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EXTENSION TO COPULAS AND QUASI–COPULAS
AS SPECIAL 1-LIPSCHITZ AGGREGATION OPERATORS

Erich Peter Klement and Anna Kolesárová

Smallest and greatest 1-Lipschitz aggregation operators with given diagonal section,
opposite diagonal section, and with graphs passing through a single point of the unit cube,
respectively, are determined. These results are used to find smallest and greatest copulas
and quasi-copulas with these properties (provided they exist).

Keywords: copula, quasi-copula, 1-Lipschitz aggregation operator, diagonal

AMS Subject Classification: 60E05, 26B99

1. INTRODUCTION

Copulas (first mentioned in [17], for an excellent survey see [13]) and quasi-copulas
(introduced in [1] and conveniently characterized in [9]) play a key role in the analysis
of bivariate distribution functions with given marginals. The basic result in this
context is Sklar’s Theorem [17, 18] showing that the joint distribution of a random
vector and the corresponding marginal distributions are linked by some copula.

A current field of research is the extension of functions defined on a subset of the
unit square, e. g., on its diagonal or in a single point, to quasi-copulas or copulas.
Several results in this context can be found in [2, 7, 8, 14, 15, 19].

Aggregation operators form a rather new and very general framework to combine
different pieces of information (for a recent survey see [3]), and many well-known
operations in logic, probability theory, statistics, and decision theory fit into this
concept.

As a matter of fact, many results for copulas and quasi-copulas can be derived
mainly because they are 1-Lipschitz aggregation operators [11]. Therefore, a careful
study of such aggregation operators is helpful for the understanding of the structure
of copulas and quasi-copulas, too.

In this paper we look for 1-Lipschitz aggregation operators with given diagonal
and opposite diagonal section, as well as those whose graphs pass through a single
point of the unit cube. Each of these sets of 1-Lipschitz aggregation operators will
be shown to have a smallest and a greatest element.

These results can be carried over to the case of quasi-copulas with the correspond-
ing properties. Again, the sets of quasi-copulas with given diagonal and opposite
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diagonal section, as well as those whose graphs pass through a single point of the
unit cube, have a smallest and a greatest element.

In several cases they also can be used to determine smallest and greatest copulas
with the desired properties. However, some sets of copulas, e. g., the set of copulas
with given diagonal section, do not always have a greatest element.

2. PRELIMINARIES

Recall that a (binary) aggregation operator is a function A : [0, 1]2 → [0, 1] which is
non-decreasing (in each component) and satisfies A(0, 0) = 0 and A(1, 1) = 1.

An aggregation operator A satisfying the Lipschitz condition with constant 1,
i. e., for all x1, x2, y1, y2 ∈ [0, 1]

|A(x1, y1)−A(x2, y2)| ≤ |x1 − x2|+ |y1 − y2|,

will be called a 1-Lipschitz aggregation operator.
Many well-known binary aggregation operators, such as the arithmetic mean, the

product, the minimum, the maximum, and weighted means are 1-Lipschitz aggre-
gation operators (for more details see, e. g., [3]). Also copulas and quasi-copulas are
special 1-Lipschitz aggregation operators.

A (two-dimensional) copula is a function C : [0, 1]2 → [0, 1] such that C(0, x) =
C(x, 0) = 0 and C(1, x) = C(x, 1) = x for all x ∈ [0, 1], and C is 2-increasing, i. e.,
for all x1, x2, y1, y2 ∈ [0, 1] with x1 ≤ x2 and y1 ≤ y2 for the volume VC of the
rectangle [x1, x2]× [y1, y2] we have

VC([x1, x2]× [y1, y2]) = C(x1, y1)− C(x1, y2) + C(x2, y2)− C(x2, y1) ≥ 0. (2.1)

A (two-dimensional) quasi-copula is a function Q : [0, 1]2 → [0, 1] such that
Q(0, x) = Q(x, 0) = 0 and Q(1, x) = Q(x, 1) = x for all x ∈ [0, 1], Q is non-
decreasing (in each component), and Q is 1-Lipschitz.

Obviously, each copula is a quasi-copula but not vice versa, and a 1-Lipschitz
aggregation operator A : [0, 1]2 → [0, 1] is a quasi-copula if and only if A(0, 1) =
A(1, 0) = 0 (see [11]) or, equivalently, if A ≤ M , where the Fréchet-Hoeffding upper
bound M is given by M(x, y) = min(x, y). To simplify some formulas, we shall also
use the infix notations x ∧ y for min(x, y) and x ∨ y for max(x, y).

Each 1-Lipschitz aggregation operator A satisfies

W ≤ A ≤ W ∗, (2.2)

where the Fréchet-Hoeffding lower bound W is given by W (x, y) = (x + y − 1) ∨ 0,
and its dual W ∗(x, y) = (x + y) ∧ 1. Each quasi-copula Q satisfies

W ≤ Q ≤ M, (2.3)

and the same holds for copulas.
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Note that each of the following sets of functions from [0, 1]2 to R forms a lattice
(with respect to the usual pointwise order):

{F : [0, 1]2 → R | F is non-decreasing in the first component}, (2.4)
{F : [0, 1]2 → R | F is non-decreasing in the second component}, (2.5)
{F : [0, 1]2 → R | F is 1-Lipschitz}, (2.6)

i. e., monotonicity and the 1-Lipschitz property are preserved under minimum and
maximum (compare [11, 12]).

Starting from a non-decreasing 1-Lipschitz function, it is possible to force the
boundary conditions to obtain a 1-Lipschitz aggregation operator and a quasi-copula.

Lemma 2.1.

(i) If F : [0, 1]2 → R is non-decreasing and 1-Lipschitz then

(W ∨ F ) ∧W ∗ = W ∨ (F ∧W ∗)

is a 1-Lipschitz aggregation operator.

(ii) If A : [0, 1]2 → [0, 1] is a 1-Lipschitz aggregation operator then M ∧ A is a
quasi-copula.

P r o o f . Observe first that (W ∨F )∧W ∗ = W ∨ (F ∧W ∗) follows from W ≤ W ∗.
Since the sets in (2.4 – 2.6) are lattices, the functions (W ∨ F ) ∧ W ∗ and M ∧ A
are both non-decreasing and 1-Lipschitz. The respective boundary conditions are
implied by W ≤ (W ∨ F ) ∧W ∗ ≤ W ∗ and by the fact that M ∧A is 1-Lipschitz.¤

The following concept is motivated by the Frank functional equation [5], originally
studied and solved in the context of associative copulas (compare also [10, 16]):

For each 1-Lipschitz aggregation operator A the function A∗ : [0, 1]2 → [0, 1]
given by

A∗(x, y) = x + y −A(x, y), (2.7)

is also a 1-Lipschitz aggregation operator [11]. Clearly, for 1-Lipschitz aggregation
operators A,B we have A∗ ≤ B∗ if and only if A ≥ B.

3. 1-LIPSCHITZ AGGREGATION OPERATORS WITH GIVEN
DIAGONAL SECTION

Given a 1-Lipschitz aggregation operator A, its diagonal section δA : [0, 1] → [0, 1]
given by δA(x) = A(x, x) necessarily satisfies the following properties:

(D1) δA(0) = 0 and δA(1) = 1,

(D2) δA is non-decreasing,
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(D3) δA is 2-Lipschitz.

The question arises whether for each function δ : [0, 1] → [0, 1] satisfying proper-
ties (D1) – (D3) (briefly called a diagonal in the sequel) there is some 1-Lipschitz
aggregation operator whose diagonal section coincides with δ.

Clearly, for each diagonal δ the functions A1, A2 : [0, 1]2 → [0, 1] which are given
by A1(x, y) = δ(x)+δ(y)

2 and A2(x, y) = δ(x+y
2 ) are 1-Lipschitz aggregation operators

with diagonal section δ.
Moreover, it will turn out that the set of 1-Lipschitz aggregation operators with

given diagonal section δ always has a greatest element A
δ

and a smallest element
Aδ. As a consequence, each 1-Lipschitz aggregation operator A with Aδ ≤ A ≤ A

δ

also has diagonal section δ.
It is not difficult to see that for each 1-Lipschitz aggregation operator A, for all

(x, y) ∈ [0, 1]2 and for each z ∈ [x ∧ y, x ∨ y] we get

A(x, y) ≤ x ∨ y + δA(z)− z. (3.8)

The infimum of the right-hand side of this inequality turns out not only to be a
1-Lipschitz aggregation operator, but the greatest 1-Lipschitz aggregation operator
with diagonal section δA.

Theorem 3.1. For each function δ : [0, 1] → [0, 1] satisfying (D1) – (D3), the
function A

δ
: [0, 1]2 → [0, 1] defined by

A
δ
(x, y) = x ∨ y +

∧
{δ(z)− z | z ∈ [x ∧ y, x ∨ y]}

is the greatest 1-Lipschitz aggregation operator with diagonal section δ.

P r o o f . Obviously, the diagonal section of A
δ

coincides with δ, and the boundary
conditions A

δ
(0, 0) = 0 and A

δ
(1, 1) = 1 hold.

Since the function A
δ

is commutative it suffices to prove its monotonicity in the
first component. Fix arbitrary numbers x1, x2, y ∈ [0, 1] with x1 < x2 and consider
the following three cases.

(i) If y ≤ x1 < x2 then we have

A
δ
(x2, y) =

∧
{δ(z) + x2 − z | z ∈ [y, x2]}

=
∧
{δ(z) + x2 − z | z ∈ [y, x1]} ∧

∧
{δ(z) + x2 − z | z ∈ [x1, x2]}

=
(
x2 − x1 + A

δ
(x1, y)

) ∧
∧
{δ(z) + x2 − z | z ∈ [x1, x2]}

≥ (
x2 − x1 + A

δ
(x1, y)

) ∧ δ(x1)

≥ A
δ
(x1, y)

because of
∧ {δ(z) + x2 − z | z ∈ [x1, x2]} ≥ δ(x1) ≥ A

δ
(x1, y).
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(ii) If x1 < x2 ≤ y then we get

A
δ
(x2, y) =

∧
{δ(z) + y − z | z ∈ [x2, y]}

≥
∧
{δ(z) + y − z | z ∈ [x1, y]}

= A
δ
(x1, y).

(iii) If x1 ≤ y ≤ x2, the first two cases imply

A
δ
(x2, y) ≥ A

δ
(y, y) ≥ A

δ
(x1, y).

These cases together prove the monotonicity of A
δ

in its first component.
Because of the commutativity of A

δ
it suffices to prove the 1-Lipschitz property

of A
δ

in its second component. Fix again arbitrary numbers x1, x2, y ∈ [0, 1] with
x1 < x2 and consider the following three cases.

(i) If y ≤ x1 < x2, then similarly as in the corresponding case in the proof of the
monotonicity of A

δ
we get

A
δ
(x2, y) =

(
x2 − x1 + A

δ
(x1, y)

)
∧

∧
{δ(z) + x2 − z | z ∈ [x1, x2]}

≤ A
δ
(x1, y) + x2 − x1.

(ii) If x1 < x2 ≤ y then we get, taking into account that the function δ is 2-
Lipschitz,

A
δ
(x1, y) = A

δ
(x2, y) ∧

∧
{δ(z) + y − z | z ∈ [x1, x2]}

≥ A
δ
(x2, y) ∧ (

A
δ
(x2, y)− (x2 − x1)

)

= A
δ
(x2, y)− (x2 − x1),

i. e., A
δ
(x2, y) ≤ A

δ
(x1, y) + x2 − x1, because of

∧
{δ(z) + y − z | z ∈ [x1, x2]} ≥ δ(x2) + y − x2 − (x2 − x1)

≥
∧
{δ(z) + y − z | z ∈ [x2, y]} − (x2 − x1)

= A
δ
(x2, y)− (x2 − x1).

(iii) If x1 ≤ y ≤ x2, then the first two cases imply

A
δ
(x2, y) = A

δ
(x2, y)−A

δ
(y, y) + A

δ
(y, y)

≤ x2 − y + A
δ
(x1, y) + y − x1

= A
δ
(x1, y) + x2 − x1.

Cases (i) – (iii) show that A
δ

is 1-Lipschitz in its second component.
Finally, since (3.8) holds for all z ∈ [x ∧ y, x ∨ y], A

δ
is the greatest 1-Lipschitz

aggregation operator whose diagonal section coincides with δ. ¤
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Fig. 1. Domain, contour and 3D plots of the smallest (top) and greatest 1-Lipschitz

aggregation operators with diagonal section δΠ (see Example 3.3 (iii)).

For each diagonal δ, the function δ∗ : [0, 1] → [0, 1] defined by δ∗(x) = 2x−δ(x) is
also a diagonal. Moreover, a 1-Lipschitz aggregation operator A has diagonal section
δ if and only if A∗, as defined by (2.7), has diagonal section δ∗.

Since the transition from A to A∗ reverses the order between aggregation opera-
tors, we get immediately the following result concerning smallest 1-Lipschitz aggre-
gation operator with given diagonal section.

Corollary 3.2. For each function δ : [0, 1] → [0, 1] satisfying (D1) – (D3), the
function Aδ : [0, 1]2 → [0, 1] defined by

Aδ(x, y) = x ∧ y +
∨
{δ(z)− z | z ∈ [x ∧ y, x ∨ y]} (3.9)

is the smallest 1-Lipschitz aggregation operator with diagonal section δ.

Note that this means
(
Aδ

)∗ = A
δ∗

and
(
A

δ)∗ = Aδ∗ . Let us illustrate these
results for the diagonal sections of the Fréchet-Hoeffding bounds M and W , for the
product Π and for some other diagonal.

Example 3.3. Consider the diagonal sections δM , δW , δΠ : [0, 1] → [0, 1] of M , W
and Π given by δM (x) = x, δW (x) = (2x− 1) ∨ 0 and δΠ(x) = x2, respectively.



Extension to Copulas and Quasi-Copulas 335

(i) The greatest and smallest 1-Lipschitz aggregation operators A
δM and AδM

with diagonal section δM are M∗ and M , respectively.

(ii) The greatest 1-Lipschitz aggregation operator A
δW with diagonal section δW

is given by

A
δW (x, y) =

{
W (x, y) if (x, y) ∈ [

0, 1
2

]2 ∪ ]
1
2 , 1

]2
,

x ∨ y − 1
2 otherwise.

Obviously, W is the smallest 1-Lipschitz aggregation AδW operator with diag-
onal section δW .

(iii) The greatest 1-Lipschitz aggregation operator A
δΠ and the smallest 1-Lipschitz

aggregation operator AδΠ with diagonal section δΠ are given by

A
δΠ(x, y) =





x2 ∨ y2 if (x, y) ∈ [
0, 1

2

]2
,

|x− y|+ x2 ∧ y2 if (x, y) ∈ ]
1
2 , 1

]2
,

x ∨ y − 1
4 otherwise.

AδΠ(x, y) =
{

x2 ∧ y2 if x + y ≤ 1,
x2 ∨ y2 − |x− y| otherwise.

Observe that we have the strict inequalities AδΠ < Π < A
δΠ .

Example 3.4. Consider the function δ : [0, 1] → [0, 1] defined by

δ(x) = (2x− 1) ∨ (x− 1
3
) ∨ 0. (3.10)

Clearly δ satisfies (D1) – (D3), and the greatest 1-Lipschitz aggregation operator A
δ

and the smallest 1-Lipschitz aggregation operator Aδ with diagonal section δ are
given by

A
δ
(x, y) =

{
W (x, y) if (x, y) ∈ [

0, 1
3

]2 ∪ [
2
3 , 1

]2
,

x ∨ y − 1
3 otherwise,

(3.11)

Aδ(x, y) =

{
x ∧ y − 1

3 if (x, y) ∈ [
1
3 , 2

3

]2
,

W (x, y) otherwise.
(3.12)

4. 1-LIPSCHITZ AGGREGATION OPERATORS WITH GIVEN
OPPOSITE DIAGONAL SECTION

In this section we show that also the set of 1-Lipschitz aggregation operators with
given opposite diagonal section possesses a greatest and a smallest element.
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Fig. 2. Smallest (left) and greatest 1-Lipschitz aggregation operators with diagonal

section δ (see Example 3.4).

Given a 1-Lipschitz aggregation operator A, then its opposite diagonal section
ωA : [0, 1] → [0, 1] is defined by ωA(x) = A(x, 1 − x). For an arbitrary 1-Lipschitz
aggregation operator A we can only say that ωA is a 1-Lipschitz function from [0, 1]
to [0, 1].

It is not difficult to see that, as a consequence of its monotonicity and its 1-
Lipschitz property, for each 1-Lipschitz aggregation operator A and for all (x, y) ∈
[0, 1]2 we have

A(x, y) ≤ W (x, y) +
∧
{ωA(z) | z ∈ [x ∧ (1− y), x ∨ (1− y)]}. (4.13)

Again, we start with an arbitrary 1-Lipschitz function ω : [0, 1] → [0, 1] and look
whether there is some 1-Lipschitz aggregation operator A such that for all x ∈ [0, 1]
we have ω(x) = A(x, 1− x), i. e., whose opposite diagonal section coincides with ω,
and try to identify the greatest and smallest 1-Lipschitz aggregation operators with
this property, provided they exist.

Motivated by (4.13), we obtain the following result:

Proposition 4.1. For each 1-Lipschitz function ω : [0, 1] → [0, 1], the function
Fω : [0, 1]2 → R defined by

Fω(x, y) = W (x, y) +
∧
{ω(z) | z ∈ [x ∧ (1− y), x ∨ (1− y)]} (4.14)

is a non-decreasing 1-Lipschitz function with Fω(x, 1− x) = ω(x) for all x ∈ [0, 1].

P r o o f . The monotonicity and the 1-Lipschitz property of Fω can be shown in a
similar way as in the proof of Theorem 3.1. Evidently, Fω(x, 1 − x) = ω(x) for all
x ∈ [0, 1]. ¤

For example, for the trivial functions ω0, ω1 : [0, 1] → [0, 1] given by ω0(x) = 0
and ω1(x) = 1 we obtain Fω0 = W and Fω1 = W + 1. Note that Fω1 is not an
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aggregation operator because of Ran(Fω1) = [0, 2]. Indeed, in general we only know
Fω(0, 0) ≥ 0 and Fω(1, 1) ≥ 1. Therefore, the function Fω defined by (4.14) is a
1-Lipschitz aggregation operator if and only if it satisfies the boundary conditions
for aggregation operators:

Proposition 4.2. Let ω : [0, 1] → [0, 1] be a 1-Lipschitz function and assume that
Fω : [0, 1]2 → R is as in (4.14). Then the function Aω : [0, 1]2 → [0, 1] defined by

Aω = Fω ∧W ∗ (4.15)

is the greatest 1-Lipschitz aggregation operator with opposite diagonal section ω.

P r o o f . That Aω is a 1-Lipschitz aggregation operator follows from Proposi-
tion 4.1 and Lemma 2.1, taking into account W ≤ Fω. Clearly Aω(x, 1− x) = ω(x)
for each x ∈ [0, 1], and due to (4.13) and (2.2), Aω is the greatest 1-Lipschitz aggre-
gation operator with this property. ¤

As an immediate consequence of Proposition 4.2 we get:

Corollary 4.3. Let ω : [0, 1] → [0, 1] be a 1-Lipschitz function. The function
Fω : [0, 1]2 → [0, 1] defined by (4.14) is the greatest 1-Lipschitz aggregation operator
with opposite diagonal section ω if and only if ω satisfies

∧{ω(z) | z ∈ [0, 1]} = 0.

Note that a 1-Lipschitz aggregation operator A has opposite diagonal section ωA

if and only if the 1-Lipschitz aggregation operator A∗ given by (2.7) has opposite
diagonal section ωA∗ , the latter being given by ωA∗(x) = 1− ωA(x).

Since the transition from A to A∗ reverses the order between aggregation op-
erators, for each 1-Lipschitz function ω : [0, 1] → [0, 1] the smallest 1-Lipschitz
aggregation Aω operator with opposite diagonal section is given by Aω =

(
Aω∗

)∗,
where ω∗(x) = 1− ω(x). To be precise, in analogy to Propositions 4.1 and 4.2 and
Corollary 4.3 we get:

Corollary 4.4. Let ω : [0, 1] → [0, 1] be a 1-Lipschitz function.

(i) The function Gω : [0, 1]2 → R defined by

Gω(x, y) = W ∗(x, y)− 1 +
∨
{ω(z) | z ∈ [x ∧ (1− y), x ∨ (1− y)]} (4.16)

is a non-decreasing 1-Lipschitz function with Gω(x, 1 − x) = ω(x) for all x ∈
[0, 1].

(ii) The function Aω : [0, 1]2 → [0, 1] defined by Aω = Gω ∨W is the smallest 1-
Lipschitz aggregation operator with opposite diagonal section ω.

(iii) The function Gω is the smallest 1-Lipschitz aggregation operator with opposite
diagonal section ω if and only if

∨{ω(z) | z ∈ [0, 1]} = 1.
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Fig. 3. The smallest (top) and greatest 1-Lipschitz aggregation operators with opposite

diagonal section ωΠ (see Example 4.5 (iii)).

Example 4.5. Consider the opposite diagonal sections ωW , ωM , ωΠ : [0, 1] → [0, 1]
of W , M and Π given by ωW (x) = 0, ωM (x) = x ∧ (1− x) and ωΠ(x) = x · (1− x),
respectively.

(i) W is the only 1-Lipschitz aggregation operator with opposite diagonal section
ωW .

(ii) The smallest 1-Lipschitz aggregation operator with opposite diagonal section
ωM is (〈0, 1

2 ,W 〉, 〈 12 , 1,W 〉), i. e., an ordinal sum of two copies of the Fréchet-
Hoeffding lower bound W . It can be shown that M is the greatest 1-Lipschitz
aggregation operator with opposite diagonal section ωM .

(iii) The greatest 1-Lipschitz operator AωΠ and the smallest 1-Lipschitz operator
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Fig. 4. The smallest (left) and greatest 1-Lipschitz aggregation operators with opposite

diagonal section ω (see Example 4.6).

AωΠ
with opposite diagonal section ωΠ are given by

AωΠ(x, y) =

{
(x ∧ y) · (1− x ∧ y) if x + y ≤ 1,

W (x, y) + (x ∨ y) · (1− x ∨ y) otherwise,

AωΠ
(x, y) =





(x + y − 3
4 ) ∨ 0 if (x, y) ∈ [

0, 1
2

]2
,

(x + y − 1) ∨ 1
4 if (x, y) ∈ ]

1
2 , 1

]2
,

x(1− x) if x ∈ [
0, 1

2

]
and y ∈ ]

1− x, 1− x2
]
,

y(1− y) if y ∈ [
0, 1

2

]
and x ∈ ]

1− y, 1− y2
]
,

y − (1− x)2 if x ∈ ]
1
2 , 1

]
and y ∈ [

(1− x)2, 1− x
]
,

x− (1− y)2 if y ∈ ]
1
2 , 1

]
and x ∈ [

(1− y)2, 1− y
]
,

W (x, y) otherwise.

Example 4.6. Consider the 1-Lipschitz function ω : [0, 1] → [0, 1] defined by
ω(x) = x ∧ (1 − x) ∧ 1

3 . The greatest 1-Lipschitz operator Aω and the smallest
1-Lipschitz operator Aω with opposite diagonal section ω are given by

Aω =
(
〈1
3
,
2
3
, W 〉

)
,

Aω(x, y) = x ∧ y ∧
(

(x + y − 2
3
) ∨ 0

)
∧

(
(x + y − 1) ∨ 1

3

)
.

5. 1-LIPSCHITZ AGGREGATION OPERATORS DETERMINED
IN A SINGLE POINT

Now we look for smallest and greatest 1-Lipschitz aggregation operators whose
graphs pass through a point (x0, y0, z0) ∈ [0, 1]3, and we shall show that the set
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of all 1-Lipschitz aggregation operators with this property has a greatest and a
smallest element.

Because of (2.2) it is clear that

x0 + y0 − 1 ≤ z0 ≤ x0 + y0 (5.17)

is a necessary condition for the existence of such 1-Lipschitz aggregation operators.
If (x0, y0, z0) ∈ [0, 1]3 then the functions L

x0,y0,z0
, Lx0,y0,z0 : [0, 1]2 → R given by

L
x0,y0,z0(x, y) = z0 + (x− x0) ∨ 0 + (y − y0) ∨ 0,

Lx0,y0,z0(x, y) = z0 + (x− x0) ∧ 0 + (y − y0) ∧ 0,

obviously are the greatest and the smallest non-decreasing 1-Lipschitz functions,
respectively, whose graphs pass through the point (x0, y0, z0). By definition we have
Lx0,y0,z0 ≤ W ∗ and W ≤ L

x0,y0,z0 .

Proposition 5.1. Let (x0, y0, z0) ∈ [0, 1]3 such that (5.17) holds. Then the func-
tions A

x0,y0,z0 , Ax0,y0,z0 : [0, 1]2 → [0, 1] defined by

A
x0,y0,z0 = W ∗ ∧ L

x0,y0,z0
,

Ax0,y0,z0 = W ∨ Lx0,y0,z0 ,

are the greatest and smallest 1-Lipschitz aggregation operators, respectively, whose
graphs pass through the point (x0, y0, z0).

P r o o f . This is an immediate consequence of Lemma 2.1 (i). ¤

Proposition 5.2. Assume that (x0, y0, z0) ∈ [0, 1]3 satisfies (5.17). Then we
have:

(i) The 1-Lipschitz aggregation operator Ax0,y0,z0 has neutral element 1 if and
only if z0 ≤ x0 ∧ y0.

(ii) The 1-Lipschitz aggregation operator A
x0,y0,z0 has neutral element 0 if and

only if z0 ≥ x0 ∨ y0.

P r o o f . In order to show (i) assume first that 1 is the neutral element of Ax0,y0,z0 .
Then for all x ∈ [0, 1] we have x = Ax0,y0,z0(x, 1) = (z0 + (x− x0) ∧ 0) ∨ x, which
implies z0 + (x − x0) ∧ 0 ≤ x for all x ∈ [0, 1]. Putting x = x0 we obtain z0 ≤ x0.
Similarly, from the equality Ax0,y0,z0(1, y) = y for all y ∈ [0, 1] we derive z0 ≤ y0, so
z0 ≤ x0 ∧ y0.

Conversely, if z0 ≤ x0 ∧ y0 holds then for each x ∈ [0, 1]

Ax0,y0,z0(x, 1) = (z0 + (x− x0)∧ 0)∨ x =
{

(z0 + x− x0) ∨ x if x ≤ x0

z0 ∨ x if x > x0

}
= x.

Similarly, we obtain Ax0,y0,z0(1, y) = y for all y ∈ [0, 1], i. e., 1 is the neutral element
of Ax0,y0,z0 .

The proof of (ii) is analogous. ¤
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Example 5.3. If we are looking for 1-Lipschitz aggregation operators A whose
graphs pass through a certain point (x0, x0, z0) on the diagonal section, i. e., satis-
fying A(x0, x0) = z0, we necessarily must have (2x0 − 1)∨ 0 ≤ z0 ≤ 2x0 ∧ 1 because
of (5.17).

Then the greatest diagonal δx0,z0 and the smallest diagonal δx0,z0 of a 1-Lipschitz
aggregation operator containing (x0, x0, z0) are given by

δx0,z0(x) = (z0 ∨ (z0 + 2(x− x0))) ∧ 2x ∧ 1,

δx0,z0(x) = (z0 ∧ (z0 + 2(x− x0))) ∨ (2x− 1) ∨ 0,

and A
δx0,z0 and A

δx0,z0 are the greatest and smallest 1-Lipschitz aggregation oper-
ators whose graphs pass through the point (x0, x0, z0), respectively.

6. CONSEQUENCES FOR QUASI–COPULAS

Most results of Sections 3 – 5 can be carried over to the case of quasi-copulas. In
particular, each of the sets of quasi-copulas with given diagonal section, with given
opposite diagonal section, and whose graphs pass through a single point of the unit
cube, respectively, always has a greatest and a smallest element.

Each quasi-copula Q is a 1-Lipschitz aggregation operator bounded from above
by M . Therefore its diagonal section δQ : [0, 1] → [0, 1] satisfies the conditions
(D1) – (D3) and, additionally,

(D4) δQ ≤ id[0,1].

For each diagonal δ in this context, i. e., a function δ : [0, 1] → [0, 1] satisfying
(D1) – (D4), the functions Q1, Q2 : [0, 1] → [0, 1] given by

Q1(x, y) = M(x, y) ∧ δ(x) + δ(y)
2

,

Q2(x, y) = M(x, y) ∧ δ

(
x + y

2

)

are quasi-copulas with diagonal section δ.
Now we can use our results for 1-Lipschitz aggregation operators to obtain the

greatest and the smallest quasi-copula with a given diagonal section (introduced in
[15]).

Proposition 6.1. For each function δ : [0, 1] → [0, 1] satisfying (D1) – (D4), the
function Q

δ
: [0, 1] → [0, 1] defined by Q

δ
= M ∧ A

δ
is the greatest quasi-copula

with diagonal section δ.

P r o o f . This is an immediate consequence of Theorem 3.1 and Lemma 2.1 (ii).¤

Since the smallest 1-Lipschitz aggregation operator Aδ, as defined in (3.9), with
diagonal section δ (satisfying (D1) – (D4)) is always a quasi-copula, we obtain the
following result.
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Fig. 5. Greatest quasi-copulas with diagonal sections δW (left), δΠ (center), and δ (see

Examples 6.3 (ii) – (iii) and 6.4).

Proposition 6.2. For each function δ : [0, 1] → [0, 1] satisfying (D1) – (D4), the
function Aδ defined by (3.9) is the smallest quasi-copula with diagonal section δ.

Example 6.3.

(i) M is the only quasi-copula with diagonal section δM .

(ii) The greatest quasi-copula Q
δW with diagonal section δW is given by

Q
δW (x, y) =





W (x, y) if (x, y) ∈ [
0, 1

2

]2 ∪ ]
1
2 , 1

]2
,

M(x, y) if |x− y| > 1
2 ,

x ∨ y − 1
2 otherwise.

(iii) The greatest quasi-copula Q
δΠ with diagonal section δΠ is given by

Q
δΠ(x, y) =





x2 ∨ y2 if x2 ∨ y2 ≤ x ∧ y ≤ x ∨ y ≤ 1
2 ,

x ∨ y − 1
4 if x ∧ y ≤ 1

2 ≤ x ∨ y ≤ x ∧ y + 1
4 ,

|x− y|+ x2 ∧ y2 if 1
2 ≤ x ∧ y ≤ x ∨ y ≤ 2(x ∧ y)− x2 ∧ y2,

M(x, y) otherwise.

Example 6.4. Let δ : [0, 1] → [0, 1] be again the diagonal defined by (3.10) which
obviously satisfies also (D4). The greatest quasi-copula Q

δ
with diagonal section δ

is given by

Q
δ
(x, y) =





W (x, y) if (x, y) ∈ [
0, 1

3

]2 ∪ [
2
3 , 1

]2
,

M(x, y) if |x− y| > 1
3 ,

x ∨ y − 1
3 otherwise.

(6.18)
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Turning our attention to quasi-copulas with given opposite diagonal section, note
first that the opposite diagonal section ωQ of each quasi-copula Q must be a 1-
Lipschitz function satisfying ωW ≤ ωQ ≤ ωM because of (2.3). Note also that an
arbitrary 1-Lipschitz function ω : [0, 1] → [0, 1] satisfies 0 ≤ ω(x) ≤ x ∧ (1 − x) for
each x ∈ [0, 1] if and only if ω(0) = ω(1) = 0.

Proposition 6.5. Let ω : [0, 1] → [0, 1] be a 1-Lipschitz function such that ω(0) =
ω(1) = 0. Then we have:

(i) The function Fω : [0, 1]2 → [0, 1] defined by (4.14) is the greatest quasi-copula
with opposite diagonal section ω.

(ii) The function Aω : [0, 1]2 → [0, 1] defined by Aω = Gω ∨W , with Gω : [0, 1]2 →
[0, 1] as in (4.16), is the smallest quasi-copula with opposite diagonal section ω.

P r o o f . Because of Corollary 4.3, the function Fω is the greatest 1-Lipschitz
aggregation operator with opposite diagonal section ω, and because of Fω(0, 1) =
Fω(1, 0) = 0 it is the greatest quasi-copula with this property. The proof of (ii) is
analogous, using Corollary 4.4 (ii). ¤

Example 6.6. As a consequence of Proposition 6.5, all the greatest and smallest
1-Lipschitz aggregation operators with opposite diagonal sections ωW , ωM , ωΠ (con-
sidered in Example 4.5) and ω (considered in Example 4.6), respectively, are also the
greatest and smallest quasi-copulas with the respective opposite diagonal section.

As an immediate consequence of Propositions 5.1 and 5.2, we have the following
results for quasi-copulas determined in a single point (compare [15]).

Corollary 6.7. Let (x0, y0, z0) ∈ [0, 1]3. If x0 +y0−1 ≤ z0 ≤ x0∧y0 then Ax0,y0,z0

and M ∧A
x0,y0,z0 are the smallest and greatest quasi-copulas, respectively, whose

graphs pass through the point (x0, y0, z0).

Example 6.8. Any quasi-copula Q whose graph is passing through some point
(x0, x0, z0) on the diagonal, i. e., satisfying Q(x0, x0) = z0 with (2x0−1)∨0 ≤ z0 ≤ x0

because of W ≤ Q ≤ M , has a diagonal section δQ such that δx0,z0 ≤ δQ ≤ δx0,z0 ,
where δx0,z0 and δx0,z0 are given by

δx0,z0(x) = (z0 ∨ (z0 + 2(x− x0))) ∧ x,

δx0,z0(x) = (z0 ∧ (z0 + 2(x− x0))) ∨ (2x− 1) ∨ 0.

Consequently, Q
δx0,z0 and Q

δx0,z0 are the greatest and smallest quasi-copulas whose
graphs pass through the point (x0, x0, z0), respectively.
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Fig. 6. Two incomparable copulas with diagonal section δ: the maximal copula C
δ
c (left)

and the non-commutative copula C given in Example 7.1.

A closer look shows that each quasi-copula with diagonal section δx0,z0 has an
ordinal sum structure (〈z0, 2x0 − z0, Q〉) (see [10, 13, 16]), where Q is some quasi-
copula with diagonal section δW . In particular, we have

Q
δx0,z0 =

(〈
z0, 2x0 − z0, Q

δW
〉)

. (6.19)

7. CONSEQUENCES FOR COPULAS

There are several methods to construct copulas with given diagonal section. If
δ : [0, 1] → [0, 1] is a diagonal satisfying (D1) – (D4), then from [7, 13, 14] we know
that the function C

δ

c : [0, 1]2 → [0, 1] given by

C
δ

c(x, y) = M(x, y) ∧ δ(x) + δ(y)
2

is a commutative copula with diagonal section δ. It is called a diagonal copula, and
it is the greatest commutative copula with diagonal section δ.

Moreover, C
δ

c is also a maximal copula with diagonal section δ. To see this,
assume that C is a (necessarily non-commutative) copula with diagonal section δ
such that C > C

δ

c. But then Cc defined by Cc(x, y) = 1
2 (C(x, y) + C(y, x)) is a

commutative copula with diagonal section δ and Cc > C
δ

c, which is a contradiction.
We also mention that in [6] it was shown that an Archimedean copula is uniquely

determined by its diagonal section δ whenever δ′(1−) = 2.
However, in general there is no greatest element in the set of copulas with diagonal

section δ. In [15, Theorem 3.4] it was shown that there is a greatest copula with
diagonal section δ if and only if Q

δ
= C

δ

c.
The following is a copula with diagonal section δ which is incomparable with the

maximal copula C
δ

c:
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Example 7.1. Let δ : [0, 1] → [0, 1] be again the diagonal defined by (3.10), and
consider the function C : [0, 1]2 → [0, 1] given by

C(x, y) =

{
Q

δ
(x, y) if x ≤ y,

Aδ(x, y) otherwise,
(7.20)

where Q
δ

and Aδ are defined by (6.18) and (3.12), respectively. Then C is a copula
(in fact, it is a shuffle of M [13]) with diagonal section δ which is non-commutative
and incomparable with C

δ

c since we have, on the one hand, C
δ

c(
4
5 , 1

10 ) > C(4
5 , 1

10 )
and C

δ

c(
3
10 , 13

30 ) < C( 3
10 , 13

30 ), on the other hand.
Note that, for general diagonal sections δ, functions C as constructed in (7.20)

need not be copulas.

It was shown in [2, 8] (compare also [13, 15]) that Aδ (which is called a Bertino
copula) is the smallest (commutative) copula with diagonal section δ. This result
can easily be derived from Corollary 3.2 and Proposition 6.2:

Corollary 7.2. For each function δ : [0, 1] → [0, 1] satisfying (D1) – (D4), the
function Aδ given by (3.9) is the smallest copula with diagonal section δ.

If, for a diagonal section δ : [0, 1] → [0, 1] there is some x0 ∈
[
0, 1

2

]
such that

δ(x) = 0 for all x ∈ [0, x0] and (δ− id[0,1])|[x0,1] is non-decreasing, then it was shown
in [4] that Aδ has the following simple form:

Aδ(x, y) = (δ(x ∨ y)− |x− y|) ∨ 0.

The greatest quasi-copula with given opposite diagonal section (given in Propo-
sition 6.5) even turns out to be a copula:

Proposition 7.3. Let ω : [0, 1] → [0, 1] be a 1-Lipschitz function such that ω(0) =
ω(1) = 0. Then the function Fω defined by (4.14) is the greatest copula with opposite
diagonal section ω.

P r o o f . As a consequence of Proposition 6.5 it suffices to prove that Fω is 2-
increasing.

Consider first a square R1 = [x1, x2]× [1− x2, 1− x1]. Then from the continuity
of ω it follows that

∧{ω(z) | z ∈ [x1, x2]} = ω(z0) for some z0 ∈ [x1, x2], and by the
1-Lipschitz property of ω we get ω(x2)−ω(z0) ≤ x2−z0 and ω(x1)−ω(z0) ≤ z0−x1,
leading to

VFω (R1) = x2 − x1 − ω(x1)− ω(x2) + 2
∧
{ω(z) | z ∈ [x1, x2]} ≥ 0.

If R2 = [x1, x2]× [y1, y2] is a rectangle with 1− y2 ≤ 1− y1 ≤ x1 ≤ x2, then

VFω (R2) =
∧
{ω(z) | z ∈ [1− y1, x1]} −

∧
{ω(z) | z ∈ [1− y1, x2]}

+
∧
{ω(z) | z ∈ [1− y2, x2]} −

∧
{ω(z) | z ∈ [1− y2, x1]}.
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Choose z0 ∈ [1− y2, x2] such that
∧{ω(z) | z ∈ [1− y2, x2]} = ω(z0). As a con-

sequence of [1− y2, x2] = [1− y2, 1− y1] ∪ [1− y1, x1] ∪ [x1, x2], we distinguish the
following three cases:

(i) If z0 ∈ [1− y2, 1− y1], then [1− y1, x1] ⊆ [1− y1, x2] implies

VFω (R2) =
∧
{ω(z) | z ∈ [1− y1, x1]} −

∧
{ω(z) | z ∈ [1− y1, x2]} ≥ 0.

(ii) If z0 ∈ [1− y1, x1], then VFω
(R2) = 0.

(iii) If z0 ∈ [x1, x2], then because of [1− y1, x1] ⊆ [1− y2, x1] we obtain

VFω (R2) =
∧
{ω(z) | z ∈ [1− y1, x1]} −

∧
{ω(z) | z ∈ [1− y2, x1]} ≥ 0.

If R3 = [x1, x2]× [y1, y2] is a rectangle such that x1 ≤ x2 ≤ 1− y2 ≤ 1− y1, then
VFω (R3) ≥ 0 can be shown in complete analogy.

Any other rectangle R ⊆ [0, 1]2 is a union of finitely many rectangles of types
R1, R2 and R3, and the inequality VFω (R) ≥ 0 follows from the additivity of the
measure VFω . ¤

Example 7.4.

(i) As a consequence of Propositions 6.5 and 7.3, each greatest 1-Lipschitz ag-
gregation operator with opposite diagonal section ωW , ωM , ωΠ (considered
in Example 4.5) and ω (considered in Example 4.6), respectively, is also the
greatest copula with the respective opposite diagonal section.

(ii) The smallest 1-Lipschitz aggregation operators with opposite diagonal sections
ωW and ωM (considered in Example 4.5), respectively, are also the smallest
copulas with the respective opposite diagonal section.

(iii) The smallest 1-Lipschitz aggregation operator AωΠ
with opposite diagonal sec-

tion ωΠ (considered in Example 4.5) is the smallest quasi-copula with this
property because of Proposition 6.5, but not a copula because of

AωΠ

(3
8
,

7
16

)
−AωΠ

(3
8
,

9
16

)
+ AωΠ

(5
8
,

9
16

)
−AωΠ

(5
8
,

7
16

)
= −0.1171875 < 0.

(iv) Similarly, the smallest 1-Lipschitz aggregation operator Aω with opposite di-
agonal section ω (considered in Example 4.6) is the smallest quasi-copula with
this property, but not a copula because of

Aω

(1
3
,
1
3

)
−Aω

(1
3
,
2
3

)
+ Aω

(2
3
,
2
3

)
−Aω

(2
3
,
1
3

)
= −1

3
< 0.
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Remark 7.5. The greatest quasi-copula Q
δW with diagonal section δW (see Ex-

ample 6.3 (ii)) is a shuffle of M [13] and, therefore, also the greatest copula Q
δW

with diagonal section δW . As a consequence, the function Q
δx0,z0 given in (6.19) is

the greatest copula whose graph passes through the point (x0, x0, z0).
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