is convex, NΠ(a) amounts to the standard normal cone to Π at a in the sense
of convex analysis. The cone NΠ(a) is generally nonconvex, but the multifunction
NΠ(·) is upper semicontinuous at each point of cl Π (with respect to cl Π), which is
essential in the generalized differential calculus of B. Mordukhovich ([9, 10]).
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Definition 1.2. Let ϕ[Rp → R] be an arbitrary extended real-valued function and
a ∈ dom ϕ. The set

∂ϕ(a) := {a∗ ∈ Rp | (a∗,−1) ∈ Nepi ϕ(a, ϕ(a))}

is called the limiting subdifferential of ϕ at a.

Definition 1.3. Let Φ[Rp Ã Rq] be an arbitrary multifunction and (a, b) ∈
clGphΦ. The multifunction D∗Φ(a, b)[Rq → Rp] defined by

D∗Φ(a, b)(b∗) := {a∗ ∈ Rp | (a∗,−b∗) ∈ NGph Φ(a, b)}, b∗ ∈ Rq,

is called the coderivative of Φ at (a, b).

2. PROBLEM FORMULATION

Consider a game of l players, where the ith player aims to minimize his objective
f i, i = 1, 2, . . . , l, by using a strategy xi from his set of admissible strategies U i ⊂ Rn.
Assume that the set {1, 2, . . . , l} splits into two subsets I1 and I2. If i ∈ I1, we will
call the ith player a Leader, otherwise a Follower. It is assumed that for each
vector of admissible Leaders’ strategies x̄i, i ∈ I1, the Followers will compute a
noncooperative (Nash) equilibrium in their own “reduced” game, where the Leaders’
strategies arise as parameters. To be able to describe mathematically this behaviour
in a simple form, we will assume that for all i ∈ I2 the objectives f i are continuously
differentiable and convex in xi for all feasible strategies of the remaining players
and that the sets U i are nonempty, closed and convex. Then one can describe the
Followers’ behaviour by generalized equations (GEs)

0 ∈ ∇xj f j(x̄1, x̄2, . . . , x̄l) + NUj (x̄j), j ∈ I2, (1)

where the Leaders’ strategies xi, i ∈ I1, arise only as parameters ([18]). From the
point of view of a Leader, relations (1) represent a constraint; the above game be-
longs thus to so-called equilibrium problems with equilibrium constraints (EPECs),
introduced in [20]. In what follows, we will consequently refer to the above described
game as to EPEC. As already mentioned in the Introduction, EPEC admits various
solution concepts, dependent on the behaviour of the Leaders.

For the sake of simplicity, let us reorganize the players in such a way that
I1 = {1, 2, . . . , k} and I2 = {k + 1, k + 2, . . . , l}. To unburden the notation,
let xL := (x1, x2, . . . , xk) ∈ Rnk, xF := (xk+1, xk+2, . . . , xl) ∈ Rn(l−k) and, for
i ∈ I1, x−i

L be the subvector of xL from which the strategy xi has been removed.
Thus, x−i

L ∈ Rn(k−1). Further, we denote by F (xL, xF ) the vector composed from
the partial gradients ∇xj f j(x1, x2, . . . , xl), j ∈ I2, and put Ω := ×j∈I2U

j . For
i ∈ I1, the notation f i(x−i

L , y, z) means the value of the objective of the ith player
at the point (xL, xF ) with xi = y and xF = z. Correspondingly, F (x−i

L , y, z) is
composed from the partial gradients of f j(x−i

L , y, z), j ∈ I2, with respect to the
appropriate components of z.
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Definition 2.1. ([20]) The vector of admissible strategies x̂ := (x̂L, x̂F ), is de-
clared a noncooperative solution to EPEC, provided for all i ∈ I1 the pair (x̂i, x̂F )
belongs to the set of (local) solutions to the MPEC

minimize f i(x̂−i
L , y, z)

subject to
0 ∈ F (x̂−i

L , y, z) + NΩ(z)

y ∈ U i

(2)

in variables y, z.

Each problem (2) is a standard MPEC so that the computation of a noncooper-
ative solution to EPEC amounts to solving of k coupled MPECs. Problems (2) are
generally nonconvex even if the Leaders’ objectives and sets of admissible strategies
satisfy the convexity assumptions, imposed on f i and U i for i ∈ I2. This prevents
to apply the existence theory of Nash ([14]). To grasp the existence question associ-
ated with a noncooperative solution to EPEC, consider the multifunctions P i which
assign to each admissible vector x−i

L the set of (local) solutions to (2) with x̂−i
L re-

placed by x−i
L . Evidently, Gph P i ⊂ X l

i=1U
i. Moreover, (x̂L, x̂F ) is a noncooperative

solution to EPEC iff

(x̂−i
L , x̂i, x̂F ) ∈ GphP i for all i ∈ I1.

To ensure the existence of a noncooperative solution to EPEC, we have thus to an-
alyze the structure of the maps P i. The local behaviour of these maps has been
studied in [21] in case of MPECs with equilibria governed by (generalized) com-
plementarity problems. A globalized version of [21, Theorem 11] together with the
Brouwer’s Fixed-Point Theorem create a basis for proving the existence of noncoop-
erative solutions to EPEC. This investigation goes, however, beyond the aims of this
note and so we turn our attention to conditions which must necessarily be fulfilled
by each noncooperative solution to EPEC.

3. NECESSARY CONDITIONS

Let us posit the following simplifying technical assumptions:

(A1) For i = 1, 2, . . . , k the objectives f i are continuously differentiable on an open
set containing X l

i=1U
i.

(A2) For j = k + 1, k + 2, . . . , l the partial gradients ∇xj f j(·) are continuously
differentiable on an open set containing X l

i=1U
i.

This implies in particular that the map

F (xL, xF ) =



∇xk+1fk+1(xL, xF )

...
∇xlf l(xL, xF )


 (1)
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possesses continuous partial derivatives with respect to xi, i ∈ I1, and xF , whenever
the pair (xL, xF ) is admissible. Observe that ∇xF

F (xL, xF ) amounts to the square
matrix




∇2
xk+1xk+1 fk+1(xL, xF ) . . . . . . . . . ∇2

xk+1xlf
k+1(xL, xF )

...
...

...
...

...
...

∇2
xlxk+1 f l(xL, xF ) . . . . . . . . . ∇2

xlxlf
l(xL, xF )




.

Theorem 3.1. Assume that x̂ = (x̂L, x̂F ) is a noncooperative solution to EPEC
and assumptions (A1),(A2) are fulfilled. Further suppose that for all i ∈ I1 the
qualification conditions

0 ∈ (∇xiF (x̂L, x̂F ))T v + NUi(x̂i)

0 ∈ (∇xF
F (x̂L, x̂F ))T v + D∗NΩ(x̂F ,−F (x̂L, x̂F ))(v)

}
⇒ v = 0 (2)

hold true.
Then for all i ∈ I1 there exist Karush–Kuhn–Tucker (KKT) vectors v̂i ∈ Rn(l−k)

such that

0 ∈ ∇xif i(x̂L, x̂F ) + (∇xiF (x̂L, x̂F ))T v̂i + NUi(x̂i)

0 ∈ ∇xF
f i(x̂F , x̂F ) + (∇xF

F (x̂L, x̂F ))T v̂i + D∗NΩ(x̂F ,−F (x̂L, x̂F ))(v̂i).
(3)

P r o o f . It suffices to apply [22, Thm. 3.2] to each MPEC (2) separately. Thereby
xi is the control, xF is the state variable and x−i

L is a parameter vector through which
these MPECs are coupled. Conditions (2) ensure the so-called calmness (pseudo-
upper Lipschitz continuity) of the multifunctions

p 7→
{

(y, z) ∈ U i × Rn(l−k) | p ∈ F (x̂−i
L , y, z) + NΩ(z)

}
, i ∈ I1 (4)

at (x̂i, x̂F ), which is the property needed for relations (3) to hold. ¤

It is easy to see that the multifunctions (4) possess the required calmness property,
provided F is affine and all sets U i are convex polyhedral, cf. [19]. In such a case
conditions (2) can be omitted.

In what follows, in accordance with the MPEC literature, the points (x̂L, x̂F )
satisfying conditions (3) will be termed M(ordukhovich)-stationary. The statement
of Theorem 3.1 can be applied only in the case, if we are able to compute the
coderivative of the normal cone mapping NΩ(·). Let (z̄, w̄) ∈ Gph NΩ and assume
that Ω is a convex polyhedron. Then by Definition 1.1 and due to the properties of
NΩ(·) one has

NGph NΩ(z̄, w̄) =
⋃

(z,w)∈O∩Gph NΩ

(TGph NΩ(z, w))0 (5)
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where O is a sufficiently small neighborhood of (z̄, w̄) ([3]). Formula (5) enables
among others to compute the required coderivative in the case, where U i, i ∈ I2, are
given by box constraints ([16]). If Ω is not a convex polyhedron, one has to apply
directly Definition 1.1, but this can be a difficult task.

The monograph [18] deals with MPECs in which the equilibrium constraint ex-
hibits some special properties. They enable to apply the so-called implicit program-
ming approach both to the derivation of optimality conditions as well as to the
numerical solution of the considered MPECs. Let us investigate the possibilities
of this approach in the context of EPECs. To this purpose, we denote by S the
multifunction which assigns an admissible vector xL the set of solutions xF to the
GE

0 ∈ F (xL, xF ) + NΩ(xF ). (6)

Moreover, for a given i ∈ I1 and a fixed admissible vector x̃−i
L , we define the multi-

function Sx̃−i
L

[U i Ã R(l−k)n] by

Sx̃−i
L

(xi) := S(x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃k).

By this definition, for all i ∈ I1 one has

Sx̃−i
L

(x̃i) = S(x̃L).

The essential assumption for the application of the implicit programming approach
now reads as follows:

(A3) For all i ∈ I1 and for all admissible vectors x̃−i
L the map Sx̃−i

L
is single-valued

and locally Lipschitz on an open set containing U i.

Under (A3) we can now rewrite the single MPECs (2) to the form

minimize Θx̂−i
L

(y)

subject to
y ∈ U i, i ∈ I1,

(7)

where
Θx̂−i

L
(y) := f i(x̂−i

L , y, Sx̂−i
L

(y)).

We face a new game only among the Leaders without any hierarchical structure. Its
local Nash equilibria (cf. [7]) amount to the Leaders’ components of noncooperative
solutions to EPEC, which facilitates the formulation of corresponding necessary
conditions.

Theorem 3.2. Additionally to the assumptions of Theorem 3.1 suppose that as-
sumption (A3) is fulfilled. Then x̂F = S(x̂L) and

0 ∈ ∇xif i(x̂L, x̂F ) + D∗Sx̂−i
L

(x̂i)(∇xF
f i(x̂L, x̂F )) + NUi(x̂i), i ∈ I1. (8)
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P r o o f . By virtue of the assumptions, the functions Θx̂−i
L

are locally Lipschitz
on the respective open sets containing U i. It suffices thus to apply the optimality
conditions in [9, Thm. 7.1] combined with the chain rule in [10, Cor. 5.3] to problems
(7). ¤

The coderivatives of the maps Sx̂−i
L

are generally not easy to compute. If, however,
Ω is given eg by means of equalities and inequalities, then one can replace the GE
(6) by a complementarity problem and invoke the implicit (multi)function theorem
[10, Thm. 6.10] along with the results from [15].

Due to the relation between coderivatives and Clarke’s generalized Jacobians,
relations (8) imply that

0 ∈ ∇xif i(x̂L, x̂F ) + (∂̄Sx̂−i
L

(x̂i))T∇xF
f i(x̂L, x̂F ) + NUi(x̂i), i ∈ I1. (9)

In this way we obtain another, less stringent necessary conditions for a noncooper-
ative solution to EPEC. Following the MPEC terminology, the points satisfying (9)
will be called C(larke)-stationary.

Assumptions (A3) can be ensured via the following, more easily verifiable require-
ment, cf. [18]:

(A3)’ S is single-valued and locally Lipschitz on an open set containing ω :=×i∈I1U
i.

Under (A3)’ we can now state an existence result at least for Clarke stationary
points.

Theorem 3.3. Let assumptions (A1), (A2), (A3)’ be fulfilled and suppose that for
i ∈ I1

(i) The sets U i are convex and compact;

(ii) the multifunctions Γi : xL 7→ ∂̄Sx−i
L

(xi) are upper semicontinuous on ω.

Then the considered EPEC possesses a Clarke stationary point.

P r o o f . We have to show that the GE

0 ∈ C(xL) + Nω(xL) (10)

with

C(xL) =



∇x1f1(xL, S(xL))

...
∇xkfk(xL, S(xL))


 +




(∂̄Sx−1
L

(x1))T

...
(∂̄Sx−k

L
(xk))T


∇xF

f(xL, S(xL))

satisfies the assumptions of [1, Thm. 9.9]. Since C is apparently nonempty-, convex-
and compact-valued, it suffices to add assumptions (i),(ii) and we are done. ¤
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If the multifunctions Γi are not upper semicontinuous on ω, then one can modify
the definition of the generalized Jacobian following the idea from [2, Section 2.8]. In
case of the map Sx̂−i

L
(·) at the point x̂i we arrive at the notion

∂̃Sx̂−i
L

(x̂i)

:=
{

A ∈ L[Rn,R(l−k)n] |A = lim
j→∞

Aj ,where Aj ∈ ∂̄S(x−i
L )j

(xi
j), (xL)j

ω→ x̂L

}
.

If we now define Γi by means of ∂̃Sx−i
L

(xi) (instead of ∂̄Sx−i
L

(xi)), assumption (ii)
of Theorem 3.3 is fulfilled. Nevertheless, in this way we prove only the existence of
stationary points in a weaker sense (with respect to Clarke).

Concerning the computation of noncooperative solutions to EPEC, the procedure
can be organized in two steps:

(i) Computation of a (Mordukhovich or Clarke) stationary point;

(ii) Verification of the minimizing properties required in Definition 2.1.

We finish the paper with a few concluding remarks regarding mainly the first
step. Unfortunately, the conditions of Theorem 3.1 do not seem to be suitable for
construction of a numerical method to the computation of stationary points. So, if
the implicit programming approach cannot be applied, then it is probably better to
follow [7] and look at problems (2) as standard nonlinear programs (the equilibrium
constraint is then replaced by a complementarity problem). In this way one arrives
at l coupled KKT systems, solvable possibly by existing solvers. The noncooperative
solution to EPEC, however, need not satisfy these coupled KKT systems (since the
equilibrium constraint violates standard constraint qualifications), and so the whole
procedure may fail. Nevertheless, if we obtain a candidate for stationarity in this
way, the conditions of Theorem 3.1 can be used as a stationarity test.

Under assumptions of Theorem 3.3 one can invoke an idea from [5] and rewrite
the GE (10) to the form of a fixed-point problem. Indeed, the GE (10) amounts
then to the relations

x̂L = Projω(x̂L − ŷ), ŷ ∈ C(x̂L).

In another words. x̂L is a fixed point of the multifunction Ψ := Projω◦(Id−C). Since
Projω is continuous and C is upper semicontinuous with convex and compact values,
the multifunction Ψ is also upper semicontinuous and convex- and compact-valued.
Consequently, there is a number of available numerical methods which compute the
fixed points of Ψ, cf. [4] and the references therein.

Concerning the step (ii), it requires generally rather advanced tools from the 2nd-
order nonsmooth analysis. The situation becomes, however, substantially simpler
provided the assumptions of Theorem 3.3 are fulfilled, Ω is given by inequalities, and
the strict complementarity holds for the GE (6) at (x̂L, x̂F ). In such a case all maps
Sx̂−i

L
are differentiable at x̂i, which facilitates the analysis of programs (7). Another

simplifying assumptions are discussed in [7].

(Received September 29, 2003.)
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