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Ivan Kramosil, Friedrich Liese, Jean-Jacques
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— Printed by PV Press, Pod vrstevnićı 5, 140 00 Prague 4. — Orders and subscriptions
should be placed with: MYRIS TRADE Ltd., P.O.Box 2, V Št́ıhlách 1311, 142 01 Prague 4,
Czech Republic, e-mail: myris@myris.cz. — Sole agent for all “western” countries: Kubon
& Sagner, P.O. Box 34 01 08, D-8 000 München 34, F.R.G.

Published in August 2004.

c© Institute of Information Theory and Automation of the Academy of Sciences of the
Czech Republic, Prague 2004.

http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.kybernetika.cz/board.html
http://www.kybernetika.cz/contact.html
http://www.kybernetika.cz
http://www.kybernetika.cz/content/404.html


KY BERNET I K A — V OL UME 4 0 ( 2 0 0 4 ) , N UM B ER 4 , PAGE S 3 9 7 – 4 1 9

STATES ON PSEUDO–EFFECT ALGEBRAS

WITH GENERAL COMPARABILITY1

Anatolij Dvurečenskij

Pseudo-effect algebras are partial algebras (E; +, 0, 1) with a partially defined
addition + which is not necessarily commutative and therefore with two comple-
ments, left and right ones. General comparability allows to compare elements
of E in some intervals with Boolean ends. Such an algebra is always a pseudo
MV-algebra. We show that it admits a state, and we describe the state space
from the topological point of view. We prove that every pseudo-effect algebra
is in fact a pseudo MV-algebra which is a subdirect product of linearly ordered
pseudo-MV-algebras. In addition, we present many illustrating examples.

Keywords: Pseudo-effect algebra, pseudo MV-algebra, general comparability,
state, ideal, representable pseudo MV-algebra

AMS Subject Classification: 6D35, 03G12, 03B50

1. INTRODUCTION

Recently there appeared a whole hierarchy of non-commutative gener-
alizations of MV-algebras: pseudo MV-algebras [17, 23] (as generalized
MV-algebras) (they are always intervals in unital `-groups, [8]), pseudo
BL-algebras [5]. These algebras are algebraic non-commutative gener-
alizations of non-commutative reasoning. Non-commutative reasoning
becomes now a new tool of the logical investigation, see e. g. [20]. Also
in the every-day life and in many psychological processes we can find
non-commutative reasoning. On the other hand, nowadays there is even
a programming language [1] based on a non-commutative logic.

Recently in [14] and [15], we have introduced pseudo-effect algebras
which generalize both pseudo MV-algebras and quantum structures like
effect algebras (for more details on quantum structures see [13]). In
[14, 15], we have proved that every pseudo-effect algebra satisfying a
special kind of the Riesz decomposition property is always an interval in
a unital po-group (G, u) which is not necessary Abelian.

1The paper has been supported by the grant 2/3163/23 SAV, Bratislava, Slovakia.
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States on MV-algebras were introduced in [3] and [22] with the intent
of capturing the notion of “average degree of truth” of a proposition. In
[7], we have showed that in contrast to MV-algebras, there are pseudo
MV-algebras which have no state, an analogue of a probability measure.
Therefore, it is of great interest to study situations when pseudo-effect
algebras admit a state, and such a tool in the present paper is the study
of general comparability.

Central elements of a pseudo-effect algebra E were introduced in [10]
as elements e ∈ E such that E ∼= [0, e] × [0, e′]. Such elements form always
a Boolean algebra called a center. General comparability allows roughly
speaking to compare two elements x, y ∈ E in the intervals [0, e] and [0, e′].
It implies that this pseudo-effect algebra is automatically pseudo MV-
algebra.

The paper is organized as follows. In Section 2, we introduce ele-
ments of pseudo-effect algebras and pseudo MV-algebras. In Section 3,
we present ideals, the hull-kernel topology of the system of maximal ide-
als which are also normal. In Section 4, we show that every pseudo-effect
algebra satisfying general comparability has at least one state, and more-
over, every extremal state on the center can be extended to a unique
state on E which is also extremal. In addition, the weak topology of ex-
tremal states is homeomorphic with the topology of the center, i. e., the
space is a compact, Hausdorff and totally disconnected non-void set.

In Section 5, we show that every maximal ideal of a pseudo-effect alge-
bra satisfying general comparability is always normal. This is interesting
meanwhile in every MV-algebra each maximal ideal is normal, there are
MV-algebras where general comparability fail. We study here some topo-
logical properties of the weak topology of states, and we describe the
faces. In addition, we extend the results also for pseudo MV-algebras
which not necessarily satisfy general comparability, but every maximal
ideal from the center generates a prime ideal in the pseudo MV-algebra.

In Section 6, we show that every pseudo-effect algebra satisfying gen-
eral comparability is a pseudo MV-algebra which is a subdirect product
of linearly ordered pseudo-effect algebras.

In Section 7, we show that any pseudo-effect algebra satisfying general
comparability has a functional representation by continuous functions
defined on a totally disconnected, compact, Hausdorff topological space.

Finally, in Section 8, we present examples of MV-algebras which sat-
isfy general comparability, or do not satisfy. We study examples of MV-
algebras of continuous functions on compact, Hausdorff, totally discon-
nected topological spaces.

2. PSEUDO–EFFECT ALGEBRAS AND PSEUDO MV–ALGEBRAS

In the present Section, we give elements of pseudo-effect algebras together
with their po-group representation.
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According to [14, 15], a partial algebra (E; +, 0, 1), where + is a partial
binary operation and 0 and 1 are constants, is called a pseudo-effect algebra
if, for all a, b, c ∈ E, the following holds

(i) a+ b and (a+ b) + c exist if, and only if, b+ c and a+ (b+ c) exist, and
in this case (a+ b) + c = a+ (b+ c);

(ii) there is exactly one d ∈ E and exactly one e ∈ E such that a + d =
e+ a = 1;

(iii) if a+b exists, there are elements d, e ∈ E such that a+b = d+a = b+e;

(iv) if 1 + a or a+ 1 exists, then a = 0.

If we define a ≤ b if, and only if, there exists an element c ∈ E such
that a + c = b, then ≤ is a partial ordering on E such that 0 ≤ a ≤ 1 for
any a ∈ E. It is possible to show that a ≤ b if, and only if, b = a+ c = d+ a
for some c, d ∈ E. We write c = a / b and d = b \ a.

Let E = (E; +, 0, 1) be a pseudo-effect algebra. We define x− := 1 \ x
and x∼ := x / 1 for any x ∈ E. For given an element e ∈ E, we denote
by [0, e] := {x ∈ E : 0 ≤ x ≤ e}. Then [0, e] endowed with + restricted to
[0, e] × [0, e] is a pseudo-effect algebra [0, e] = ([0, e]; +, 0, e). Then, for any
x ∈ [0, e], we have x−e := e \ x and x∼e := x / e and e = x−e +x = x+x∼e . For
basic properties of pseudo-effect algebras see [14] and [15].

For example, if (G, u) is a unital (not necessary Abelian) po-group with
strong unit u, and

Γ(G, u) := [0, u] = {g ∈ G : 0 ≤ g ≤ u},

then (Γ(G, u);+, 0, u) is a pseudo-effect algebra if we restrict the group
addition + to Γ(G, u). In [14, 15], there was proved that the converse
statement, namely if E satisfies a special kind of the Riesz decomposition
property, then E = Γ(G, u), see Theorem 2.1.

We recall that a pseudo MV-algebra is an algebra (M ;⊕,− ,∼ , 0, 1) of type
(2, 1, 1, 0, 0) such that the following axioms hold for all x, y, z ∈M with an
additional binary operation ¯ defined via

y ¯ x = (x− ⊕ y−)∼

(A1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;
(A2) x⊕ 0 = 0⊕ x = x;
(A3) x⊕ 1 = 1⊕ x = 1;
(A4) 1∼ = 0; 1− = 0;
(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;
(A6) x⊕ x∼ ¯ y = y ⊕ y∼ ¯ x = x¯ y− ⊕ y = y ¯ x− ⊕ x;
(A7) x¯ (x− ⊕ y) = (x⊕ y∼)¯ y;
(A8) (x−)∼ = x.
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In [7] it was shown that every pseudo MV-algebra is isomorphic to
Γ(G, u), where (G, u) is a unital `-group with strong unit u, where a⊕ b :=
(a+ b) ∧ u, a¯ b = (a− u+ b) ∨ 0 and a− = u− a and a∼ = −a+ u.

If M is a pseudo MV-algebra, then (M ; +, 0, 1) is a pseudo-effect algebra,
where the partial operation a + b is defined if, and only if, a ≤ b−, and
then a+ b := a⊕ b.

To present the basic representations of pseudo-effect algebras, accord-
ing to [14], we introduce for pseudo-effect algebras the following forms of
the Riesz decomposition properties:

(a) For a, b ∈ E, we write a com b to mean that for all a1 ≤ a and b1 ≤ b,
a1 and b1 commute.

(b) We say that E fulfils the Riesz interpolation property, (RIP) for short,
if for any a1, a2, b1, b2 ∈ E such that a1, a2 ≤ b1, b2 there is a c ∈ E such
that a1, a2 ≤ c ≤ b1, b2.

(c) We say that E fulfils the weak Riesz decomposition property, (RDP0) for
short, if for any a, b1, b2 ∈ E such that a ≤ b1 + b2 there are d1, d2 ∈ E
such that d1 ≤ b1, d2 ≤ b2 and a = d1 + d2.

(d) We say that E fulfils the Riesz decomposition property, (RDP) for short,
if for any a1, a2, b1, b2 ∈ E such that a1+a2 = b1+b2 there are d1, d2, d3, d4 ∈
E such that d1 + d2 = a1, d3 + d4 = a2, d1 + d3 = b1, d2 + d4 = b2.

(e) We say that E fulfils the commutational Riesz decomposition property,
(RDP1) for short, if for any a1, a2, b1, b2 ∈ E such that a1 + a2 = b1 + b2
there are d1, d2, d3, d4 ∈ E such that (i) d1 + d2 = a1, d3 + d4 = a2,
d1 + d3 = b1, d2 + d4 = b2, and (ii) d2 com d3.

(f) We say that E fulfils the strong Riesz decomposition property, (RDP2)
for short, if for any a1, a2, b1, b2 ∈ E such that a1 + a2 = b1 + b2 there
are d1, d2, d3, d4 ∈ E such that (i) d1 +d2 = a1, d3 +d4 = a2, d1 +d3 = b1,
d2 + d4 = b2, and (ii) d2 ∧ d3 = 0.

If G is a po-group, we say that one of the above properties hold also
for G if the corresponding property holds for positive elements of G.

The following representation holds, for details see [9, 14].

Theorem 2.1. Let E be a pseudo-effect algebra satisfying (RDP1), then
there is a unique (up to isomorphism) unital po-group (G, u) satisfying
(RDP1) such that E is isomorphic with Γ(G, u). Moreover, if φ∗ is an
isomorphism of the pseudo-effect algebra E onto Γ(G, u) and if φ : E →
H is a mapping preserving +, and H a group, then there is a group
homomorphism γ : G→ H such that φ = φ∗ ◦ γ. This γ is unique.

It is possible to show that a pseudo-effect algebra is a pseudo MV-
algebra iff E satisfies (RDP2), or equivalently, iff E satisfies (RDP1) and
E is a lattice, [9, 14]. In such a case, E ∼= Γ(G, u), where (G, u) is a unital
`-group.
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3. STATES AND IDEALS

In this Section, we present states, extremal states, ideals and normal
ideal of pseudo-effect algebras.

A state on E is any mapping s : E → [0, 1] such that s(1) = 1 and
s(a + b) = s(a) + s(b) whenever a + b is defined in E. A state s on E is
said to be extremal if the equality s = αs1 + (1 − α)s2 for some 0 < α < 1,
where s1 and s2 are states on E, implies s = s1 = s2. We denote by S(E)
and ExtS(E) the set of all states and the set of all extremal states on E,
respectively. We recall that it can happen that S(E) is empty, see [7].

A non-empty subset I of a pseudo-effect algebra E is said to be an ideal
of E if (i) x+ y ∈ I whenever x, y ∈ I and if x+ y is defined in E, and (ii)
if x ≤ y for x ∈ E and y ∈ I, then x ∈ I. Then E as well as {0} are ideals
of E.

We say that a net of states, {sα}, converges weakly to a state s if sα(a) →
s(a) for any a ∈ E.

An ideal I of E is (i) normal if a+ I = I + a for every a ∈ E,2 (ii) maximal
if I is a proper subset of E and it is not included in any proper ideal of E
as a proper subset, and (iii) prime if I0(a) ∩ I0(b) ⊆ I implies a ∈ I or b ∈ I
(where I0(a), I0(b) are ideals of E generated by the elements a and b. In
[[11], there is proved that a normal ideal I of a pseudo-effect algebra with
(RDP) is prime iff E/I is an antilattice3. If E is a pseudo MV-algebra,
then I is prime iff a ∧ b ∈ I implies a ∈ I or b ∈ I.

If s is a state on E, then the kernel of the state s,

Ker(s) := {a ∈ E : s(a) = 0}

is a normal ideal on E.

The following criteria for extremal states were proved in [7].

Theorem 3.1. Let s be a state on a pseudo MV-algebra M . Then the
following statements are equivalent:

(i) s is extremal.

(ii) s(x ∧ y) = min{s(x), s(y)} for all x, y ∈M.

(iii) s is a state-morphism.4

(iv) Ker(s) is a maximal ideal of M .

2If A is a non-empty subset of E, then a + A := {a + x : x ∈ A and a + x is defined in E}. In a
similar way we define A + a.

3 We recall that a poset (E;≤) is an antilattice if only comparable elements of E have a supremum
or an infimum.

4We say that a state s on a pseudo MV-algebra M is a state-morphism if s(a⊕ b) = min{s(a)+
s(b), 1}, a, b ∈ M.
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Moreover, every maximal ideal of M which is normal is the kernel of
some extremal state. In particular, if E is a Boolean algebra, then from
(ii) we see that only two-valued states on E are extremal.

Let NM(M) be the set of all normal maximal ideals of a pseudo MV-
algebra M . We recall that according to [9], NM(M) can be empty.

For every a ∈M , we put

MN (a) := {I ∈ NM(M) : a /∈ I}.

Then MN (0) = ∅, MN (a) ⊆MN (b) whenever a ≤ b, MN (a∧b) = MN (a)∩MN (b),
a, b ∈ M, MN (a ∨ b) = MN (a) ∪MN (b), a, b ∈ M, and {MN (a) : a ∈ M} is the
base of the so-called hull-kernel topology TNM on NM(M).

It is possible to show, [12], that if M is a pseudo MV-algebra. The
hull-kernel topology defines a Hausdorff topology such that the closed
subspaces of NM(M) are exactly of the form

C = C(J) := {I ∈ NM(M) : I ⊇ J}, (3.1)

where J is an ideal of M . Similarly, every open set O is of the form

O = O(J) := {I ∈ NM(M) : I 6⊇ J}. (3.2)

If each value of 1 is normal-valued, then TNM is compact.
Moreover, the mapping θ : ExtS(M) → NM(M) defined by

θ(s) := Ker(s), s ∈ ExtS(M),

is a homeomorphism, [12, Thm 3.3].
An ideal I of a pseudo-effect algebra E is said to be the Riesz ideal if,

for x ∈ I, a, b ∈ E and x ≤ a + b, there exist a1, b1 ∈ I such that x = a1 + b1
and a1 ≤ a and b1 ≤ b.

For example, if E is a pseudo-effect algebra with (RDP), then any ideal
of E is Riesz.

Let P be an ideal of a pseudo-effect algebra E. For a, b ∈ E, we write
a ∼P b iff there are two elements e, f ∈ P such that a \ e = b \ f. We recall
that a ∼P b iff e′ / a = b \ f for some e′, f ∈ P iff e′ / a = f ′ / b for some
e′, f ′ ∈ P.

Let P be a normal Riesz ideal of a pseudo-effect algebra E. Then ∼P is
an equivalence on E such that (E/P ; +, [0]P , [1]P ) is a pseudo-effect algebra,
where [a]P := {b ∈ E : b ∼P a}, E/P := {[a]P : a ∈ E}, and [a]P + [b]P = [c]P if,
and only if, there are a1 ∈ [a]P , b1 ∈ [b]P and c1 ∈ [c]P such that a1 + b1 = c1.

4. CENTRAL ELEMENTS AND GENERAL COMPARABILITY

In this central Section, we show that every pseudo-effect algebra satisfy-
ing general comparability has at least one state, and we show that every
extremal state on the center can be extended to a unique state on E
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which is also extremal. In addition, the topology of extremal states on
E makes the set a compact, Hausdorff, totally disconnected nonempty
topological space. We recall that it can happen, that there is a pseudo
MV-algebra without any state.

An element e of a pseudo-effect algebra E is said to be central (or
Boolean) if there exists an isomorphism

fe : E → [0, e]× [0, e∼] (4.1)

such that fe(e) = (e, 0) and if fe(x) = (x1, x2), then x = x1 +x2 for any x ∈ E.
We denote by C(E) the set of all central elements of E, and C(E) is said

to be the center of E. We recall that 0, 1 ∈ C(E), in addition, see [10], (i)
if e ∈ C(E), then e∼ = e−, we denote e′ = e∼; (ii) C(E) = (C(E);∨,∧,′ , 0, 1)
is a Boolean algebra; (iii) if x ∈ E and e ∈ C(E), then x ∧ e ∈ E; (iv) if
{ei}n

i=1 is a finite system of central elements of E such that ei ∧ ej = 0 for
i 6= j and e1 ∨ · · · ∨ en = 1, then for any x ∈ E, x = x ∧ e1 + · · · + x ∧ en;
(v) if E satisfies (RDP), then e ∈ C(E) iff e ∧ e∼ = 0, or equivalently, iff
e ∧ e− = 0, and (vi) the mappings pe : E → [0, e] and pe′ : E → [0, e′] defined
by pe(x) = x ∧ e, and pe′(x) = x ∧ e′, x ∈ E, are surjective homomorphisms
such that fe(x) = [pe(x), pe′(x)] for any x ∈ E.

We say that a pseudo-effect algebra E satisfies general comparability if,
given x, y ∈ E, there is a central element e ∈ E such that pe(x) ≤ pe(y)
and pe′(x) ≥ pe′(y). This means that the coordinates of the elements x =
(pe(x), pe′(x)) and y = (pe(y), pe′(y)) can be compared in [0, e] and [0, e′],
respectively.

For example, (i) every linearly ordered pseudo-effect algebra trivially
satisfies general comparability; (ii) so does any Cartesian product of lin-
early ordered pseudo-effect algebras, (iii) every σ-complete pseudo MV-
algebra satisfies general comparability [10, Prop 4.1] (Example 8.7 below
gives an MV-algebra satisfying general comparability and that is not σ-
complete), and (iv) if H is a normal ideal of E and if E satisfies general
comparability, so does satisfy E/H.

On the other hand, let G = R2 with the strict ordering and u = (1, 1),
then E = Γ(G, u) is an effect algebra with (RDP) which does not satisfy
general comparability, because the only central elements of E are 0, 1.

We recall that a topological space X is said to be (i) connected if it
cannot be expressed as a union of two nonempty clopen subsets, and (ii)
totally disconnected if there is a base consisting of clopen sets. For example,
if X is finite, or if X is a Cantor set in [0, 1], then X is totally disconnected.

Let now Ω be a compact Hausdorff topological space and let C(Ω) be the
set of all continuous real-valued functions on Ω. Then C(Ω) is an Abelian
`-group with strong unit 1Ω under the pointwise ordering of functions.
Define the MV-algebra M(Ω) = Γ(C(Ω), 1Ω). Then C(M(Ω)) = {χA : A is
clopen in Ω}. The system of all clopen subsets of Ω forms a Boolean
algebra of a Stone space iff the topology of Ω is totally disconnected.
Therefore, M(Ω) can satisfy general comparability only if Ω is totally
disconnected.
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For example, if Ω = [0, 1] with the usual topology, then M([0, 1]) is an
MV-algebra which does not satisfy general comparability, while C(M([0, 1])) =
{0Ω, 1Ω}. The same is true for any connected compact Hausdorff space X.

Using the direct product of such algebras, we can obtain infinitely
many examples of MV-algebras where general comparability fails.

In [10, Thm 4.2], there was proved that every pseudo-effect algebra
satisfying general comparability is practically a pseudo MV-algebra:

Theorem 4.1. Let E be a pseudo-effect algebra satisfying general com-
parability. Then E is a lattice, and E can be organized into a pseudo
MV-algebra such that the partial addition derived from E as the pseudo
MV-algebra coincides with the original + taken in the pseudo-effect al-
gebra.

Proposition 4.2. Let e be a central element of a pseudo-effect algebra E
and let s be a state on E.

(a) If s(e) = 0, then s ◦ pe = 0 and s = s ◦ pe′ .

(b) If s(e) = 1, then s = s ◦ pe and s ◦ pe′ = 0.

(c) If s(e) = α, where 0 < α < 1, then the functions s1 = α−1s ◦ pe and
s2 = (1−α)−1s◦pe′ are distinct states on E such that s = αs1+(1−α)s2.

(d) If s is extremal, then s(e) ∈ {0, 1}.

P r o o f . (a) Since pe(x) = x ∧ e, and pe′(x) = x ∧ e′, x ∈ E, we have
s(x) = s(x ∧ e) + s(x ∧ e′) = s(x ∧ e′) = s ◦ pe′(x) and s ◦ pe(x) = 0.

(b) It is similar as (a).
(c) s1 and s2 are states while pe and pe′ are homomorphisms of E onto

[0, e] and [0, e′], respectively. Then s = αs1 + (1 − α)s2, and since s1(e) =
α−1s(e) = 1 and s2(e) = 0, we have that s1 6= s2.

(d) This follows immediately from (c). 2

Proposition 4.3. Let s be a state on a pseudo-effect algebra E and let
K = C(E) ∩Ker(s).

(i) If s is extremal state, then K is a maximal ideal of C(E).

(ii) If E has the property whenever t ∈ S(E) such that Ker(t) ⊇ K implies
t = s, then s is extremal.

P r o o f . (i) K is an ideal of C(E). For any e ∈ C(E), (d) of Proposition
4.2 shows that s(e) ∈ {0, 1}. Hence, either e ∈ K or e′ ∈ K which yields K
is a maximal ideal of C(E).
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(ii) Let s = αs1 + (1 − α)s2 for some 0 < α < 1. Then Ker(s) ⊆ Ker(si),
i = 1, 2, which implies K ⊆ Ker(si), i = 1, 2, i. e., s = s1 = s2. 2

It is known that every extremal state on a Boolean algebra is two-
valued. In what follows, we show every two-valued state on C(E) can
be uniquely extended to an extremal state on a pseudo-effect algebra E
provided E satisfies general comparability. In particular, every pseudo
MV-algebra satisfying general comparability has at least one state. We
recall that there are examples of pseudo MV-algebras admitting no state
[7].

Theorem 4.4. Let E be a pseudo-effect algebra satisfying general com-
parability, and let K be a maximal ideal of C(E). Then there is a unique
state s on E such that C(E) ∩Ker(s) = K. This state is extremal.

P r o o f . Let K be a maximal ideal of C(E). We denote by I(K) the
ideal of E generated by K. According to [11, Prop 3.1],

I(K) = {x ∈ E : x = x1 + · · ·+ xn, xi ≤ ei ∈ K, 1 ≤ i ≤ n, n ≥ 1}.
It is possible to show that

I(K) = {x ∈ E : x = x1 + · · ·+ xn, xi ≤ e ∈ K, 1 ≤ i ≤ n, n ≥ 1}.
Step 1. Let x ∈ E, y ∈ I(K), x + y ∈ E and let x, y ≤ f for some f ∈ K.
Then x + y = y′ + x for some y′ ∈ I(K). Indeed, since x, y ∈ I(K), we have
x+ y ∈ I(K), therefore x+ y = (x+ y) \ x+ x and y′ = (x+ y) \ x ∈ I(K).
Step 2. Let x ∈ E, y ≤ f ∈ E and let x+y ∈ E. Then x+y = x∧f+x∧f ′+y∧f =
x ∧ f + y ∧ f + x ∧ f ′ = y′ + x ∧ f + x ∧ f ′ = y′ + x, where y′ ∈ I(K), when we
have used Step 1.
Step 3. Let x + y1 + · · · + yn ∈ E, where yi ≤ f ∈ K for any i. Then
x + y1 + y2 + · · · + yn = y′1 + x + y2 + · · · + yn = · · · = y′1 + · · · + y′n + x, and all
y′i ∈ I(K).

In a similar way we prove that if z + x ∈ E, where z ∈ I(K), then
z+x = x+z′ for some z′ ∈ I(K). In other words, we have proved that I(K)
is a normal ideal of E.

Claim. E/I(K) is linearly ordered.

Let x, y ∈ E be given. Due to general comparability, there is e ∈ C(E)
such that pe(x) ≤ pe(y) and pe′(x) ≥ pe′(y). Since K is maximal, then
either e ∈ K or e′ ∈ K. In the first case, pe(E) ⊆ I(K), and we have
x/I(K) = pe(x)/I(K)+pe′(x)/I(K) = pe′(x)/I(K) ≥ pe′(y)/I(K) = pe′(y)/I(K)+
pe′(y)/I(K) = y/I(K).

Similarly, if e′ ∈ K, then x/I(K) ≤ y/I(K).
According to [7, Thm 5.5], E/I(K) admits a unique state, say t. Then

s(a) := t(a/I(K)), a ∈ E, is a state on E such that K ⊆ I(K) ⊆ Ker(s). For
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any e ∈ C(E) \ K, we have e′ ∈ K and so s(e′) = 0, whence s(e) = 1, i. e.,
e 6∈ Ker(s) which proves C(E) ∩Ker(s) = K.

If s1 is a state on E and C(E) ∩Ker(s1) = K, then Ker(s1) ⊇ I(K) ⊇ K.
Therefore, s1 induces a state ŝ1 on E/I(K) given by ŝ1(a/I(K)) = s1(a),
a/I(K) ∈ E/I(K). Since E/I(K) has a unique state, t, we have ŝ1 = t, i. e.,
s1 = s.

We claim s is an extremal state on E. According to Theorem 4.1,
E is a pseudo MV-algebra. Using the criterion for extremal states,
Theorem 3.1, we have s(a ∧ b) = t((a ∧ b)/I(K)) = t(a/I(K) ∧ b/I(K)) =
min{t(a/I(K)), t(b/I(K))} = min{s(a), s(b)}, which proves that s is an ex-
tremal state on E. 2

It is worth to recall that if K is a maximal ideal of C(E) in Theorem
4.4, then it is not necessary that I(K) is a maximal ideal of E. Indeed,
let G = Z ×lex Z, and let E = Γ(G, (1, 0)). Then E is linearly ordered, it
satisfies general comparability, C(E) = {0, 1}, and K = {0} is a unique
maximal ideal in C(E), therefore, I(K) = {0} and it is contained in a
unique maximal ideal I = {(0, n) : n ≥ 0} of E.

Corollary 4.5. Every pseudo-effect algebra E satisfying general compa-
rability admits at least one state. Moreover, every two-valued state s0
on C(E) can be extended to a unique extremal state s on E such that
s|C(E) = s0.

P r o o f . According to Theorem 4.4, E has at least one state. Let now
s0 be any two-valued state on C(E). Then K := Ker(s0) is a maximal ideal
of C(E), and by Theorem 4.4, there is a unique extremal state s on E
such that C(E) ∩Ker(s) = Ker(s0). Due to (d) of Proposition 4.2, we see
that s|C(E) = s0. 2

We denote by M(C(E)) the set of all maximal ideals of the Boolean
algebra C(E). Its hull-kernel topology is totally disconnected.

Theorem 4.6. Let E be a pseudo-effect algebra satisfying general com-
parability. Then the mapping

φ(s) := C(E) ∩Ker(s), s ∈ ExtS(E), (4.2)

defines a homeomorphism φ of ExtS(E) onto M(C(E)).

P r o o f . In view of Theorem 4.4, we see that φ is a bijection of ExtS(E)
onto M(C(E)). The space M(C(E)) is totally disconnected, therefore, it
has a basis consisting of clopen sets of the form

U = {K ∈M(C(E)) : e 6∈ K}
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for e ∈ C(E). We observe that

φ−1(U) = {s ∈ ExtS(E) : s(e) 6= 0},

which is an open subset of ExtS(E). This proves that φ is continuous.
Claim. If X is a nonempty compact subset of ExtS(E), then

X = {s ∈ ExtS(E) : Ker(X) ⊆ Ker(s)}, (4.3)

where Ker(X) =
⋂

s∈X Ker(s).

This claim was proved in [12, Lem 3.2].
Therefore, φ(X) = {C(E) ∩Ker(s) : s ∈ X} = {C(E) ∩Ker(s) : Ker(X) ⊆

Ker(s)} = {C(E) ∩Ker(s) : Ker(X) ∩ C(E) ⊆ Ker(s) ∩ C(E)}, which by (3.1)
proves that φ(X) is a closed subset of M(C(E)).

Since ExtS(C(E)) is a compact space, any closed subset X of ExtS(C(E))
is compact, we see that φ is a closed mapping, whence φ is a homeomor-
phism. 2

As a direct consequence of Theorem 4.6 we have the following state-
ment.

Corollary 4.7. If E is pseudo-effect algebra satisfying general compara-
bility, then ExtS(E) is a nonempty, compact and totally disconnected.

5. STATES WHEN EVERY MAXIMAL IDEAL IS NORMAL

In this Section, we study the state space of pseudo MV-algebras. We
show that in every such an algebra, every maximal ideal is normal, and
we study the weak topology of states to describe the closed faces. We
note that we generalize the results known for Abelian unital po-groups
with interpolation, see [19, Section 8]. In addition, we extend the results
also for pseudo MV-algebras E which not necessarily satisfy general com-
parability, but in which every maximal ideal K of the center generated is
a prime ideal I(K) in E.

Proposition 5.1. Let I be a maximal ideal of a pseudo-effect algebra E
with (RDP0). Then I ∩ C(E) is a maximal ideal of C(E).

If K is a maximal ideal of C(E), then I(K), the ideal of E generated by
K is the set

I(K) =
⋃

e∈K

[0, e],

and I(K) is normal.

P r o o f . It is clear that I ∩C(E) is an ideal of C(E). To show that it is
maximal in C(E), assume e ∈ C(E) and e 6∈ I. The ideal generated by I and
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e contains 1. Hence, [11, Prop 3.1], 1 = x + e1 + · · · + en, where x ∈ I and
e1, . . . , en ≤ e, ei ∈ E for any i. Therefore, e′ = x∧e′+e1∧e′+· · ·+en∧e′ = x∧e′
which implies e′ ≤ x ∈ I, i. e., e′ ∈ I.

The formula for I(K) follows from [11, Prop 3.3] and from reasonings
from the proof of Theorem 4.4. 2

Theorem 5.2. Every maximal ideal of a pseudo-effect algebra satisfying
general comparability is normal.

P r o o f . Let now I be any maximal ideal of E, and let K = I ∩ C(E).
According to Proposition 5.1, K is a maximal ideal of C(E). Let I(K) be
the ideal of E generated by K. According to Proposition 5.1, I(K) is a
normal ideal of E, and E/I(K) is a linearly ordered pseudo-effect algebra
having a unique state, say t. Then the mapping s(a) := t(a/I(K)), a ∈ E,
is an extremal state on E, and it contains I(K), Theorem 4.4.

Let I/I(K) = {x/I(K) : x ∈ I}. Then it is easy to verify that I/I(K) is a
proper ideal of E/I(K). Since Ker(t) is a unique maximal ideal of I/I(K),
[7, Thm 5.5], it contains I/I(K). Therefore, I ⊆ Ker(s). The maximality
of I implies I = Ker(s) which proves that I is normal. 2

We have note that we have a stateless pseudo MV-algebra, see [7].
Thus it gives an example of a pseudo-effect algebra do not satisfying
general comparability. The following example is from [4].

We apply similar notations as in [18]. Let R be the set of all real
numbers with the natural linear order. We denote by A(R) the set of
all order-preserving permutations of R. Then A(R) is a group under
composition. For f, g ∈ A(R) we put f ≤ g if f(t) <= g(t) for each t ∈ R.
The relation ≤ is a partial order on A(R) and under this partial order,
A(R) turns out to be a lattice ordered group.

Example 5.3. Let a ∈ A(R), a(t) ≥ t for any t ∈ R, and a(t0) > t0 for some
t0 ∈ R. Then M = Γ(Ga, a) is a stateless pseudo MV-algebra, where Ga

denotes the convex `-subgroup of A(R) generated by the element a, and
any maximal ideal of M is not normal. In addition, general comparability
fails to hold in M .

The above results can be generalized as follows.

Theorem 5.4. If, for every maximal ideal K in C(E) of a pseudo MV-
algebra E, the ideal I(K) generated by K is prime, then every extremal
state on C(E) can be uniquely extended to an extremal state on E, and
every maximal ideal of E is normal. In addition, the mapping φ defined
by (4.2) defines a homeomorphism of ExtS(E) onto M(C(E)).

P r o o f . According to Proposition 5.1, the ideal I(K) is normal. Since
I(K) is prime, this implies E/I(K) is linear, [11, Prop 4.6], and it contains
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a unique state, t. It induces a state s on E by s(a) := t(a/I(K)). It is
evident that s is extremal, Theorem 3.1. Moreover, Ker(s) ⊇ I(K) ⊇ K.
If now e ∈ C(E) \K, then e′ ∈ K and s(e′) = 0 which gives e 6∈ Ker(s).

As in the proof of Theorem 4.4, if s1 is any state such that Ker(s1) ∩
C(E) = K, then s1 = s.

Repeating the proof of Theorem 5.2, we see that every maximal ideal
of E is normal.

The rest follows the same ideas as the proof of Theorem 4.6. 2

We recall that every pseudo-effect algebra satisfying general compara-
bility satisfies the conditions of Theorem 5.4.

Suppose that E = Γ(G, u), where G satisfies (RDP1) and let e ∈ C(E).
The mapping (4.1) can be extended also for the whole group G as follows.

We recall that an o-ideal of a po-group G is any normal convex directed
subgroup H of G. A subgroup H of an `-group G is an o-ideal of G iff
H is an `-ideal of G. If (G, u) is a unital po-group, we denote by OI(G, u)
the set of all o-ideals of (G, u). According to [11, Thm 4.2], we have the
following result.

Theorem 5.5. Let E = Γ(G, u), where (G, u) is a unital po-group satisfying
(RDP1). For any ideal I of E we set

φ(I) = {x ∈ G : ∃ xi, yj ∈ I, x = x1 + · · ·+ xn − y1 − · · · − ym}. (5.1)

Then φ(I) is an o-ideal of (G, u) if, and only if, I is a normal ideal of E.
In such the case

(E/I, u/I) = Γ(G/φ(I), u/φ(I)).

In addition, if K is an o-ideal of (G, u), then its restriction to E, denoted
by ψ(K), gives a normal ideal of E, i. e.,

ψ(K) := K ∩ E ∈ I(E), K ∈ I(G, u).

Moreover, both mappings, φ and ψ, are mutually bijective and preserving
the set-theoretical inclusion.

Let now e ∈ C(E) and let I0(e) and I0(e′) be the ideal of E generated by
e and e′, respectively. It is easy to verify that I0(e) and I0(e′) are normal
ideals. In view of Theorem 5.5, G(e) := φ(I0(e)) and G(e′) = φ(I0(e′)) are
o-ideals of G such that G(e)∩G(e′) = {0}. Indeed, first let x ∈ I0(e)∩ I0(e′).
Then x = x1 + · · · + xn = y1 + · · · + ym where xi ≤ e and yj ≤ e′. The
Riesz decomposition property implies that there is a system of elements
{cij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} such that xi =

∑
j cij and yj =

∑
i cij. Therefore,

cij ≤ e ∧ e′ = 0, i. e., x = 0. The general case follows from Theorem 5.5.
Therefore,

G = G(e)⊕G(e′).
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Define now two mappings fe : G → G(e) and fe′ : G → G(e′) by fe(g) =
g1 and fe′(g) = g2 whenever g = (g1, g2). Then fe is a positive group-
homomorphism from G onto G(e) and similarly, fe′ is a positive group-
homomorphism from G onto G(e′). Moreover, pe(x) = fe(x) for any x ∈ E.

Proposition 5.6. Let e ∈ C(E), where E = Γ(G, u) for some unital po-
group satisfying (RDP1). If x ∈ G+ and x ≤ nu, then fe(x) = x ∧ ne.

P r o o f . As x ≤ nu, then fe(x) ≤ fe(nu) = ne. In addition, 0 = fe′(x) =
x− fe(x) whence fe(x) ≤ x. Assume y ≤ x and y ≤ ne for some y ∈ G. Then
fe(y) ≤ fe(x) and y − fe(y) = fe′(y) ≤ fe′(ne) = 0. Whence y ≤ fe(y) ≤ fe(x)
which gives fe(x) = x ∧ ne. 2

We recall every state on E = Γ(G, u), E with (RDP1), can be uniquely
extended to a state on (G, u)5, and vice-versa, the restriction of any state
on (G, u) gives a state on E.

According to [9], we introduce two functions f∗ and f∗ on G as follows.
For any x ∈ G, we set

f∗(x) = inf{l/n : l ∈ Z, n ≥ 1, nx ≤ lu},
f∗(x) = sup{k/i : k ∈ Z, i ≥ 1, ku ≤ ix}.

These functions have a very close connection with the existence of
states on (G, u) while if s is a state on (G, u), then f∗(x) ≤ s(x) ≤ f∗(x) for
any x ∈ G. Moreover, if G is linearly ordered, then (G, u) has a unique
state, say s, and we have

s(x) = inf{l/n : l ∈ Z, n ≥ 1, nx ≤ lu} = sup{k/i : k ∈ Z, i ≥ 1, ku ≤ ix}

for any x ∈ G. Moreover, if x ∈ G+, then

s(x) = inf{l/n : l, n ≥ 1, nx ≤ lu} = sup{k/i : k ≥ 0, i ≥ 1, ku ≤ ix}. (5.3)

We recall that a face of a convex set S is a convex subset F of S such that
if x = αx1+(1−α)x2 ∈ F for x1, x2 ∈ S, then x1, x2 ∈ F. Every face is roughly
speaking (i) the empty set, or (ii) the whole S, or (iii) an extremal point or
line segment connecting pairs of adjacent extremal points of S. Moreover,
given any subset X ⊆ S, there is a smallest face of S that contains X.

Proposition 5.7. Let E be a pseudo-effect algebra and let X be a subset
of E. Then the set

F = {s ∈ S(E) : X ⊆ Ker(s)}
is a closed face of S(E).

5 A state on a unital po-group (G, u) is any mapping ŝ : G → R such that (i) ŝ(g) ≥ for any
g ∈ G+, (ii) ŝ(g + h) = ŝ(g) + ŝ(h) for all g, h ∈ G, and (iii) ŝ(u) = 1. We denote by S(G, u) and
ExtS(G, u) the sets of all states and all extremal states, respectively, on (G, u).
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P r o o f . If S(E), the statement is evident. So let the state space S(E)
be nonempty. Then it is clear that F is a closed convex subset of S(E). If
s = αs1 + (1− α)s2 ∈ F with s1, s2 ∈ S(E) and 0 < α < 1, then for any x ∈ X,
we have s(x) = αs1(x) + (1− α)s2(x) = 0. Therefore, s1 and s2 vanish on X,
so that s1, s2 ∈ F. 2

Example 8.7 gives an MV-algebra such that every maximal ideal Ki

generates a prime ideal I(Ki) (i ≥ 1), but I(K∞) is not prime. For such
algebras we have the following result.

Proposition 5.8. Let E = Γ(G, u) be a pseudo MV-algebra and let K be
a maximal ideal of C(E) such that I(K) is prime. Then there is a unique
state s on E such that Ker(s) ∩ C(E) = K, this state is extremal, and for
its extension ŝ on (G, u) we have

ŝ(x) = inf{l/n : l, n ≥ 1, nfe(x) ≤ lu, e ∈ C(E) \K}
= sup{k/i : k ≥ 0, i ≥ 1, ke ≤ ife(x), e ∈ C(E) \K}.

P r o o f . According to Proposition 5.1, I(K) is normal and, by the
hypothesis, is prime, so that E/I(K) is linear, and according to Theorem
5.5, E/φ(I(K)) is linear. The group (G/φ(I(K)), u/φ(I(K))) has a unique
state, [9, Prop 3.4], as well as E/I(K). Applying again Theorem 5.5, if
t is a state on E/I(K), then t̂ is a unique state on (G/φ(I(K)), u/φ(I(K))).
Moreover, s(a) := t(a/I(K), a ∈ E, is a unique state on E such that Ker(s)∩
C(E) = K Therefore, for the extension t̂ of t onto G, we have (5.3), and
our formulas follow directly from (5.3), that is

ŝ(x) = t̂(x/φ(I(K))) = inf{l/n : l, n ≥ 1, nx/φ(I(K)) ≤ lu/φ(I(K))}
= sup{k/i : k ≥ 0, i ≥ 1, ku/φ(I(K)) ≤ ix/φ(I(K)}.

Let now nx/φ(I(K)) ≤ lu/φ(I(K)). There is an a ∈ φ(I(K)) such that
nx− a ≤ lu. But then a = a1 + · · ·+ an − b1 − · · · − bm, where ai, bj ≤ e′ ∈ K.
Then fe(nx − a) ≤ fe(lu), i. e., nfe(x) − fe(a) = nfe(x) ≤ le. Conversely, if
nfe(x) ≤ le for some e′ ∈ K, then nx/φ(I(K)) ≤ lu/φ(I(K)). In a similar way
we prove the second property for the supremum. 2

We recall that according to [12, Thm 4.4], if E = Γ(G, u) for some unital
`-group (G, u), then KerS(E) and KerS(G, u) are homeomorphic compact
sets which are simultaneously non-void or void.

Theorem 5.9. Let E be a pseudo MV-algebra such that I(K) is prime
for any maximal ideal K of C(E). Let X be a subset of states on E, and
set

V = {s ∈ S(E) : Ker(X) ⊆ Ker(s)},
W = {s ∈ S(E) : C(E) ∩Ker(X) ⊆ Ker(s)}.
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Then V = W and V is a closed face of S(E). Moreover, V equals the closure
of the face generated by X in S(E).

P r o o f . According to Proposition 5.7, V and W are closed faces of S(E).
It is clear that V ⊆ W . Now let Y be the closure of the face generated
by X in S(E). Since Y is a closed convex set and W equals the closure
of the convex hull of extremal points, Ker(W ), it suffices to verify that
Ker(W ) ⊆ Y. Thus consider any state t ∈ Ker(W ). Because W is a face of
S(E), we have that t is an extremal state of E. By Proposition 5.7, the
set K = C(E) ∩Ker(t) is a maximal ideal of C(E).

Set A = C(E) \K, which is nonempty. As t ∈ W , we have K = C(E) ∩
Ker(t) ⊇ C(E) ∩ Ker(X), which implies that A is disjoint from Ker(X).
Hence, given any e ∈ A, we may choose a state se ∈ X such that se(e) > 0.
The function te = se(e)−1se ◦ pe is a state on E such that te(e) = 1. By
Proposition 4.2, te = te ◦ pe. Hence, applying [19, Prop 6.15, Prop 5.7], we
have that te lies in the face generated by X, and hence te ∈ Y.

Consider the downward-direct set {te : e ∈ A} in Y , and we assert that
te → t weakly on E.

Using (5.3), we have that for any x ∈ E and any ε > 0 there exist
k ∈ Z+ and i, l, n ∈ N such that k/i > t(x) − ε and l/n < t(x) + ε, while
also kf ≤ ife(x) and nfg(x) ≤ lg for some f, g ∈ A. Note that f ∧ g ∈ A.
For any e ∈ A with e ≤ f ∧ g, we have ke = fe(kf) ≤ ifeff (x) = ife(x) and
nfe(x) = npepg(x) ≤ pe(lg) = le, whence k = kte(e) ≤ itefe(x) = ite(x) and
similarly nte(x) ≤ l. Consequently, we have

t(x)− ε < k/i ≤ te(x) ≤ l/n < t(x) + ε,

which implies vertte(x)− t(x)| < ε for all e ∈ A such that e ≤ f ∧ g.
Therefore, te(x) → t(x) for any x ∈ E. Since Y is closed in S(E), we

conclude that t ∈ Y.
Thus Ext(W ) ⊆ Y , and hence W ⊆ Y , by the Krein–Mil’man theorem.

Therefore, Y = V = W. 2

Corollary 5.10. Let E be a pseudo MV-algebra such that I(K) is prime
for any maximal ideal K of C(E) and let X ⊆ S(E). If Ker(X) = {0}, then
S(E) equals the closure of the face generated by X in S(E).

Corollary 5.11. Let E be a pseudo MV-algebra such that I(K) is prime
for any maximal ideal K of C(E). Then the closure of any face of S(E) is
a face of S(E). Moreover, the closed faces of S(E) are exactly the sets

FH = {s ∈ S(S) : H ⊆ Ker(s)},
where H is any normal ideal of E.

P r o o f . It immediately follows from Theorem 5.9 that the closures of
faces are faces in S(E). On the other hand, by Proposition 5.7, FH is a
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closed face of S(E). Conversely, let F be any closed face of S(E) and set
H = Ker(F ). Then H is a normal ideal of E, and, by Theorem 5.9,

F = {s ∈ S(E) : Ker(F ) ⊆ Ker(s)} = FH . 2

6. REPRESENTABILITY OF PSEUDO–EFFECT ALGEBRAS
WITH GENERAL COMPARABILITY

We have seen that every pseudo-effect algebra satisfying general compa-
rability is automatically a pseudo MV-algebra such that every maximal
ideal is normal. In the present Section, we show a more stronger result
saying that every pseudo MV-algebra satisfying general comparability
can be represented as a subdirect product of linearly ordered pseudo
MV-algebras.

Let {(Mt;⊕t,
−t ,∼t , 0t, 1t)}t∈T be a family of pseudo MV-algebras. The

Cartesian product M :=
∏

t∈T Mt, where ⊕,− ,∼ , 0, 1 are defined in a usual
way by coordinates, is said to be a direct product of {(Mt;⊕t,

−t ,∼t , 0t, 1t)}t∈T .
Then M is a pseudo MV-algebra. A pseudo MV-algebra M is a subdirect
product of a family of {(Mt;⊕t,

−t ,∼t , 0t, 1t)}t∈T of pseudo MV-algebras iff
there exists a one-to-one homomorphism h : M → ∏

t∈T Mt of pseudo MV-
algebras 6 such that, for each t ∈ T , πt ◦ h is a homomorphism from M
onto Mt, where πt is the tth projection

∏
t∈T Mt onto Mt.

According to [17], we say that a pseudo MV-algebra M is representable
if it can be represented as a subdirect product of linear pseudo MV-
algebras. It is well-known that every MV-algebra is representable (see
e. g., [2]).

In [7], we have proved that the family of all representable pseudo MV-
algebras form a variety, and every such MV-algebra has at least one state.

Proposition 6.1. Let E be a pseudo-effect algebra satisfying (RDP0). Let
K be a maximal ideal of C(E) and I(K) the ideal of E generated by K.
Then ⋂

K

I(K) = {0}. (6.1)

P r o o f . Let the Boolean algebra C(E) be represented as a system of all
clopen subsets of the compact, Hausdorff, totally disconnected topological
space Ω = C(E). For every ω ∈ Ω, the set Kω = {e ∈ C(E) : ω /∈ e} is a
maximal ideal of C(E), and conversely, any K = Kω for a unique ω ∈ Ω.
For elements of C(E), we can identified finite joins and meets in it with
the set-theoretical unions and intersections, respectively.

Take x ∈ ⋂
K I(K), then x ∈ I(Kω) for any ω ∈ Ω. Fix ω0 and by Propo-

sition 5.1, there is an e0 ∈ Kω0 such that x ≤ e0. For any ω ∈ e0, by

6We recall that a mapping h : M1 → M2 of two pseudo MV-algebras M1 and M2 is said to be
a homomorphism if h preserves ⊕, −, ∼ and 0 and 1.
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Proposition 5.1, there is an eω ∈ Kω such that x ≤ eω and ω ∈ e′ω. Since
e0 ⊆

⋃
ω∈e0

e′ω, and e0 is closed, the compactness of Ω implies e0 ⊆
⋃n

i=1 e
′
ωi

,
so that e0 ≤

∨n
i=1 e

′
ωi
. Then e0 =

∨n
i=1(e

′
ωi
∧ e0) and e′0 =

∧n
i=1(eωi ∨ e′0) ≥ x.

Therefore, x ≤ e0 ∧ e′0 = 0. 2

Theorem 6.2. Every pseudo MV-algebra M satisfying general compara-
bility is representable.

P r o o f . Let K be any maximal ideal of C(M). According the Claim of
the proof of Theorem 4.4, the ideal I(K) of M generated by K is normal
and M/I(K) is a linearly ordered pseudo MV-algebra. Since (6.1) holds,
then it is easy to verify that M is a subdirect product of

∏
K M/I(K). 2

Theorem 6.2 can be generalized also for pseudo MV-algebras M not
necessarily satisfying general comparability, but in which every maximal
ideal of the center gives a prime ideal in M .

Theorem 6.3. Let every maximal ideal K of the center C(M) of a pseudo
MV-algebra M generate a prime ideal I(K) in M . Then E is representable.

P r o o f . It follows the same ideas as the proof of Theorem 6.2. 2

It is worthy to recall that the family of all pseudo-effect algebras sat-
isfying general comparability is not a variety: It is closed under direct
products, every quotient does again satisfy, but there is an MV-algebra
satisfying general comparability having an MV-subalgebra where general
comparability fails. Indeed, take M(C[0, 1]) from the Section 4. Because it
is commutative, it is an MV-subalgebra of a subdirect product of linearly
ordered MV-algebras, and each of them satisfies general comparability.

7. FUNCTIONAL REPRESENTATIONS OF PSEUDO–EFFECT ALGEBRAS

Pseudo-effect algebras satisfying general comparability are not necessary
commutative. However, we show that there is a homomorphism of E
onto an MV-algebra M of continuous functions from M(Ω) such that M
is dense in the sup-norm of M(Ω) for some compact, Hausdorff, totally
disconnected topological space homeomorphic with C(E).

Thus, let Ω be a compact, Hausdorff, totally disconnected topological
space, and let M(Ω) be the system of all continuous functions from [0, 1]Ω.
For any ω ∈ Ω, let Iω = {f ∈ M(Ω) : f(ω) = 0}. Then Iω is a maximal ideal
on M(Ω), and conversely, every maximal ideal I = Iω for a unique ω ∈ Ω,
[2, Thm 3.4.3]. Because there is a one-to-one correspondence among
extremal states and maximal ideals given by s↔ Ker(s), according to the
Riesz–Markov theorem, for any Iω, there is a unique Baire probability
measure µω on B(Ω), the Baire σ-algebra generated by all compact Gδ sets
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on Ω, or equivalently, generated by {f−1([a,∞)) : f ∈ C(Ω), a ∈ R}. It can
happen that µω = δω, where δω is the Dirac measure concentrated on ω;
such a situation is, for example, when the Baire σ-algebra B(Ω) coincide
with the Borel σ-algebra over Ω, i. e. the σ-algebra generated by open
subsets of Ω.

We have C(M(Ω)) = {χA : A is clopen in Ω}. Each two-valued state on
C(M(Ω)) is concentrated on a unique point ω. If e. g., Baire and Borel
σ-algebras coincide, every two-valued state on C(M(Ω)) can be uniquely
extended to a unique state on M(Ω), sω, which is defined by sω(f) := f(ω),
f ∈M(Ω), which is also extremal.

However it can happen that M(Ω) does not satisfy general comparabil-
ity, see Examples 8.4 – 8.6.

In what follows, we show that if E satisfies e. g. general comparability,
then E can be homomorphically embedded into M(Ω), where Ω = ExtS(E).

Let E = Γ(G, u) be a pseudo-effect algebra satisfying (RDP1), and let s
be a state on E and ŝ its unique extension on (G, u). We set s(E) := {s(a) :
a ∈ E}.

By [19, Lemma 4.21], ŝ(G) = {ŝ(g) : g ∈ G} is a subgroup of the group R
of all real numbers which is either cyclic or dense in R. In the first case
ŝ is said to be discrete. In such a case ŝ(G) = 1

nZ for some integer n ≥ 1.
A state s on pseudo-effect algebras E is said to be discrete if s(E) = {s(a) :

a ∈ E} ⊆ {0, 1/n, 2/n, . . . , n/n} for some integer n ≥ 1. It can happen that
s(E) is a proper subset of {0, 1/n, 2/n, . . . , n/n}. Indeed, let E = {0, a, a′, 1},
and let s(a) = 0.3 and s(a′) = 0.7.

We now show that there is a one-to-one correspondence among discrete
states on E and (G, u), respectively.

Proposition 7.1. Let E = Γ(G, u) be a pseudo-effect algebra with (RDP1).
Then a state s on E is discrete if, and only if, its extension ŝ on (G, u) is
discrete.

P r o o f . If ŝ is discrete, it can be easily seen that s is discrete. Con-
versely, let s be discrete. It means s(E) ⊆ {0, 1/n, 2/n, . . . , n/n} for some
integer n ≥ 1; let n be the smallest one. We suppose that s(E) =
{0, k1/n, . . . , km/n, 1}, where 1 ≤ k1 < · · · < km ≤ n. Since n is minimal, this
implies that the greatest common divisor of n, k1, . . . , km is 1. From the
elementary arithmetic this yields that there are integers a0, a1, . . . , am ∈ Z
such that a0n+a1k1 + · · ·+amkm = 1. Therefore, 1/n ∈ ŝ(G), i. e., ŝ(G) = 1

nZ.
2

A pseudo-effect algebra E is said to be weakly divisible if, for any integer
n ≥ 1, there is an element v ∈ E such that nv = 1. If E is weakly divisible,
then E has no discrete state. Indeed, for any state s of E we have 1/n ∈
s(E) for any integer n ≥ 1. For example, M(Ω) is weakly divisible.
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Suppose that Ω = ExtS(E). If E satisfies general comparability, then
Ω is a nonempty compact, Hausdorff, totally disconnected topological
space, Corollary 4.7.

Define a mapping ψ : E → C(ExtS(E)) defined by

ψ(a) := s(a), a ∈ E, s ∈ ExtS(E),

supposing ExtS(E) 6= ∅.
If E is a pseudo MV-algebra with the nonempty state space, then in

view of Theorem 3.1, ψ(E) is an MV-algebra which is an MV-subalgebra
of the MV-algebra M(ExtS(E)), and ψ is a homomorphism of pseudo MV-
algebras.

Proposition 7.2. Let E be a pseudo MV-algebra with the nonempty state
space S(E). Set Ker =

⋂{Ker(s) : s ∈ ExtS(E)}. Then Ker is a normal ideal
of E, and E/Ker is isomorphic with M(ExtS(E)).

P r o o f . From the above it is easy to see that Ker is a normal ideal of
E. Then E/Ker is a pseudo MV-algebra. We show that it is commutative.
Assume that n(a/Ker) is defined in E/Ker for any integer n ≥ 1. Since
every extremal state on E defines an extremal state on E/Ker, and vice-
versa, we have that for any extremal state n(s(a)) ≤ 1 for any integer.
Therefore, a ∈ Ker, so that a/Ker = 0/Ker. This implies that E/Ker is
Archimedean7. By [8] this implies that E/Ker is commutative, i. e., an
MV-algebra.

This MV-algebra is therefore isomorphically representable by [0, 1]-
valued continuous functions defined on ExtS(E/Ker) which is homeomor-
phic with ExtS(E). The isomorphism between E/Ker and ψ(E) is given
by a 7→ ψ(a). 2

Theorem 7.3. Let E be a pseudo-effect algebra satisfying general com-
parability. Set

M = {f ∈M(ExtS(E)) : f(s) ∈ s(E) for all discrete s ∈ ExtS(E)}.
Then ψ(E) is an MV-subalegbra of M which is dense in the sup-norm in
M .

P r o o f . It is clear that ψ(E) ⊆ M . Because E satisfies general com-
parability, so satisfies also E/Ker. By Proposition 7.2, E/Ker is an MV-
algebra satisfying general comparability theorem. By [19, Thm 8.20], we
obtain the result in question. 2

As a direct corollary of Theorem 7.3, we have that if E has no discrete
extremal state (this can happen e. g. if E is weakly divisible) we have the
following situation.

7A pseudo MV-algebra E is Archimedean if the existence of na ∈ E for any n ≥ 1 entails a = 0.
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Corollary 7.4. Let the conditions of Theorem 7.3 be satisfied. If there is
no discrete state, then ψ(E) is dense in M .

8. EXAMPLES

We present here examples of MV-algebras which do or do not satisfy
general comparability. We study examples of MV-algebras of continuous
functions on compact, Hausdorff, totally disconnected topological spaces.

Example 8.1. Let Ωn = {ω1, . . . , ωn}, n ≥ 1. It is compact, Hausdorff and
totally disconnected in the discrete topology. Then M(Ω1) = [0, 1] and
M(Ωn) = [0, 1]n, and they satisfy general comparability.

We say that a topological space Ω is basically disconnected provided the
closure of every open Fσ subset of Ω is open.

Example 8.2. Let Ω be a basically disconnected topological space. Then
M(Ω) satisfies general comparability. This follows from [19, Cor. 9.3], be-
cause C(Ω) is Dedekind σ-complete iff Ω is basically disconnected. Then
M(Ω) is a σ-complete MV-algebra, and every σ-complete MV-algebra sat-
isfies general comparability [10, Prop 4.1].

In what follows we show that if Ω is a Hausdorff, compact, totally
disconnected topological space, then M(Ω) does not necessarily satisfy
general comparability.

Example 8.3. Let X = [0, 1]∩Q, where Q is the set of all rational numbers.
Since it does not contains any interval of nonzero length, it is Hausdorff,
totally disconnected and regular. Any set of the form [0, a), (a, b), (b, 1],
where a and b are arbitrary irrational numbers from the real interval
(0, 1), are clopen. Its Čech–Stone compactification, Ω = βX, is compact,
Hausdorff and totally disconnected [16, Thm 6.2.12, pp. 447–487]. Let f(x) =
x and g(x) = 1 − x, x ∈ X. Then f and g are continuous in X, and let
f̂ and ĝ be their continuous extension to βX. We assert that there is
no clopen set A in Ω such that f̂χA ≤ ĝχA and f̂χAc ≥ ĝχAc . Indeed,
we have f(1/2) = 1/2 = g(1/2) and either 1/2 ∈ A or 1/2 ∈ Ac. In the
first case, A contains points x1 and x2 such that f(x1) < 1/2 < g(x1) and
f(x2) > 1/2 > g(x2).

This implies that general comparability fails to hold in this M(Ω).

Example 8.4. Let Ω be the Čech–Stone compactification of X = [0, 1]∩Q.
We assert that for any x0 ∈ (0, 1) ∩X, the ideal I(Kx0) of M(Ω) generated
by the maximal ideal Kx0 = {χA : x0 /∈ A} is not prime.

Let f and g be piecewise linear functions connecting the points (0, 1), (x0, 0)
and (0, 0), and (0, 0), (x0, 0) and (1, 1), respectively. Then f and g are
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nonzero and let f̂ and ĝ be their continuous extension to Ω. Then
f̂ ∧ ĝ = 0 ∈ I(Kx0), but there is no clopen set A not containing point
x0 such that f̂ ≤ χA or ĝ ≤ χA.

Example 8.4. Let C be the Cantor set in [0, 1], that is, the set of all real
numbers x of the form x =

∑∞
n=1

2αn

3n , where αn ∈ {0, 1} for any n ≥ 1. This
space is Hausdorff, compact and totally disconnected, but M(C) does not
satisfy general comparability. Indeed, let x ∈ (0, 1) ∩ C, and let f and g
be functions which are piecewise linear connecting the points (0, 1), (x, 0)
and (1, 0), and (0, 0), (x, 0) and (1, 1), respectively. Then there is no clopen
subset A of C such that fχA ≤ gχA and fχAc ≥ gχAc .

Similarly, I(K) is not a prime ideal.

A more general case than later is the following example

Example 8.6. Let Ω be any compact, Hausdorff, totally disconnected
space, Ω ⊂ [0, 1] and let Ω does not contain any isolated point. Then M(Ω)
does not satisfy general comparability, and similarly the ideal I(K) is not
prime.

Example 8.5 is interesting also from another point of view. The system
of all clopen sets of C ⊂ [0, 1] is an open basis of C. It has a countable
subbase. Consequently, the Baire σ-algebra, B(C), coincides with the
Borel σ-algebra generated by all open subsets of C. By [6, Cor III.5.9],
every state on C(M(C)) can be extended to a unique probability measure µ
on B(C), and according to the Riesz–Markov theorem, it defines a unique
state s on M(C) such that s(f) =

∫
f(ω)dµ(ω). In this case, in spite of the

fact that M(C) is not satisfying general comparability as well as I(K) is not
any prime ideal of M(C), every state on C(M(C)), not only any extremal
state, can be extended to a unique state on M(C). In particular, every
two-valued state on C(M(C)) (it is concentrated in some point ω) can be
uniquely extended to a unique (extremal) state on M(Ω), sω, which is
defined by sω(f) := f(ω), f ∈M(C).

Example 8.7. Let S be the set of all real sequences {an} such that limn an

exists in R. Then S is an Abelian `-group with strong unit {1}, and
S0 = Γ(S, {1}) is an MV-algebra. A sequence {an} is a central element iff
an ∈ {0, 1} for any n ≥ 1 and for all but finitely many n either an = 0 or
an = 1. S0 does not satisfies general comparability; take e. g., a = {an} and
b = {bn}, where an = 1/2 and bn = 1/2 + (−1)n/2n (n ≥ 1).

Any maximal ideal of C(S0) is of the form Ki = {{an} : ai = 0} for i ≥ 1,
or K∞ = {{an} : limn an = 0}. Then I(Ki) is a prime ideal of S0 for any
integer i ≥ 1 but I(K∞) is not prime. In addition

⋂∞
i=1 I(Ki) = {0}.
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In what follows, we show that in some cases M(Ω) satisfies general
comparability iff I(K) is a prime ideal of M(Ω) for any maximal ideal K
of C(M(Ω)).

We recall that a topological space Ω is Fréchet provided, for every A ⊆ Ω
and every ω ∈ A, there exists a sequence {ωn} of points of A converging
to ω.

Proposition 8.8. If Ω is a Fréchet, Hausdorff, compact and totally dis-
connected topological space, then M(Ω) satisfies general comparability if,
and only if, I(K) is a prime ideal of M(Ω) for any maximal ideal K of
C(M(Ω)).

P r o o f . By Claim of Theorem 4.4, general comparability of M(Ω)
implies that I(K) is a prime ideal of M(Ω) for any maximal ideal K of
C(M(Ω)).

Suppose now that M(Ω) does not satisfy general comparability. That
is, there are two continuous functions f and g in M(Ω) such that fχA 6≤ gχA

or fχAc 6≥ gχAc for any clopen set A. Set U = {ω ∈ Ω : f(ω) < g(ω)}. Then
U is an open Fσ set, and therefore, the closure U of U is not open. Hence
there exists a point ω ∈ U \U such that, for every neighborhood Oω of the
point ω, we have Oω ∩ (Ω \ U) 6= ∅. Therefore, ω ∈ Ω \ U, and there exists a
sequence {ωn} of points in Ω\U converging to ω. Let K = {ωn : n ≥ 1}∪{ω},
and let us define a continuous function h : U ∪K → [0, 1] by h(ω) = 0 for
ω ∈ U and h(ωn) = 1/n (n ≥ 1). Let h̃ be the continuous extension of h onto
Ω.

Since ω ∈ U , there exists a sequence {yn} in U such that {yn} converges
to ω. Let H = {yn : n ≥ 1} ∪ {ω} and let us define a continuous function
k : (Ω \U)∪H → [0, 1] by k(ω) = 0 if ω ∈ Ω \U and k(yn) = 1/n. Let k̃ be the
continuous extension of k onto Ω.

We have h ∧ k = 0, i. e., h̃ ∧ k̃ = 0. Assume that K = Iω = {χB : B is
clopen in Ω, ω 6∈ B}, and let B ∈ Iω. Then ω /∈ B and it cannot happen
that h ≤ χB or g ≤ χB while χB takes the value 0 on some neighborhood
of the point ω. 2

Finally we recall that the author does not know whether any pseudo
MV-algebra E such that every maximal ideal K of C(E) induces the prime
ideal I(K) of E does satisfy general comparability.
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