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DIRECT ALGORITHM FOR POLE PLACEMENT BY
STATE–DERIVATIVE FEEDBACK FOR MULTI–INPUT
LINEAR SYSTEMS – NONSINGULAR CASE

Taha H. S. Abdelaziz and Michael Valášek

This paper deals with the direct solution of the pole placement problem by state-
derivative feedback for multi-input linear systems. The paper describes the solution of this
pole placement problem for any controllable system with nonsingular system matrix and
nonzero desired poles. Then closed-loop poles can be placed in order to achieve the desired
system performance. The solving procedure results into a formula similar to Ackermann
one. Its derivation is based on the transformation of linear multi-input systems into Frobe-
nius canonical form by coordinate transformation, then solving the pole placement problem
by state derivative feedback and transforming the solution into original coordinates. The
procedure is demonstrated on examples. In the present work, both time-invariant and
time-varying systems are treated.

Keywords: pole placement, state-derivative feedback, linear MIMO systems, feedback sta-
bilization

AMS Subject Classification:

1. INTRODUCTION

Pole placement technique is one of the most important approaches for linear control
systems design. The state feedback control problem has been investigated in control
community during the last four decades. There have been developed the design
methods for a wide class of linear systems under full-state feedback with the objective
of stabilizing control systems (e. g. [8, 18, 19, 20, 21]).

However, this paper focuses on a special feedback using only state derivatives
instead of full-state feedback. Therefore this feedback is called state derivative feed-
back. The problem of arbitrary pole placement using state-derivative feedback nat-
urally arises. To the best knowledge of the authors there have been yet no general
study solving this feedback for pole placement based on traditional approaches to
pole placement by state feedback. The problem of state derivative feedback has
been investigated within the treatment of generalized class of singular linear dy-
namic systems using geometric approach in [12] and [10]. Only recently, the authors
have derived [1, 2] a pole placement technique by state-derivative feedback for single-
input time-invariant and time-varying linear systems. However, the generalization
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of these results for multi-input systems is not an easy task. This paper is the first
attempt to solve the aforementioned problem with a simple direct way.

In general, it is well known from classical control theory that derivative feed-
back is sometimes essential for achieving desired control objectives [12]. However,
the motivation for the state derivative feedback in this paper comes from controlled
vibration suppression of mechanical systems. The main sensors of vibration are
accelerometers. From accelerations it is possible to reconstruct velocities with rea-
sonable accuracy but not any longer the displacements. Therefore the available
signals for feedback are accelerations and velocities only and these are exactly the
derivatives of states of the mechanical systems that are the velocities and displace-
ments. There have been published many papers (e. g. [3, 4, 9, 14, 15, 16]) describing
the acceleration feedback for controlled vibration suppression. However, the pole
placement approach for feedback gain determination has not been used at all or
has not been solved generally. The approach in [3, 4, 15, 16] is based on dynamic
derivative output feedback. The feedback uses acceleration only (the velocity is not
used, therefore it is not full-state derivative feedback, but only output derivative
feedback) and the acceleration is processed by dynamic filter (dynamic feedback).
The feedback gains are determined using root locus analysis [3, 4, 14, 15, 16], opti-
mization of H2 norm of the closed loop transfer function [4], or using just numerical
parameter optimization of performance indexes [9]. Another papers dealing with
acceleration feedback for mechanical systems are [5, 6] but there the feedback uses
all states (positions, velocities) and accelerations additionally.

In this paper a generalization of eigenvalue assignment by state-derivative feed-
back for multi-input time-invariant and time-varying linear systems is presented.
However, this paper deals only with the case of nonsingular system matrix of the
original system. The whole procedure is unique and provides more insight into the
eigenvalue assignment. The proposed controller is based on the measurement and
feedback of the state derivatives of the system. In this study, particular attention
is directed toward the Frobenius canonical form, because of its unparallel position
in arriving at the desired pole placement for linear systems. This work has success-
fully extended previous techniques by state feedback and modified to state-derivative
feedback. The new formulations are derived through the following three steps de-
sign. The first step is an implementation of a state coordinate transformation to the
Frobenius canonical form. The second step involves the subsequent employment of
pole placement technique for the transformed linear systems. The third step is the
transformation of the state-derivative feedback into the original coordinates. This
provides a new systematic way of solving the aforementioned problem with a simple
direct way. Finally, the derived technique is demonstrated on examples.

In summary, the rest of this paper is organized as follows. In Section 2, we
begin with a transformation to Frobenius canonical form for multi-input systems and
introduce the solution of the pole placement problem by state-derivative feedback
for time-invariant systems. Section 3 deals with the extension of pole placement
for multi-input time-varying systems. In Section 4, the illustrative examples and
simulation results are presented. Finally, conclusion is in Section 5.
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2. POLE PLACEMENT BY STATE–DERIVATIVE FEEDBACK
FOR MULTI–INPUT TIME–INVARIANT SYSTEMS

In this section, we provide a detailed description of the algorithm for the pole place-
ment problem by state-derivative feedback for linear time-invariant systems.

2.1. Pole placement problem formulation

Consider a multi-input, time-invariant, linear system with the following state-space
representation

ẋ(t) = Ax(t) + Bu(t) (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and the control vectors, respec-
tively, (m ≤ n), while A ∈ Rn×n and B ∈ Rn×m are the system and control
gain matrices, respectively. The fundamental assumptions imposed on the system
is that, the system is completely controllable and the m columns of the matrix B,
B = [b1, b2, . . . , bm], are linearly independent (B has a full column rank m). Further
it is assumed that the system matrix A is nonsingular.

The objective is to stabilize the system by means of a linear feedback that enforces
a desired characteristic behavior for the states. The design problem is to find the
state-derivative feedback control law

u(t) = −Kẋ(t) (2)

that assigns prescribed closed-loop eigenvalues, that stabilizes the system and achieves
the desired performance. Substituting (2) into (1) the closed-loop system dynamics
becomes

(In + BK) ẋ(t) = Ax(t)

ẋ(t) = (In + BK)−1Ax(t)
(3)

where In is the n×n identity matrix. In the following, matrix (In+BK) is assumed
to have a full rank in order that the closed-loop system is well defined.

The problem is to find such feedback gain matrix K ∈ Rm×n that the self-
conjugate closed-loop eigenvalues {λ1, . . . , λn} are assigned at the desired values. It
will be shown that the desired eigenvalues {λ1, . . . , λn} must be nonzero. The major
difficulty is that the system matrix A is manipulated by the feedback gain K in (3)
by indirect way that is not similar to the traditional state feedback modification of
system matrix.

In order to overcome this difficulty, the system can be manipulated based on a
transformation of coordinates. In other words, the pole placement problem is easily
solved if the system is preliminarily reduced to a simple structure of the transformed
matrices A and B. Consequently, the pole placement methodology can be applied.
A preliminary step for solving the above problem is to transform this system to the
Frobenius canonical form, and the next step is to employ pole placement technique
in order to arbitrarily assign the poles of the closed-loop system and achieve the
above objective.
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2.2. Transformation into Frobenius canonical form
for time-invariant systems

Frobenius canonical form is constructed by transforming the state vector to a new
coordinate system in which the system equations take a particular form. Let us take
the following time-invariant linear coordinate transformation

z(t) = Q−1x(t), x(t) = Qz(t) (4)

where z(t) ∈ Rn is the transformed state variable vector and the transformation
matrix is Q−1 ∈ Rn×n. Then, the Frobenius canonical form is

ż(t) = AF z(t) + BF u(t) (5)

where AF ∈ Rn×n and BF ∈ Rn×m are the transformed system and control gain
matrices, respectively, and given by [13],

AF = Q−1AQ, BF = Q−1B (6)
where
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It is shown that, this system is composed of m fundamental companion matrices
located in blocks along the diagonal. Each of the companion matrices can be con-
sidered to represent a subsystem coupled to other subsystems. The block size is µj ,
the controllability index corresponding to bj of matrix B, and µ1 + · · · + µm = n,
j = 1, . . . , m. Then, the multi-input system is reduced to a coupled set of m single-
input subsystems that can be easily manipulated and, consequently, solve the pole
placement problem. The ×’s in the matrices represent generally nonzero elements.

The constant transformation matrix Q−1 ∈ Rn×n is constructed as follows

Q−1 = rows
(
q1 q1A · · · q1A

µ1−1 q2 q2A · · · q2A
µ2−1 · · · qm qmA · · · qmAµm−1

)
(8)

where qj ∈ R1×n denotes the row vector computed as follows:

qj = eT
rj

R−1, rj =
j∑

k=1

µk, j = 1, . . . , m, (9)

where erj
∈ Rn is unit vector with 1 at position rj .

The controllability matrix of system (1), R ∈ Rn×n, is

R =
(
b1 Ab1 · · ·Aµ1−1b1 b2 Ab2 · · ·Aµ2−1b2 · · · bm Abm · · ·Aµm−1bm

)
. (10)

The selection of the vectors comprising the R matrix is done according to the fol-
lowing procedure. The process starts with all columns bj of matrix B. At step i,
the columns Ai−1bj are studied for their dependence on all previous ones on the
order j = 1, . . ., m from left to right. If the selected vector is linearly independent of
the previously selected vectors, retain it, otherwise omit it from the selection. The
selection process terminates when n linearly independent vectors are found. Arrange
the n vectors in their proper order to form the matrix R. It has been proven [19]
that the transformation matrix Q−1 obtained by this procedure is nonsingular and
the transformation to the generalized canonical form can be made. The above steps
complete the transformation into canonical form. These results substantially sim-
plified the manipulation of the pole placement problem. The next step is to develop
the feedback gain matrix and solve the pole placement problem.

2.3. Solution of the pole placement problem for time-invariant systems

In this section, we shall show how to derive an explicit formula for the state-derivative
feedback gain matrix K that assigns the desired closed-loop poles system in a com-
putational efficient and simple direct manner. Utilizing the above transformation
into canonical form, the system can be manipulated by a linear feedback for a desired
behavior (i. e., the pole placement problem). By differentiating the transformation
equation (4), the resulting closed-loop system in the z-coordinates is

ż(t) = Q−1ẋ(t). (11)

Hence, after the substitution of (3) and (4) in the above equation we obtain

ż(t) = Q−1(In + BK−1)AQz(t) = AZz(t) (12)
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where AZ ∈ Rn×n is the closed-loop system matrix in the z-coordinates and given
by

AZ = Q−1(In + BK)−1AQ. (13)

Postmultiply the above equation by Q−1A−1(In + BK) the above equation can be
rewritten as

AZQ−1A−1(In + BK) = Q−1. (14)

To solve the pole placement problem, we first divide the desired poles into a self-
conjugate m groups {λ1}, . . . , {λm}, with µj poles in each block, j = 1, . . . , m, where
λj ≡ (λj

1, . . . , λ
j
µj

). It is also advantageous that the desired poles are distributed
among all blocks and the largest eigenvalues lies within the smallest block. The
benefit of this is to smoothing and minimizing undesirable transient variations [19].
The corresponding real vectors {d1}, . . . , {dm}, with dj ≡ (dj

0, . . . , d
j
µj−1) that are

the coefficients of desired characteristic equations for groups j are computed

Dj(s) = (s− λj
1) (s− λj

2) · · · (s− λµj
− 1)

= sµj + dj
µj−1s

µj−1 + · · ·+ dj
1s + dj

0, j = 1, . . . ,m
(15)

Then the structure of the desired closed-loop matrix can be formed as a block diag-
onal matrix as

AZ =




(
0µ1−1,1 Iµ1−1

−d1

)
0 · · · 0

0
(

0µ2−1,1 Iµ2−1

−d2

)
· · · 0

...
...

. . .
...

0 0 · · ·
(

0µm−1,1 Iµm−1

−dm

)




.

(16)
It is noting that the eigenvalues of AZ are the same as the desired closed-loop poles.
From the equations (13) and/or (14) it is clear that for nonsingular matrix A the
desired matrix AZ must be also nonsingular as the matrices (In + BK) and Q are
of full rank.

From the derivation of the state-derivative feedback pole placement the necessary
conditions for arbitrary pole placement with nonzero eigenvalues can be described
in the following lemma.

Lemma 1. If the pole placement problem with nonzero self-conjugate desired poles
for the real pair (A, B) is solvable, then (A,B) is completely controllable, that is

rank[B, AB, . . . , An−1B] = n, (17)

and A is nonsingular.

P r o o f . Suppose that (A, B) is not completely controllable. Then there exist an
eigenvalue, say λ, of A and a vector w 6= 0 such that

wTA = λwT, wTB = 0.
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Then
wT [(In −BK) λ−A] = wTλ− λwT = 0

so that λ is a closed-loop eigenvalue as well, contradicting the change of poles to
desired ones. For the transformation into the Frobenius canonical form and/or
computing the feedback gain the controllability matrix R must be of full rank (the
open-loop system must be controllable).

From the condition that the closed-loop matrix in equation (3) must be defined
it follows that (In + BK) must be of full rank. The equation (13) is easy to be
rewritten as

AZ = (In + BF KF )−1 AF , KF = KQ. (18)

In order that the matrix (In + BF KF ) has a full rank, the matrices AF and AZ

must be both either nonsingular or singular. Thus if AZ is nonsingular, i. e. the
desired poles are nonzero, then the matrix AF must be also nonsingular, i. e. A is
nonsingular. 2

Equation (14) can be rewritten in terms of the row vectors qj (j = 1, . . . , m) of
Q−1 as

q1A
i (In + BK) = q1A

i, i = 0, . . . , µ1 − 2,
µ1−1∑

i=0

(−d1
i q1A

i−1
)
(In + BK) = q1A

µ1−2,

q2A
i (In + BK) = q2A

i, i = 0, . . . , µ2 − 2,
µ2−1∑

i=0

(−d2
i q2A

i−1
)
(In + BK) = q2A

µ2−1,

. . . ,

qmAi(In + BK) = qmAi, i = 0, . . . , µm − 2,
µm−1∑

i=0

(−dm
i qmAi−1

)
(In + BK) = qmAµm−1. (19)

Based on the definition of the transformation matrix Q−1, it can be easily verified
that

qjA
iB = 01,m, j = 1, . . . , m, i = 0, . . . , µj − 2. (20)

It is easy to write the m equations describing the closed-loop system as

µ1−1∑

i=0

(−d1
i q1A

i−1
)
(In + BK) = q1A

µ1−1,

µ2−1∑

i=0

(−d2
i q1A

i−1
)
(In + BK) = q2A

µ2−1,

. . . ,
µm−1∑

i=0

(−dm
i q1A

i−1
)
(In + BK) = qmAµm−1. (21)
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These equations can be put in a matrix form and solved algebraically. Then, the
feedback gain matrix K for the time-invariant system can be written as

K =




(
µ1−1∑
i=0

(−d1
i qiA

i−1)
)

B

...(
µm−1∑
i=0

(−dm
i qmAi−1)

)
B




−1 


q1A
µ1−1 +

µ1−1∑
i=0

(d1
i q1A

i−1)

...

qmAµm−1 +
µm−1∑
i=0

(dm
i qmAi−1)




= M−1
1




q1A
µi−1 +

µ1−1∑
i=0

(d1
i q1A

i−1)

...

qmAµm−1 +
µm−1∑
i=0

(dm
i qmAi−1)




. (22)

Utilizing (20) then matrix M1 can be given by

M1 =




µ1−1∑
i=0

(−d1
i q1A

i−1)

...
µm−1∑
i=0

(−dm
i q1A

i−1)




B = −




d1
0 0

. . .
0 dm

0







q1
...

qm


 A−1B. (23)

Therefore, M1 is nonsingular if A has full rank and B has full column rank and all
the desired poles are non-zero.

The gain matrix can be given by

K = −







q1
...

qm


A−1B




−1




1
d1
0

(
qmAµ1−1 +

µ1−1∑
i=0

(d1
i q1A

i−1)
)

...
1

dm
0

(
q1A

µm−1 +
µm−1∑
i=0

(dm
i qmAi−1)

)




.

(24)
The gain matrix can be rewritten in a simple form as

K = −







eT
µ1

(AR)−1

...
eT

n (AR)−1


 B




−1



1
d1
0

(
eT

µ1
(AR)−1D1(A)

)
...

1
dm
0

(
eT

n (AR)−1Dm(A)
)


 (25)

where Dj(A) ∈ Rn×n is the evaluation of the desired characteristic polynomial Dj

with the state matrix A and computed as

Dj(A) = Aµj + dj
µj−1A

µj−1 + · · ·+ dj
1A + dj

0In, j = 1, . . . , m. (26)

Now, it is considered the stabilizing feedback control defined by a set of desired
eigenvalues λi, i = 1, . . . , n, instead of the evaluated coefficients of the character-
istic equation. The desired eigenvalues are divided into self-conjugate m groups
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{λ1}, . . . , {λm} with µj poles in each and distributed these poles among the blocks.
The feedback gain matrix is

K = −







q1
...

qm


A−1B




−1




µ1∏
i=1

(
−1
λ1

i

) (
q1A

−1
µ1∏
i=1

(A− λ1
i In)

)

...
µm∏
i=1

(
−1
λm

1

) (
qmA−1

µm∏
i=1

(A− λm
mIn)

)




. (27)

An efficient numerical algorithm for computing the feedback gain matrix K is

K = −







q1
...

qm


A−1B




−1




µ1∏
i=1

(
1
λ1

i

)
q1′

µ1

...
µm∏
i=1

(
1

λm
i

)
qm′

µm




, (28)

where

qj′

U = eT
rj

(AR)−1, qj′
i = qj′

i−1(A− λj
iIn), j = 1, . . . ,m, i = 1, . . . , µj .

One can notice that the proposed algorithm is straightforward, easy to be imple-
mented and the feedback gain calculations are not done in the intermediate Frobenius
form and direct implementation is performed in the original state space. The above
algorithm is valid for desired eigenvalues that are real, complex-conjugate and re-
peated poles. Note that, the complex-conjugate eigenvalues should be placed within
the same block. It should be pointed out that different sequence of the desired poles
will lead to different feedback gain matrices. For smoothing and minimizing unde-
sirable transient variations, the largest poles can lie within the smallest block [19].
The transformation matrix Q−1 plays an important role to solve this problem.

Remark 1. For the case of (m = n) and utilizing (14) the feedback gain can be
given by:

K = B−1
(
AQA−1

Z − In

)
(29)

where AZ is in Jordan canonical form with the desired eigenvalues on the diagonal.

Remark 2. For single-input case (m = 1), the state-derivative feedback gain can
be written as:

If the coefficients di, i = 1, . . . , n, of the characteristic equation are given [1, 2]

K =
(

det(−A)
d0

) (
q′n +

n−1∑

i=0

(diq
′
i)

)
, (30)

where
q′0 = eT

n (AR)−1, q′i = q′i−1A.

Furthermore, if a set of desired eigenvalues λi, i = 1, . . . , n, are given [1, 2]

K =
det(A)∏n

i=1 λi
q′n, (31)



646 T.H. S. ABDELAZIZ AND M. VALÁŠEK

where
q′0 = eT

n (AR)−1, q′i = q′i−1(A− λiIn).

With the above results, we are now in the position to present the first main result
of this work.

Theorem 1. Consider the controllable multi-input time-invariant linear system (1).
If system matrix A is nonsingular and B has full column rank, then the sys-
tem (1) with the state-derivative feedback (2) can be stabilized with the unique feed-
back gain K (28) or (25) with the prescribed non-zero eigenvalues {λ1}, . . . , {λm},
with self-conjugate µj poles in each block, or with the real non-zero coefficients
{d1}, . . . , {dm}. For single-input case (m = 1), the feedback gain can be given by
(30) or (31).

However, on the other hand the control effort u(t) is the same for both state
feedback and state-derivative feedback. This can be derived from (14), (12), (11)
and the fact that the system has after the application of the feedback K the desired
dynamic properties

u(t) = −Kẋ(t) = −B+
(
AQA−1

Z Q−1 − In

)
QAZz(t)

= −B+(AQ−QAZ) u(t) = −B+(A−QAZQ−1)x(t) (32)
= −KSx(t)

where (·)+ denote the Moore–Penrose generalized inverse. The last expression is
exactly the traditional state feedback for the change from original system poles to
the desired ones and the same state transformation matrix Q−1.

Further, the transient response for state-derivative feedback is obtained by uti-
lizing (13)

(In + BK)−1A = QAZQ−1. (33)

Therefore, the closed-loop system is

ẋ(t) = QAZQ−1x(t) (34)

which is the identical response for state feedback with the same desired poles and
transformation matrix.

The above formulation is devoted for completely controllable systems. In the
following remark uncontrollable systems can be stabilized via state-derivative feed-
back.

Remark 3. If system (1) is not completely controllable, then by using a nonsin-
gular state transformation matrix T ∈ Rn×n

z(t) = Tx(t) (35)
we can obtain that

ż(t) =
(

A11 A12

0 A22

)
z(t) +

(
B1

0

)
u(t), z(t) =

(
x1(t)
x2(t)

)
(36)
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where the pair (A1,B1) is controllable and the vector x1(t) ∈ Rc has dimension
c = rank[B, AB, . . . , An−1B] < n, whilst the vector x2(t) ∈ Rn−c contains the
state components which are completely uncontrollable. The poles of matrix A22 are
referred to as uncontrollable poles of the system.

Let the control law be taken as

u(t) = −[K1, K2] ż(t) (37)

where K1 ∈ Rm×c and K2 ∈ Rm×n−c.
Then, the transformed closed-loop system can be described by

(
Ic + B1K1 B1K2

0 In−c

)
ż(t) =

(
A11 A12

0 A22

)
z(t). (38)

Therefore

ż(t) =
(

(IC + B1K1)−1 N
0 In−c

)(
A11 A12

0 A22

)
z(t) (39)

where N ∈ Rc×n−c.
Continuing the derivation, it is easy to obtain

ż(t)=AZz(t), AZ =
(

(IC + B1K1)−1A11 (In + B1K1)−1A12 + NA22

0 A22

)
.

(40)
Then, the eigenvalues of matrix AZ are those of (IC+B1K1)−1A11 and A22. There-
fore the state-derivative feedback affects only the controllable part of the system.
The controllable poles can be assigned at desired values using the above algorithm,
while the uncontrollable poles are not altered by feedback. If the matrix A22 is
stable, the system is said to be stabilized and it is possible to find the feedback gains
for which the closed-loop system is asymptotically stable. The matrix K2 does not
affect the closed-loop poles and may be arbitrarily chosen as K2 = 0.

Finally, the state-derivative feedback gain can be given by

K = [K1, 0n−c]T . (41)

Therefore, the controllable eigenvalues can be reassigned with desired values.

3. POLE PLACEMENT BY STATE–DERIVATIVE FEEDBACK
FOR MULTI–INPUT TIME–VARYING SYSTEMS

In this section, we extended the above methodology for the general multi-input linear
time-varying dynamic systems. Consider the multi-input time-varying linear system

ẋ(t) = A(t) x(t) + B(t)u(t) (42)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and the control vectors, respec-
tively, while A(t) ∈ Rn×n and B(t) ∈ Rn×m are the system and control gain
matrices, respectively. The sufficient conditions for the existence and unique so-
lution is to require that all elements of matrices A(t) and B(t) are bounded and
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n-times continuously differentiable with bounded derivatives, A(t) is of full rank
and B(t) ≡ [b1(t), . . . , bm(t)] is of full column rank in the time interval of interest,
t ∈ [t0,∞].

The objective here is to find a time-dependent linear feedback gain matrix that
stabilize the system by the time-varying state-derivative feedback control law

u(t) = −K(t) ẋ(t). (43)

Then the closed-loop system can be written as

ẋ(t) = (In + B(t)K(t))−1
A(t)x(t). (44)

Similar to the time-invariant case, matrix (In +B(t)K(t)) is assumed to have a full
rank in order that the closed-loop system is well defined.

One important difference between linear time-varying and time-invariant systems
is stability criteria. Linear time-invariant systems are stable if and only if all of the
system’s eigenvalues are negative. On the other hand, linear time-varying systems
may be unstable even if all of the system’s “frozen-time” eigenvalues (the eigen-
values of the system at any fixed time) are negative for all time. In this work
a stabilization of linear time-varying system is introduced. The scheme could be
used to determine stability of time-varying systems easily as well as to provide a
new horizon of designing controllers via state-derivative feedback. It is shown that
the performance for linear time-varying systems can be appropriately assigning the
closed-loop eigenvalues of linear time-varying systems such as linear time-invariant
cases.

The objective now is to construct the varying feedback gain matrix K(t) in order
to stabilize the system. In this treatment, it is utilized the Frobenius transformation
as an intermediate step to enable us to apply the pole placement approach according
to [19, 20] for stabilization of time-varying systems.

Let us take the following time-dependent state transformation that transforms
the system into a new state variable z(t) as

z(t) = Q−1(t)x(t), x(t) = Q(t)z(t) (45)

then the system is transformed to the Frobenius canonical form and the system
matrices can be computed as

AF (t) = Q−1(AQ− Q̇), BF (t) = Q−1B (46)

where AF (t) ∈ Rn×n and BF (t) ∈ Rn×m are the transformed system and control
gain matrices, respectively. The transformed system is the same as (7). Note that,
the eigenvalues of the time-varying dynamic system do not have the classical meaning
regarding its behavior nor its stability features.

The state transformation matrix Q−1(t) ∈ Rn×n can be calculated as follows

Q−1(t) = rows
(
q1

1 q1
2 · · · q1

µ1
q2

1 q2
2 · · · q2

µ2
· · · qm

1 qm
2 · · · qm

µm

)
(47)

where qj
i (t) ∈ R1×n is computed by using the recursive computations of the rows as

follows
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qj
1 =eT

rj
R−1, qj

i+1 =qj
iA+q̇j

i , rj =
j∑

k=1

µk, j =1, . . . , m, i=1, . . . , µ1−1, (48)

where µj is the controllability index and satisfy µj + · · ·+ µm = n.
The controllability matrix for the time-varying system R(t) ∈ Rn×n is formed as

R(t) = (r11 r12 · · · r1µ1 r21 r22 · · · r2µ2 · · · rm1 rm2 · · · rmµm) (49)

where rji(t) ∈ Rn can be computed algebraically using the recursion

rj1 = bj , rj,i+1 = Arji − ṙji, j = 1, . . . , m, i = 1, . . . µj − 1. (50)

The fundamental assumption imposed on the system is that, the controllability
matrix is of full rank with some choice of indices µj fixed in the studied time interval
t ∈ [t0,∞]. This means this controllable system is lexicographically-fixed [19, 20].

If Q(t), Q−1(t), and dQ(t)/dt are continuous and bounded matrices and Q−1(t)
has a full rank at the time interval of interest, t ∈ [t0,∞], then this transformation
is called a Lyapunov transformation. One way of observing this boundedness is to
check on the magnitude of the maximum singular value of Q(t) in this interval. It
is worth to note that, the Lyapunov transformation means that the transformation
from one system to the other preserves the property of stability.

Therefore, the stabilization of time-varying systems by pole placement approach
is based on computation of such time-varying feedback gain that modifies the original
system into the new system, which is Lyapunov equivalent to linear time-invariant
system. This linear time-invariant system is the Frobenius canonical form of the
modified system, the Laypunov transformation is the transformation into Frobe-
nius canonical form and the linear time-invariant system has the prescribed desired
poles that guarantee the stability and desired behaviour. This stable behaviour is a
reflection of that with constant and prescribed eigenvalues.

Assuming that the above transformation is a Lyapunov type and the controllabil-
ity matrix of the system is lexicographically-fixed, then the pole placement technique
that introduced in the previous section can be applied. In this treatment, the sim-
ilar steps as described in Section 2 for the time-invariant system to derive explicit
expression for the feedback gain for the time-varying system are used.

By differentiating the transformation equation (45) and substitute (44), the re-
sulting closed-loop system is

ż = Q−1ẋ +
d
dt

(Q−1)x =
(

Q−1(In + BK)−1A +
d
dt

(Q−1)
)

Qz = AZz, (51)

where AZ ∈ Rn×n is the closed-loop system matrix which given as (16) and can be
computed as

AZ =
(

Q−1(In + BK)−1A +
d
dt

(Q−1)
)

Q. (52)

Hence, the above equation can be reformulated as
(

AZQ−1 − d
dt

(Q−1)
)

A−1(In + BK) = Q−1. (53)



650 T.H. S. ABDELAZIZ AND M. VALÁŠEK

Applying the same procedure for the time-invariant system, it is easy to write the
m equations describing the system in terms of the row vectors qj

i (i = 1, . . . , µj ,
j = 1, . . . , m) of Q−1(t) as

(
µ1−1∑

i=0

(−d1
i q

1
i+1)− q̇1

µ1

)
A−1(In + BK) = q1

µ1
,

(
µ2−1∑

i=0

(−d2
i q

2
i+1)− q̇2

µ2

)
A−1(In + BK) = q2

µ2
,

...(
µm−1∑

i=0

(−dm
i qm

i+1)− q̇m
µm

)
A−1(In + BK) = qm

µm
(54)

with the desired (Hurwitz ) constant characteristic coefficients dj
i (i = 0, . . . , µj − 1,

j = 1, . . . , m) for the m groups. The simple reason for distributing these poles into
different groups is to obtain the smoother transient behavior of the system.

Continuing this procedure, these equations can be put in a matrix form. There-
fore, the feedback gain matrix K(t) for the time-varying system can be written
as

K(t) =




(
µ1−1∑
i=0

(−d1
i q

1
i+1)− q̇1

µ1

)
A−1B

...(
µm−1∑
i=0

(−dm
i qm

i+1)− q̇m
µm

)
A−1B




−1

(55)




q1
µ1

+
(

µ1−1∑
i=0

(d1
i q

1
i+1) + q̇1

µ1

)
A−1

...

qm
µm

+
(

µm−1∑
i=0

(dm
i qm

i+1) + q̇m
µm

)
A−1




.

The feedback gain matrix K(t) can be rewritten as

K(t) =




(
q1

µ1
−

(
q1

µ1+1 +
µ1−1∑
i=0

(d1
i q

1
i+1)

)
A−1

)
B

...(
qm

µm
−

(
qm

µm+1 +
µm−1∑
i=0

(dm
i qm

i+1)
)

A−1

)
B




−1

(56)




(
q1

µ1+1 +
µ1−1∑
i=0

(d1
i q

1
i+1)

)
A−1

...(
qm

µm+1 +
µm−1∑
i=0

(dm
i qm

i+1)
)

A−1




.
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Next, we consider a stabilizing feedback control defined by the desired m group
eigenvalues {λ1}, . . . , {λm}, with µj in each. An efficient numerical algorithm as
computes the gain is

K(t) =







q1
µ1
...

qm
µm


 B −




q1′
µ1+1
...

qm′
µm+1


 A−1B




−1

(57)




q1′
µ1+1
...

qm′
µm+1


 A−1 = M−1

2




q1′
µ1+1
...

qm′
µm+1


A−1

where

qj′
1 = eT

rj
R−1, qj′

i+1 = qj′
i (A− λj

iIn) + q̇j′
i , j = 1, . . . , m, i = 1, . . . , µj . (58)

Remark 4. The matrix ( (q1
µ1

)T · · · (qm
µm

)T )TB is upper triangular matrix and all
diagonal elements are one. The rows of this matrix are the µ1, µ1 + µ2, . . . , n rows
of matrix BF (t) and since we assume that B(t) is of full rank therefore this matrix
is nonsingular for the time interval of interest, t ∈ [t0,∞). Also matrix M2(t) can
be reformulated as

M2 =




µ1−1∑
i=0

(−d1
i q

1
i+1)− q̇1

µ1

...
µm−1∑
i=0

(−dm
i qm

i+1)− q̇m
µm




A−1B (59)

= −







d1 0
. . .

0 dm


 Q−1 +




q̇1
µ1
...

q̇m
µm





A−1B = −M3A

−1B.

Therefore this matrix in nonsingular if A(t) is nonsingular, matrices B(t) and M3(t)
have a full rank m and all desired poles are non-zero at the time interval of interest
t ∈ [t0,∞).

These derivations solve the problem for time-varying linear system if matrix A(t)
is nonsingular. Obviously, the technique presented here is directly implemented in
the state space with simple and efficient calculations.

Remark 5. For the case of (m = n) and utilizing (52), the feedback gain can be
computed by

K(t) = B−1

(
A

(
AZQ−1 − d

dt
(Q−1)

)−1

Q−1 − In

)
(60)

where AZ is in Jordan canonical form with the desired eigenvalues on the diagonal.
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Remark 6. For single-input case (m = 1), the state-derivative feedback gain K(t)
can be given by:

If the coefficients di, i = 1, . . . , n, of the characteristic equation are given [1]

K(t)

(
1−

(
qn+1 +

n−1∑

i=0

(diqi+1)

)
A−1B

)−1 (
qn+1 +

n−1∑

i=0

(diqi+1)

)
A−1 (61)

where
q1 = eT

nR−1, qi+1 = qiA + q̇i, i = 1, . . . , n.

Further, if the desired poles λi, i = 1, . . . , n are given [1]

K(t) =
(
1− q′n+1A

−1B
)−1

q′n+1A
−1 (62)

where
q′1 = eT

nR−1, q′i+1 = q′i(A− λiIn) + q̇′i, i = 1, . . . , n.

Based on that the following theorem for a multi-input time-varying system can be
formulated.

Theorem 2. Consider the lexicographically-fixed completely controllable, multi-
input time-varying linear control system (42). If the transformation Q(t) is of Lya-
punov kind, i. e. Q(t), Q−1(t) and dQ(t)/dt are continuous and bounded and Q−1(t)
is full rank, and A(t) is nonsingular and its inverse is bounded, B(t) is full column
rank, and M3(t) has full rank, then the system (42) with the state-derivative feed-
back (43) can be stabilized with the unique time-dependent feedback gain K(t) (56)
or (57). For single-input case (m = 1), the feedback gain can be computed by
(62) – (63). Everything must be valid at the time interval of interest t ∈ [t0,∞).

Further, the control effort u(t) and transient response x(t) can be derived from
(51) and (53) as

u(t) = −K(t) ẋ(t) = −B+

(
A

(
AZQ−1 − d

dt
(Q)−1

)−1

− In

) (
Qż(t) + Q̇z(t)

)

= −B+
(
A(AzQ

−1 + Q−1Q̇Q−1)−1Q−1 − In

)
(QAZ + Q̇) z(t)

= −B+
(
AQ(QAZ + Q̇)−1 − In

)
(QAZ + Q̇) z(t)

= −B+(AQ−QAZ − Q̇) z(t) = −B+

(
A−Q

(
AZQ−1 − d

dt
(Q−1)

))
x(t)

= −KS(t) x(t) (63)

and
ẋ(t) = (In + B(t)K(t))−1A(t)x(t)

= Q

(
AZQ−1 − d

dt
(Q−1)

)
x(t). (64)

Similar to the case of time-invariant system, the last expressions (63) and (64)
are exactly for the time varying system via state feedback with the same desired
eigenvalues and transformation matrix Q−1(t).
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4. ILLUSTRATIVE EXAMPLES

In this section, the proposed pole placement techniques are applied and simulated
to several systems to demonstrate the feasibility and effectiveness of the previous
results.

Example 1. The configuration of the mechanical system and its parameters are
shown in Figure 1. The dynamic equation of this system, assuming small angle ϕ,
can be described in the state-space from using the state vector x(t) = [ x1 x2 ẋ1 ẋ2 ]
as:

ẋ =




0 0 1 0
0 0 0 1

−k1c1 −k2c2 −b1c1 −b2c2

−k1c1 −k2c1 −b1c2 −b2c1


 x +




0 0
0 0
c1 c2

c2 c1




(
u1

u2

)

where

c1 =
1
m

+
L2

I
, c1 =

1
m
− L2

I
, x3 = 0.5(x1 + x2) and ϕ = 0.5(x1 − x2)/L

where m and I represent the mass and inertia of the mass, k1 and k2 are the spring
constants, b1 and b2 are the damper constants, x1 and x2 are the mass displacement
from both sides, x3 is the vertical displacement of the center of mass, ϕ is the
inclination angle of the mass with the horizontal, 2L is the distance between two
supporting points, and u1 andu2 are the control inputs.

2L 

k2b2 b1

 u1

ϕ

m, I

k1

x3

 u2

x2 x1

Fig. 1.

The model parameters are taken as m = 10 kg, I = 1 Kg ·m2, L = 1m, k1 =
500N/m, k2 = 700N/m, b1 = 10 N · s/m and b2 = 20 N · s/m.

The original system poles are −15.1384± 31.1738i and −1.3616± 10.7106i. The
desired closed-loop eigenvalues are selected as, {λ1

1, λ
1
2} = −5±2i, for the first block,

while the second block are {λ2
1, λ

2
2} = −10± 5i. The transformation matrix and the

equivalent Frobenius canonical form are

Q−1 =




2.75 2.25 0 0
0 0 2.75 2.25

2.25 2.25 0 0
0 0 2.25 2.75



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and

ż =




0 1 0 0
−550 −11 450 9

0 0 0 1
630 18 −770 −22


 z +




0 0
1 0
0 0
0 1




(
u1

u2

)
.

Then the computed state-derivative feedback gain is

K =
(

349.5517 228.7241 41.3052 30.5224
−320.2138 −169.9931 −48.1314 −34.6893

)
.

Applying the control synthesis procedure of pole placement from Section 2 to
this system. In this simulation, the initial conditions of the states are taken as,
x(t0) = [−0.01, 0.02 − 0.02, 0.01]T The transient response and control input are
shown in Figure 2. In addition, the vertical displacement and inclination angle are
displayed in Figures 3.

Fig. 2. Transient response and control input of the system via state-derivative feedback.

For a comparison, the computed state feedback gain matrix for the same desired
system poles using [19] is

KS =
( −420.2500 65.2500 17.5000 22.5000

281.2500 −356.2500 45.0000 35.0000

)
.

The simulation results illustrated that the performance of both cases are identical
as the system obtains the same poles. Therefore the control inputs are in both cases
identical and this means that the robustness properties of both feedback controllers
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Fig. 3. Vertical displacement of center of mass and the inclination angle with the

horizontal.

are the same if properties of sensors are the same. It is also clear that the same
performance is achieved in case of state-derivative feedback controller with lower gain
matrix elements than by the state feedback, i. e. ‖K2‖2 = 558.6532 and ‖KS‖2 =
625.2565.

Fig. 4. Transient response and control input of the system via state feedback [19].

Example 2. Consider the dynamic equation of the multi-input linear time-varying
system

ẋ(t) =




0.1e−2t −0.1 0
0.1 0.1 0.1e−t

0.1e−t 0 0.1


 x(t) +




0 0
0.1 0.1e−t

0 0.1


 u(t).
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This system is unstable and the zero-input transient response of open-loop system
is shown in Figure 5.

Fig. 5. Zero-input transient response of open-loop system.

The controllability indices are µ1 = 2 and µ2 = 1. The controllability matrix and
its inverse are

R(t) =




0 −0.01 0
0.1 0.01 0.1e−t

0 0 0.1


 and R−1(t) =




10 10 −10e−t

−100 0 0
0 0 10


 .

It is clear that the controllability matrix is a full rank in the time interval of interest
t ∈ [t0,∞) and the system is lexicographically-fixed. The rows of the transformation
matrix can be computed as

q1
1 = eT

r1
R−1 = (−100 0 0 ), q1

2 = q1
1A + q̇1

1 = (−10e−2t 10 0 ),

q2
1 = eT

r2
R−1 = ( 0 0 10 ).

Then, the transformation matrix, inverse, and derivative are

Q−1(t) =




q1
1

q1
2

q2
1


 =




−100 0 0
−10e−2t 10 0

0 0 10


 , Q(t) =




−0.01 0 0
−0.01e−2t 0.1 0

0 0 0.1


 ,

d
dt

(Q−1(t)) =




0 0 0
20e−2t 0 0

0 0 0


 and Q̇(t) =




0 0 0
0.02e−2t 0 0

0 0 0


 .

These matrices are continuous and bounded and the transformation matrix has a full
rank at the time interval of interest t ∈ [t0,∞), then this is a Lyapunov equivalent
transformation and the proposed technique can be applied. The computation of the
feedback gain matrix can be done as follows:

First, the vectors qj′
i , j = 1, . . . , m, i = 1, . . . , µj + 1.
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q1′
1 = q1

1 = (−100 0 0 ),

q1′
2 = q1′

1 (A− λ1
1In) + q̇1′

1 = (−10e−2t + 100λ1
1 10 0 )

q1′
3 = q1′

2 (A− λ1
2In) + q̇1′

2

=
(−e−4t + 10e−2t(λ1

1 + λ1
2 + 2)− 100λ1

1λ
1
2 + 1 e−2t − 10(λ1

1 − λ1
2) + 1 e−t

)
,

q2′
1 = q2

1 = ( 0 0 10 ),

q2′
2 = q2′

1 (A− λ2
1In) + q̇2′

1 = ( e−t 0 1− 10λ2
1 ),

(
q1

2

q2
1

)
B =

(
1 e−t

0 1

)
,

(
q1′

3

q2′
2

)
A−1B =

(
20e−2t − 100λ1

1λ
1
2 + 1 e−t

10λ2
1e
−t 1− 10λ2

1

)
,

((
q1

2

q2
1

)
B −

(
q1′

3

q2′
2

)
A−1B

)−1

=




1
−20e−2t + 100λ1

1λ
1
2

0

e−t

−20e−2t + 100λ1
1λ

1
2

1
10λ2

1

,




(
q1′

3

q2′
2

)
A−1 =100

(
1.9e−2t+λ1

1+λ1
2 − 10λ1

1λ
1
2 2e−2t−10λ1

1λ
1
2+0.1 −2e−3t+10λ1

1λ
1
2e
−t

λ2
1e
−t λ2

1e
−t 0.1−λ2

1(e
−2t+1)

)
.

Finally, the state-derivative feedback gain matrix is

K(t) =
((

q1
2

q2
1

)
B −

(
q1′

3

q2′
2

)
A−1B

)−1 (
q1′

3

q2′
2

)
A−1

=




e−2t − 10(λ1
1 + λ1

2)
2e−2t − 10λ1

1 + λ1
2

− 10
−1

2e−2t − 10λ1
1λ

1
2 − 10

10e−t

e−3t − 10(λ1
1 + λ2

2) e−t

2e−2t − 10λ1
1λ

1
2

−e−t

2e−2t − 10λ1
1λ

1
2

1
λ1
− 10


 .

Given the desired closed-loop eigenvalues of the first block {λ1
1, λ

1
2} = −2± i, while,

the second block λ2
1 = −3 and the initial state conditions x(t0) = [0.2, −0.1, −1]T.

The transient response and control input are shown in Figure 6. The elements of
gain matrix are shown in Figure 7a.

As a comparison with the state feedback, the elements of the state gain matrix
is calculated from [19], and displayed in Figure 7b

KS(t)=
(
−e−4t+10e−2t(λ1

1+λ1
2+1.9)−100λ1

1λ
1
2+1 e−2t − 10(λ1

1+λ1
2)+1 10λ2

1e
−t

e−t 0.0 1−10λ2
1

)
.

From these results, we notice the high reduction in the state-derivative feedback
gain matrix compared to the well-known state feedback approach with the same
performance for the time-invariant and time-varying systems.

In this work, it is shown that how the pole placement approaches can be used
to design a controller-based state-derivative feedback control, which yields a closed-
loop system with specified characteristics. The approach is relevant for design with
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Fig. 6. Transient response of the closed-loop system via state-derivative feedback.

preservation of stability when some necessary and sufficient conditions are provided.
Compared to state feedback, the state-derivative feedback controller in some cases
achieves the same performance with lower gain elements. From practical point of
view, it is desirable to determine feedback matrices with smaller gains. Intuitively,
this must be advantageous since small gains are beneficial to reduce noise amplifi-
cation.

5. CONCLUSIONS

This paper has presented a new technique and tool for solving the pole placement
problem. The main result of this work is a computationally efficient algorithm for
solving the pole placement problem of linear multi-input systems with nonsingular
system matrix by state-derivative feedback. This problem is treated both for a linear
time-invariant and time-varying multi-input systems. It is the first general treatment
for multi-input pole placement by state-derivative feedback in the literature.

The technique is based on the transformation of a linear system into canonical
form to derive the feedback gain matrix. This transformation provides a great
simplification to this problem. The desired poles are placed within both a linear
time-invariant and time-varying multi-input systems in such a way that the smoother
transient response characteristics are preserved.
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Fig. 7. (a) State-derivative feedback gain elements and

(b) State feedback gain elements.

The simulation results prove the feasibility and effectiveness of the proposed tech-
nique. The achieved state-derivative controllers provide the same performance that
can be obtained by state feedback. An interesting feature of the state-derivative
feedback is that it gives in many cases the feedback gains with smaller absolute
values than traditional state feedback gains.

(Received April 26, 2004.)
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