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EXTRACTION OF FUZZY LOGIC RULES FROM DATA
BY MEANS OF ARTIFICIAL NEURAL NETWORKS1

Martin Holeňa

The extraction of logical rules from data has been, for nearly fifteen years, a key ap-
plication of artificial neural networks in data mining. Although Boolean rules have been
extracted in the majority of cases, also methods for the extraction of fuzzy logic rules
have been studied increasingly often. In the paper, those methods are discussed within a
five-dimensional classification scheme for neural-networks based rule extraction, and it is
pointed out that all of them share the feature of being based on some specialized neural net-
work, constructed directly for the rule extraction task. As an important representative, a
method for the extraction of rules in a general fuzzy disjunctive normal form is described in
detail and illustrated on real-world applications. Finally, the paper proposes an algorithm
demonstrating a principal possibility to extract fuzzy logic rules from multilayer percep-
trons with continuous activation functions, i. e., from the kind of neural networks most
universally used in applications. However, complexity analysis of the individual steps of
that algorithm reveals that it involves computations with doubly-exponential complexity,
due to which it can not without simplifications serve as a practically applicable alternative
to methods based on specialized neural networks.

Keywords: knowledge extraction from data, artificial neural networks, fuzzy logic,
ÃLukasiewicz logic, disjunctive normal form

AMS Subject Classification: 03B52, 62-07, 62M45, 68T30

1. INTRODUCTION

Extraction of logical rules from data is the main stream of the nowadays quite
popular data mining technology, an information technology attempting to extract,
from unmanageable and always increasing amounts of available data, manageable
amounts of human-understandable structured knowledge. Knowledge expressible
as logical rules has been traditionally extracted not only with purely logical ap-
proaches, but also with many statistically-based approaches and approaches relying
on artificial neural networks and on nonconnectionist machine learning (Figure 1).
In addition, rules are extracted also with the emerging data mining approaches based

1 Presented at the 7th FSTA international conference held in Liptovský Mikuláš, Slovakia, on
January 26–30, 2004.
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on rough sets and on genetic algorithms. Although the notion of a rule is under-
stood differently in different approaches, it always means some kind of formulas or
sentences of some formal logic, typically some kind of implications or equivalences.
The most frequently encountered rule extraction methods have been the topic of a
number of specialized monographs (e. g., [1, 13, 16, 21, 24, 36, 48, 49, 53, 55, 56]).
The present paper, which is an extended written version of a talk at the Seventh
International Conference on Fuzzy Systems Theory and Applications, deals with a
less known kind of rule extraction methods – methods for the extraction of fuzzy
logic rules from data by means of artificial neural networks.

Fig. 1. Main data mining approaches and supporting technologies.

The following section presents a general characterization of neural-networks based
rule extraction methods. Attention is paid mainly to their universality with respect
to the underlying neural networks, and it is recalled that for the extraction of fuzzy
rules, so far only specialized networks have been used, built up directly for the
extraction of some particular kind of fuzzy logic rules. An example method relying on
such a network is given in Section 3. Finally, Section 4 shows the principal possibility
but unacceptably high computational complexity of extracting fuzzy rules from the
kind of neural networks most frequently encountered in applications – multilayer
perceptrons.

2. EXTRACTION OF LOGICAL RULES
BY MEANS OF ARTIFICIAL NEURAL NETWORKS

The extraction of knowledge from data by means of artificial neural networks (ANNs)
has received much attention especially in the nineties [3, 6, 31, 35, 38, 39, 51]. Actu-
ally, already the mapping computed by the network incorporates knowledge trans-
ferred to it during training from the training data, knowledge about the implications
that certain values of the variables assigned to its inputs have for the values of the
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variables assigned to its outputs. That knowledge is represented partially through
the network architecture and mainly through distributed numerical parameters de-
termining the computed mapping. Needless to say, such a knowledge representation
is not easily human-comprehensible (in terms of [8], that representation provides
a high data fit but a low mental fit). It is the difficult comprehensibility of such
a representation that motivated research into the problem of extracting from it
more easily comprehensible logical rules. Formally, that problem can be viewed as a
transformation of the ANN architecture and of parameters determining the computed
mapping into a set of logical rules of a prescribed kind, e. g., into a set of appropriate
implications or equivalences [11, 14, 15, 20, 25, 30, 34, 50, 52, 54].

Up to now, already several dozens ANN-based rule extraction methods exist. In
[6] and [51], a classification scheme has been proposed, classifying each such method
according to following aspects:

(i) expressive power of the extracted rules, given by the meaning they are able to
convey;

(ii) translucency of the view of the underlying neural network, i. e., the extent
to which the extracted rules reflect the way how the mapping computed by
the network is composed from somatic and synaptic mappings assigned to
individual neurons and connections;

(iii) universality of the method with respect to how commonly used is the under-
lying neural network, which in turn determines its portability across networks
encountered in various applications;

(iv) quality of the set of extracted rules, determined mainly by its comprehensi-
bility, consistency and completeness, and by the accuracy and fidelity of the
individual rules;

(v) computational complexity of the method.

The key aspect of that classification is the expressive power of the rules. Though
the conveyable meaning of the rules depends also on the syntax of the language
underlying the considered logic, which allows to differentiate, e. g., propositional
and first-order logic rules, it is primarily determined by the set of possible truth
values of the rules. According to this criterion, extracted rules can be divided into
two main groups:

• Boolean rules, i. e., formulas of the Boolean logic, such as the propositional
if . . . then rules or M-of-N rules. As any Boolean formula, they can assume
only two different truth values, say true and false. The tertium-non-datum
axiom of the Boolean logic implies that if a Boolean rule has been evaluated
and has not been found true, then it automatically must have been found false.
That is why methods for the extraction of Boolean rules only need to output
rules that, within an apriori set of rules to evaluate, have been found valid in
the data.

• Fuzzy rules, i. e., formulas of some fuzzy logic, typically formulas of the product
logic, ÃLukasiewicz logic, Gödel logic, or some combination of those three. Their
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truth values can be arbitrary elements of some BL-algebra [23]. In the existing
methods for the extraction of fuzzy rules, that BL-algebra is always defined
on the interval 〈0, 1〉.

The proper subject of the present paper are methods for the extraction of fuzzy
rules. A closer look at methods of that kind that have been so far proposed in
the literature (cf. [4, 9, 15, 20, 34, 39], a survey of many other methods can be
found in [35]) reveals that they actually share classification not only with respect
to the expressive power, but also with respect to the universality aspect. Indeed,
all of them use specialized neural networks, the architectures of which reflect the
particular fuzzy logic considered and the syntax of the extracted rules. Needless to
say, a network with such properties can hardly be expected to have been constructed
and trained in the usually encountered approximation and prediction applications
of neural networks, hence it needs to be constructed and trained specifically for the
rule extraction task.

An example method based on such a neural network, already implemented and
tested with real-world data, will be described in the next section.

3. NEURAL–NETWORKS BASED EXTRACTION OF FUZZY DNF RULES

One of the standard kinds of extracted Boolean rules are rules in the disjunctive
normal form (DNF), i. e., rules

Ψ ≡
d∨

i=1

∧

j∈Ci

ϕi,j . (1)

in which C1, . . . , Cd are non-empty sets, and Ψ, ϕi,j , i = 1, . . . , d, j ∈ Ci, are atomic
formulas.

That definition can be in full generality transferred also to a fuzzy logic (for
more specific definitions of a fuzzy DNF, based either on the DNF decomposition
of Boolean functions, or on fuzzy if-then rules, see [12, 41, 42, 43, 44, 45, 46, 47])
provided the meaning of the connectives ∨ and ∧ in (1) is fixed (cf. [22] for the above
general definition of a fuzzy DNF in the case of the Gödel logic). In this section, a
method for the extraction of such fuzzy DNF rules will be outlined. That method
is based on the following four principles:

(i) the underlying neural network computes the truth value of the rule consequent
in some model M of the considered fuzzy logic;

(ii) any atomic formulas ϕi1,j , ϕi2,j are interpreted by the same kind of finitely-
parametrizable fuzzy sets on a crisp domain Dj (e. g., the value set of some
variable);

(iii) the network is trained with a sequence of training pairs (x1, y1), . . . , (xt, yt),
such that for k = 1, . . . , t, the input component of the kth training pair is
a vector xk = (xk

1 , . . . , xk
n) ∈ D1 × · · · × Dn, and the output component is

the desired truth value yk ∈ 〈0, 1〉 of Ψ provided ϕi,j , i = 1, . . . , d, j ∈ Ci,
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are interpreted with respect to xk
j (i. e., the truth value of ϕi,j equals the

membership of xk
j in the fuzzy set ϕ̃M

i,j interpreting ϕi,j in the model M);

(iv) M is chosen from some considered set of models M in such a way that the
squared Euclidean distance between the computed and the desired outputs of
the network, averaged over the training set (mean squared error), is minimal
provided each of the atomic formulas ϕi,j is interpreted by a fuzzy set of a
prescribed kind.

Observe that the principle (i) implies that the underlying neural network has 1
output neuron, whereas from (ii) follows that it has n input neurons corresponding
to the domains D1, . . . , Dn and |C1| + · · · + |Cd| hidden neurons corresponding to
the considered atomic formulas, where |C| denotes the cardinality of a set C, and
Ci ⊂ {1, . . . , n} for i = 1, . . . , d. For M ∈ M, let ‖ · ‖M denote the truth values
of formulas of the considered fuzzy logic in the model M . Then the principle (ii)
entails a parametrizability of the set M with a finite number of parameters, and for
each M ∈M, the principle (iii) implies

M =
((‖ϕ‖M

i,j

)i=1,...,d

j∈Ci
, S, T

)
=

((
ϕ̃M

i,j

)i=1,...,d

j∈Ci
, S, T

)
, (2)

where S and T are, respectively, the s-norm interpreting ∨ and the t-norm inter-
preting ∧. Finally, combining (i) – (ii) with (1) yields

‖Ψ‖M = Sd
i=1 (Tj∈Ci (‖ϕi,j‖M )) = Sd

i=1

(
Tj∈Ci

(
ϕ̃M

i,j

))
, (3)

whereas the principles (iii) – (iv) in connection with (3) imply that training the net-
work with a sequence of training pairs (x1, y1), . . . , (xt, yt) leads to the optimization
task

M = arg min
M ′∈M

t∑

k=1

(
Sd

i=1

(
Tj∈Ci

(
ϕ̃M ′

i,j (xk
j )

))
− yk

)2

. (4)

Due to the finite parametrizability of M, this is a standard task of multidimensional
optimization.

For any implementation of the method, the considered set of models M has to
be specified. Taking into account (2) and the principle (ii), this means to specify:

• for each domain Dj , j = 1, . . . , n, the parametrization of the fuzzy sets ϕ̃M
i,j

on Dj , interpreting the atomic formulas ϕi,j , j ∈ Ci, i. e., the number of
parameters pj and the parametrizing mapping πj : <pj → F(Dj), where F(Dj)
denotes the set of fuzzy sets on Dj and πj fulfils (∃ aM

i,j ∈ <pj ) ϕ̃M
i,j = πj(aM

i,j),
for i = 1, . . . , d, j ∈ Ci, M ∈M;

• the particular fuzzy logic considered, which in turn determines the considered
s-norm S and the t-norm T .

In the implementation of the method at the Institute of Computer Science in
Prague, the user can combine any of the parametrizations in table on page 302 with
either the ÃLukasiewicz logic [23], entailing the t-norm

T ÃL(x, y) = max(x + y − 1, 0) |x, y ∈ 〈0, 1〉, (5)
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and s-norm
S ÃL(x, y) = min(x + y, 1) |x, y ∈ 〈0, 1〉, (6)

or the product-ÃLukasiewicz logic [29] with the t-norm

TPÃL(x, y) = xy |x, y ∈ 〈0, 1〉, (7)

and s-norm
SPÃL(x, y) = x + y − xy |x, y ∈ 〈0, 1〉. (8)

At the present implementation, Dj = < is assumed for all j = 1, . . . , n, and only one
parametrization at a time can be chosen, which is then used for the interpretation
of all ϕi,j , i = 1, . . . , d, j ∈ Ci.

parametrization number of parametrizing mapping

parameters

Gaussian 2 π(a, b) = Γ(a,b) ∈ F(<) | a ∈ <, b > 0,

where (∀x ∈ <) Γ(a,b)(x) = e−
(x−a)2

2b

symmetric 2 π(a, b) = ∆s
(a,b) ∈ F(<) | a ∈ <, b > 0,

triangular where (∀x ∈ <) ∆s
(a,b)(x) = max(0, 1−|x−a|

b )

triangular 3 π(a, b, c) = ∆(a,b,c) ∈ F(<) | a < b < c,

where (∀x ∈ <) ∆(a,b,c)(x) = max(0, min(x−a
b−a , c−x

c−b ));

bell-shaped 3 π(a, b, c) = B(a,b,c) ∈ F(<) | a, b, c ∈ <, a 6= 0,

where (∀x ∈ <) B(a,b,c)(x) = 1

1+( x−c
a )2b ,

sigmoidal spline 2 π(a, b) = Sς
(a,b) ∈ F(<) | a < b,

where Sς
(a,b)(x) =





0 | x ≤ a;

2
(

x−a
b−a

)2

| a ≤ x ≤ a+b
2

1− 2
(

b−x
b−a

)2

| a+b
2 ≤ x ≤ b

1 | x ≥ b,

sigmoidal 2 π(a, b) = S(a,b) ∈ F(<) | a ∈ <, b > 0,

where (∀x ∈ <) S(a,b)(x) = 1
1+e−b(x−a)

decreasing spline 2 π(a, b) = D(a,b) ∈ F(<) | a < b,

where D(a,b)(x) =





1 | x ≤ a;

1− 2
(

x−a
b−a

)2

| a ≤ x ≤ a+b
2

2
(

b−x
b−a

)2

| a+b
2 ≤ x ≤ b

0 | x ≥ b,
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For the resulting combinations of parametrization with t-norms and s-norms, (2)
and (4) yield the final formulation of the optimization task to be solved, for example:

MΓ, ÃL = arg min(ai,j∈<,bi,j>0)i=1,...,d
j∈Ci

(9)

t∑

k=1


min




d∑

i=1


max


 ∑

j∈Ci

e
− (xk

j−ai,j)2

2bi,j − |Ci|+ 1, 0


 , 1


− yk




2

,

MΓ,PÃL = arg min(ai,j∈<,bi,j>0)i=1,...,d
j∈Ci

(10)

t∑

k=1

(
1−

d∏

i=1

(1−e
−Pj∈Ci

(xk
j−ai,j)2

2bi,j )−yk

)2

,

M∆s, ÃL = arg min(ai,j∈<,bi,j>0)i=1,...,d
j∈Ci

(11)

t∑

k=1


min




d∑

i=1

max


∑

j∈Ci

max

(
0,

1−|xk
j −ai,j |
bi,j

)
−|Ci|+1, 0


, 1


−yk




2

,

M∆s,PÃL = arg min(ai,j∈<,bi,j>0)i=1,...,d
j∈Ci

(12)

t∑

k=1


1−

d∏

i=1


1−

∏

j∈Ci

max

(
0,

1−|xk
j −ai,j |
bi,j

)
−yk




2

,

MB, ÃL = arg min(ai,j ,bi,j ,ci,j∈<,ai,j 6=0)i=1,...,d
j∈Ci

(13)

t∑

k=1


min




d∑

i=1

max




∑

j∈Ci

1

1+
(
xk

j−ci,j

ai,j

)
2bi,j

−|Ci|+1, 0


, 1


−yk




2

,

MB,PÃL = arg min(ai,j ,bi,j ,ci,j∈<,ai,j 6=0)i=1,...,d
j∈Ci

(14)

t∑

k=1


1−

d∏

i=1


1−

∏

j∈Ci

1

1 +
(

xk
j−ci,j

ai,j

)2bi,j


− yk




2

.

For illustration, Figures 2 and 3 show the same 2-dimensional cut of the truth
values of ‖Ψ‖M for models M fulfilling (11) and (14), respectively. The neural
networks in these figures have been trained with data from a recent application of
ANNs to material science [27, 28].

Though the implementation covers the most important special cases, the method
itself is actually applicable to a much broader class of problems, due to the generality
of the set of models M. Indeed, M is only required to comply with (2), otherwise it
can be quite arbitrary, in particular it can impose arbitrary additional restrictions to
the included models. Such restrictions will now be briefly illustrated on an example
from a currently starting application of the method to the results of an EEG spectral
analysis in neurophysiology [19].
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Fig. 2. A 2-dimensional cut corresponding to the dimensions x3 and x4 of the truth

value ‖Ψ‖M = 1−Q10
i=1

`
1− e

−P13
j=1

(xj−ai,j)2

2bi,j
´
, where ai,j and bi,j for i = 1, . . . , 10,

j = 1, . . . , 13 are obtained from (11), x8 = 1− x3 − x4, and xj = 0 for j =1,2,5–7,9–13.

The data from an EEG spectral analysis contain amplitudes of EEG signal com-
ponents for all included frequencies of the spectrum. However, knowledge about
EEG spectra is usually formulated in terms of differently looking bands of the spec-
trum (δ-, θ-, α- and β-bands). This has the following consequences for the fuzzy
sets (ϕ̃M

i,j)i=1,...,d,j∈Ci in (2):

(i) Dj = < for j = 1, . . . , n;

(ii) ϕ̃M
i,j = S(δ̃M

i , θ̃M
i , α̃M

i , β̃M
i ) for i = 1, . . . , d, j ∈ Ci = {1, . . . , n}, where

δ̃M
i , θ̃M

i , α̃M
i , β̃M

i are fuzzy sets describing the respective band of the spectrum;

(iii) there exist a number p ∈ N , a parametrizing mapping π : <p → F(<), and
parameters aM

i,δ, aM
i,θ, aM

i,α, aM
i,β ∈ <p) such that ξ̃M

i = π(ai,ξ) for ξ ∈ {δ, θ, α, β},
i = 1, . . . , d, M ∈M;

(iv) there exist numbers Lδ, Lθ, Lα, Lβ , Uδ, Uθ, Uα, Uβ ∈ < such that Lξ < Uξ and
ξ̃M
i | (−∞, Lξ〉 = ξ̃M

i | 〈Uξ,∞) = 0 for ξ ∈ {δ, θ, α, β}, i = 1, . . . , d, M ∈M.
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Fig. 3. A 2-dimensional cut corresponding to the dimensions x3 and x4 of the truth

value ‖Ψ‖M = min
`P5

i=1 max
`P13

j=1
1

1+
` xk

j
−ci,j

ai,j

´2bi,j
− 12, 0

´
, 1
´
, where ai,j , bi,j and ci,j

for i = 1, . . . , 10, j = 1, . . . , 13 are obtained from (14), x8 = 1− x3 − x4, and xj = 0 for

j =1,2,5–7,9–13.

Hence, the set of models M gets restricted to

M =
{

M = ((ϕ̃M
i,j)i=1,...,d

j∈Ci
, S, T ) : (∀i ∈ {1, . . . , d})(∃ δ̃M

i , θ̃M
i , α̃M

i , β̃M
i ∈ F(<))

(∀ξ∈{δ, θ, α, β})(∃ aM
i,ξ ∈ <p) ξ̃M

i =π(ai,ξ) & ξ̃M
i | (−∞, Lξ〉= ξ̃M

i | 〈Uξ,∞)=0

&(∀j ∈ {1, . . . , n}) ϕ̃M
i,j = S(δ̃M

i , θ̃M
i , α̃M

i , β̃M
i )

}
. (15)

4. IS EXTRACTION FROM GENERAL MULTILAYER PERCEPTRONS
POSSIBLE?

As was mentioned in Section 2, all existing methods for ANN-based extraction of
fuzzy logic rules rely on some highly specialized neural networks, thus they are
hardly portable to networks commonly encountered in applications. Recent results
by Amato, Porto, Aguzzoli and Mundici on the connection between fuzzy logic and
piecewise-linear functions 〈0, 1〉n → 〈0, 1〉 with rational coefficients [2, 5] indicate
that this may not need to be the case. Both quoted papers show that such piecewise-
linear functions (i. e., rational generalizations of McNaughton functions) are actually
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fuzzy sets on 〈0, 1〉n interpreting particular formulas of some fuzzy logic, or in other
words, they are fuzzy logic functions represented by formulas of the respective logic.
In [2], that logic is the logic ∃ ÃL, a fragment of the infinite-valued ÃLukasiewicz predi-
cate logic, whereas in [5], it is the Esteva – Godo – Montagna logic ÃLΠ1

2 [18]. Those
results can be considered a direct generalization of the classical McNaughton theo-
rem [33]. Though none of both results concerns neural networks, they nevertheless
imply a principal possibility to extract fuzzy logic rules from multilayer perceptrons
with continuous activation functions, the kind of ANNs that is most commonly used
in applications. Indeed:

1. Due to the density of the set Q of rational numbers within the set < of real
numbers, any piecewise-linear function 〈0, 1〉n → 〈0, 1〉 is arbitrarily close (in
the metrics on C(〈0, 1〉n)) to a piecewise-linear function 〈0, 1〉n → 〈0, 1〉 with
rational coefficients, i. e., to the interpretation of some formula of either the
logic ÃLΠ1

2 , or the logic ∃ ÃL.

2. Any function computed by a multilayer perceptron with the input space 〈0, 1〉n
and continuous activation functions is arbitrarily close to a function computed
by a multilayer perceptron with piecewise-linear activation functions, which in
turn is a piecewise-linear function 〈0, 1〉n → 〈0, 1〉 [26, 32].

3. An alternative argument to 1 – 2 is the fact that any continuous mapping
〈0, 1〉n → 〈0, 1〉 (in particular, any continuous mapping 〈0, 1〉n → 〈0, 1〉 com-
puted by a multilayer perceptron with the input space 〈0, 1〉n) is arbitrarily
close to a function represented by a fuzzy normal form of a specific kind [41].
However, such normal forms require the language of the ÃLukasiewicz logic to
be extended with truth constants for all numbers from 〈0, 1〉 (or at least for
all rationals from 〈0, 1〉), which is not the case for the fuzzy logics considered
in [2] and [5].

Moreover, both quoted papers provide a constructive proof of the representability
of piecewise-linear functions 〈0, 1〉n → 〈0, 1〉 with rational coefficients by formulas
of the considered fuzzy logic, a proof in both cases heavily relying on Mundici’s
constructive proof of the McNaughton theorem [10, 37] (which is different from the
more recent constructive proof by Perfilieva and Tonis [40, 41]). Those constructive
proofs, together with an algorithm for the approximation according to (ii) above [26],
already allow to formulate algorithms for the extraction of formulas of the respective
fuzzy logic from a multilayer perceptron with continuous activation functions (for
the approximation according to (i), no algorithm is needed because all computations
are always performed with rational numbers). Here, the main steps of an algorithm
relying on [2] are sketched. To facilitate the formulation of the algorithm and the
subsequent discussion, several simplifying assumptions will be adopted:

• the considered multilayer perceptron has only one output neuron (an extension
to perceptrons with more output neurons is possible through splitting the
original network into several perceptrons sharing the input and hidden neurons
and the connections between them, and through applying the algorithm below
to each of those perceptrons);
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• the considered multilayer perceptron has only one hidden layer (an extension
to perceptrons with more hidden layers is possible through repeating the steps
1 – 3 for each of them, proceeding from the last hidden layer to the first hidden
layer);

• the somatic operation at the output neuron doesn’t include the activation
function (an extension to output neurons that include the activation function
is possible through starting the algorithm with steps 1 – 3 applied to the output
neuron);

• for the purpose of rule extraction, the input space of the considered multilayer
perceptron is restricted from a whole Euclidean space <n to the unit cube
〈0, 1〉n (this can be in a standard way extended to all closed cubes, and further
to all compact sets in <n, which are sufficient for real-world applications of
multilayer perceptrons).

On those assumptions, the algorithm can be formulated as follows:

Input: A required precision ε > 0 for the approximation according to 2. above,
a multilayer perceptron with one hidden layer, nI input neurons, nH hidden
neurons and an activation function f , and a function F computed by that
perceptron and defined

(∀x ∈ <) F (x) =
nH∑

h=1

whf

(
nI∑

i=1

wh,ixi + bh

)
+ bO, (16)

where WIH = (wh,i)
h=1,...,nH

i=1,...,nI
6= 0 is a matrix of the weights of connections

between input and hidden neurons, bH = (b1, . . . , bnH
) is a vector of the biases

of hidden neurons, WHO = (w1, . . . , wnH
) 6= 0 is a vector of the weights of

connections between hidden neurons and the output neuron, and bO is a bias
of the output neuron.

Step 1. Let U = max
h=1,...,nH

max
u∈〈0,1〉n

|(wh,1, . . . , wh,nI )′u|, m be the smallest integer

such that |f(u) − f(u′)| < εPnH
h=1 |wh| whenever |u − u′| < 2U

m , and define a

piecewise-linear function g : 〈−U,U〉 → 〈0, 1〉 by

(∀u ∈ 〈−U,U〉) g(u) = f

(
−U +

[
m(u + U)

2U

]
2U

m

)
+

(
m(u + U)

2U
−

[
m(u + U)

2U

])

(
f

(
−U +

([
m(u + U)

2U

]
+1

)
2U

m

)
−f

(
−U +

[
m(u + U)

2U

]
2U

m

))
, (17)

where [u] denotes the integer part of a real number u.

Step 2. Create a polyhedral complex PnI partitioning 〈0, 1〉nI :



308 M. HOLEŇA

PnI
=

{
P ⊂ 〈0, 1〉nI :WIH(P )=

(〈
−U−b1+(i1−1)

2U

m
,−U−b1+i1

2U

m

〉
× . . . (18)

· · · ×
〈
−U−bnH

+(inH
−1)

2U

m
,−U−bnH

+inH

2U

m

〉
, i1, . . . , inH

=1, . . . , m
}

,

where the notation WIH(P ) for {WIH(x) : x ∈ P} is used.

Step 3. Define a piecewise-linear mapping G : 〈0, 1〉nI → 〈0, 1〉 by

(∀x ∈ 〈0, 1〉nI ) G(x) =
nH∑

h=1

whg

(
nI∑

i=1

wh,ixi + bh

)
+ bO, (19)

so that, due to Steps 1 – 2, G approximates F at 〈0, 1〉nI within the precision
ε.

Step 4. Triangularize the polyhedral complex PnI
into a simplicial complex SnI

(see,
e. g., [17] for details).

Step 5. Create a polyhedral complex PnI+1 partitioning 〈0, 1〉nI+1:

PnI+1 =
{
P ⊂ 〈0, 1〉nI+1 : (∃S ∈ SnI ) P is a polyhedron, and has either

the vertices (s1, 0), . . . , (snI+1, 0), (s1, f(s1)), . . . , (snI+1, f(snI+1)),
or the vertices(s1, f(s1)), . . . , (snI+1, f(snI+1)), (s1, 1), . . . , (snI+1, 1),
where s1, . . . , snI+1 are the vertices of S

}
.

(20)

Step 6. Triangularize the polyhedral complex PnI+1 into a simplicial complex SnI+1.

Step 7. As long as there exists an (nI + 1)-dimensional simplex S ∈ SnI+1 such
that det IS 6= ±1 for its matrix IS in homogeneous integer coordinates, refine
SnI+1 through adding such a vertex s inside of S that for any subsimplex S′ of
the resulting simplicial partitioning of S, det I ′S < det IS , thus finally arriving
to a unimodular refinement U of SnI+1 (see [10] for details).

Step 8. For each vertex v ∈ V , where V =
{
v =

(av
1
d , . . . ,

av
nI+1

d

) ∈ QnI+1 : (∃U ∈
U) v is a vertex of U & av

1, . . . , av
nI+1, d are integers & d > 0 &

av
nI+1

d ≤
G

(av
1
d , . . . ,

av
nI

d

)}
, construct a Schauder hat of v with respect to U , i. e., a

piecewise-linear function with integer coefficients Hv
U : 〈0, 1〉nI+1 → 〈0, 1〉 that

is linear over each U ∈ U and fulfills Hv
U (v) = 1

d , Hv
U (v′) = 0 for all other

vertices v′ of any U ∈ U (see [10] for the existence of such a function, and for
details of that construction).

Step 9. Define a formula (∃XnI+1) Φ(X1, . . . , XnI+1) of the logic ∃ ÃL, in which
the formula Φ with nI + 1 free variables X1, . . . , XnI+1 is defined gradually
starting with formulas that represent individual linear pieces of individual
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Schauder hats, and proceeding via formulas that represent entire Schauder
hats, in such a way that the final formula (∃XnI+1 Φ(X1, . . . , XnI+1) repre-
sents maxxnI+1∈〈0,1〉

∑
v∈V av

nI+1H
v
U (see [10] for details).

Output: The formula (∃XnI+1) Φ(X1, . . . , XnI+1) defined in Step 8; due to the
equality

(∀x=(x1, . . . , xnI
)∈〈0, 1〉nI ) max

xnI+1∈〈0,1〉

∑

v∈V

av
nI+1H

v
U (x1, . . . , xnI

, xnI+1)=G(x),

(21)

proven in [2], this formula represents also G.

Already a first look at this algorithm reveals that, even when neglecting as-
signments, concatenations and comparisons, most steps involve computations of
exponential complexity, and the last step (Step 9) even computations of doubly-
exponential complexity:

(i) In Step 2, a polyhedral complex PnI with |PnI | = O(mnH ) is created through
solving mnH linear equations WIH(x) =

(
i1

2U
m , . . . , inH

2U
m

)
for i1, . . . , inH

=
0, . . . ,m.

(ii) In Step 4, each polyhedron from PnI is triangularized into O
(
2

n2
H
2

)
simplices

(see, e. g., [7]), thus PnI
is altogether triangularized into |SnI

| = O
(
2

n2
H
2 mnH

)
simplices.

(iii) In Step 5, a polyhedral complex PnI
with |PnI+1| = O

(
2

n2
H
2 mnH

)
polyhedra is

created through constructing 2 polyhedra over each simplex S ∈ SnI
.

(iv) In Step 6, each polyhedron from PnI+1 is triangularized into O
(
n

nH
2

H

)
simplices,

thus PnI+1 is altogether triangularized into |SnI+1| = O
(
2

n2
H
2 mnH n

nH
2

H

)
sim-

plices.

(v) In any of the repeatedly performed iterations of Step 7, a particular simplex
S from the current refinement S of the simplicial complex SnI+1 is split-
ted into O(nH) simplices such that for each of them, det I ′S < det IS , thus
as many as |SnI+1| iterations may be needed to decrease the current value
of DS = maxS∈S | det IS | from DSnI+1 to DSnI+1 − 1, and SnI+1 is split-
ted into O

(
nH |SnI+1|

)
simplices during that time; repeating this until the

unimodular simplicial complex U with DU = 1 is reached implies |U| =

O
(
n

DSnI+1

H |SnI+1|
)

= O
(
2

n2
H
2 mnH n

(
nH
2 +DSnI+1

)
H

)
.

(vi) In Step 8, for each of the O(|U|) vertices v ∈ V , an (nH + 2)-dimensional
system of linear equations has to be solved to construct each of the `v

U ≤
|U| nonzero linear pieces of the Schauder hat Hv

U , thus altogether O(|U|2) =

O
(
2n2

H m2nH n
(nH+2DSnI+1 )

H

)
such systems of linear equations have to be solved.
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(vii) In Step 9, for each of the O(|U|) vertices v ∈ V and each permutation σ of
the number `v

U of different linear pieces g1, . . . , g`v
U of the Schauder hat Hv

U ,
it has to be decided whether the polyhedron Pσ = {x ∈ <nI+1 : gσ(1)(x) ≥
· · · ≥ gσ(`v

U )(x)} is (nI + 1)-dimensional, through checking the regularity of
the system of vertices Pσ ∩ V , thus altogether the regularity of O(`v

U !) =

O
(
eO(2

n2
H
2 mnH n

(
nH
2 +DSnI+1

)

H )
)

systems of O
(
2

n2
H
2 mnH n

(
nH
2 +DSnI+1

)
H

)
vectors

from <nI+1 has to be checked.

Observe that the highest complexity is connected with the construction of for-
mulas corresponding to Schauder hats. Since that construction has been taken over
from Mundici’s constructive proof of the McNaughton theorem [37, 10], the overall
doubly-exponential complexity pertains already to the representation of piecewise-
linear functions with integer coefficients by formulas of ÃLukasiewicz propositional
logic according to that proof, and is not specific to the presented algorithm for the
representation of piecewise-linear functions with rational coefficients by formulas of
the logic ∃ ÃL. Moreover, it can be shown that also the alternative constructive proof
of the McNaughton theorem in [40, 41] finally leads to a doubly-exponential com-
plexity. Due to the complexity of involved computations, the above algorithm can be
viewed merely as a demonstration that the extraction of formulas of fuzzy logic from
general multilayer perceptrons is principally possible. However, further research is
needed to arrive to an algorithm that will be practically applicable.

5. CONCLUSION

The paper surveyed the task of extracting fuzzy logic rules from data by means
of artificial neural networks. It described a particular method of that kind, based
on a fuzzy generalization of DNF rules, which had already been successfully em-
ployed in several practical applications. On the other hand, it also demonstrated
that the common feature of all existing fuzzy rule extraction methods to rely on
highly specialized networks constructed directly for the rule extraction task is not a
principal necessity. An algorithm has been proposed for the extraction of formulas
of the infinite-valued ÃLukasiewicz logic from neural networks as general as multi-
layer perceptrons with continuous activation functions. That generality makes the
algorithm theoretically attractive for the extraction of fuzzy rules from numerous
trained multilayer perceptrons that are available in real-world applications. How-
ever, its applicability to this end is hindered by its high computational complexity.

Simplifications of the algorithm to decrease its complexity and make it feasible
for practical applications are the topic of ongoing research. That research is driven
by the following ideas:

• To restrict, in Steps 2 and 4, the cardinalities of the involved polyhedral and
simplicial complexes through considering only those polyhedra and simplices
that contain the input component xk of at least one training pair (xk, yk). In
that way, the cardinalities of |PnI | and |SnI | get restricted to O(t), compared

to O(mnH ) and O
(
2

n2
H
2 mnH

)
, respectively.
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• To seek alternatives to Steps 5 – 9. In this respect, the alternative constructive
proof of the McNaughton theorem in [40, 41] is very inspiring, but since it
covers only Steps 7 – 9, at least an alternative to Steps 5 – 6 needs to be sought
anyway.

Most important for the feasibility of any proposed simplification of the algorithm
above will be results of its testing on real-world problems and comparison with the
method for extracting fuzzy DNF rules from Section 3 and / or with other methods
based on specialized networks. That comparison needs to include not only the final
computational complexity of the proposed simplification, compared to the complex-
ity of retraining the specialized network, but also the quality of the extracted rules,
especially their comprehensibility and accuracy.

Due to the approximations involved in extending the results [2, 5] from rational
McNaughton functions to continuous functions computed by multilayer perceptrons
(see 1–2 in Section 4), the interpretation of the extracted formula actually only ap-
proximates that continuous function, except for the case when the computed function
is a rational McNaughton function. Needless to say, simplifications of the algorithm
cannot improve this situation. On the contrary, they can lead to approximations
even for rational McNaughton functions. It is interesting to compare the result-
ing approximations with several methods for approximation of continuous functions
based on specific kinds of fuzzy normal forms [41, 47]. In those methods, the ap-
proximation is in fact based on crisp sets (on sufficiently small balls from the domain
of the approximated function, or on products of sufficiently small balls from its do-
main and range, covering the function). Consequently, the approximation can be
actually described also by means of Boolean logic in those methods. In contrast, the
method outlined in Section 4 is based on proper fuzzy sets, represented by formulas
of ÃLukasiewicz logic, and the resulting approximation could not be described by
means of Boolean logic.
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