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APPROXIMATION AND ESTIMATION
IN MARKOV CONTROL PROCESSES
UNDER A DISCOUNTED CRITERION∗

J. Adolfo Minjárez-Sosa

We consider a class of discrete-time Markov control processes with Borel state and ac-
tion spaces, and <k-valued i.i.d. disturbances with unknown density ρ. Supposing possibly
unbounded costs, we combine suitable density estimation methods of ρ with approxima-
tion procedures of the optimal cost function, to show the existence of a sequence {f̂t} of
minimizers converging to an optimal stationary policy f∞.

Keywords: Markov control processes, density estimation, discounted cost criterion

AMS Subject Classification: 93E10, 90C40

1. INTRODUCTION

To study a stochastic control problem associated to a Markov control model under
discounted cost criterion, typically it is required the following: First to prove that
the optimal cost function V ∗ is a solution to the optimality equation (Dynamic
Programming Equation) – problem 1; and then to solve a minimization problem to
calculate optimal policies – problem 2.

However, the solution of problems 1 and 2 generally is difficult, and it is there-
fore of great importance to propose efficient approximation algorithms for V ∗ and
construction methods of optimal policies.

Our main objective in this paper is to study both problems for a class of discrete-
time Markov control processes of the form

xt+1 = F (xt, at, ξt), t = 0, 1, . . . , (1)

where F is a known function, xt, at and ξt are the state, action and random distur-
bance at time t, respectively. Moreover, {ξt} is an observable sequence of indepen-
dent and identically distributed (i.i.d.) random vectors in <k having density ρ which
is unknown to the controller. In addition, we suppose that the one-stage cost (and
therefore the optimal cost V ∗) is unbounded. In this context, our approach consists
in the following. First, we introduce an approximation algorithm of V ∗ based in
the combination of suitable density estimation methods of ρ with a value iteration

∗Work supported partially by Consejo Nacional de Ciencia y Tecnologia (CONACyT) under
Grant 37239E.



682 J.A. MINJÁREZ-SOSA

scheme. Then, this approximation algorithm is used to show the existence of a se-
quence of minimizers {f̂t} (which depends of the estimators ρt of ρ) converging, in
the sense of Schäl [13], to an optimal stationary policy f∞.

The assumption of unbounded costs generates serious difficulties. For instance,
the nice contractive-operator techniques do not work for the discounted criterion.
For this reason, in previous papers where similar problems are analyzed (see, e. g.,
[5, 12]), it was necessary to impose restrictive conditions on the unknown density
ρ and apply a density estimation process which is difficult to implement. This set
of assumptions might be strong even for very simple applied problems. In contrast,
our results here are obtained exploiting some easy facts in the theory of density esti-
mation. Others papers where similar problems are studied but considering bounded
costs are, for instance, [1, 4, 7, 8, 11].

The paper is organized as follows. In Section 2 we introduce the Markov control
model we deal with. Next, Section 3 contains the assumptions on the control model
and some preliminary results on the discounted criterion, which are used to state
our main results in Section 4. The proofs are presented in Section 5, and finally, an
example of a storage system is introduced in Section 6 to illustrate our results.

2. MARKOV CONTROL MODELS

Notation. Given a Borel space X (that is, a Borel subset of a complete and separa-
ble metric space) its Borel sigma-algebra is denoted by B(X), and “measurable”, for
either sets or functions, means “Borel measurable”. In addition, we denote by B(X)
the space of real-valued bounded measurable functions on X with the supremum
norm ‖v‖ := supx |v(x)|.

Control model. Let

M :=
(
X,A, {A(x) ⊂ A|x ∈ X} ,<k, F, ρ, c

)
(2)

be a discrete-time Markov control model where the state space X and the action
or control space A are Borel spaces endowed with their Borel σ-algebras. To each
x ∈ X it is associated a nonempty set A(x) ∈ B(A) whose elements are the admissible
controls when the system is in state x. The set

K = {(x, a) : x ∈ X, a ∈ A(x)}
of admissible state-action pairs is assumed to be a Borel subset of the Cartesian
product of X and A. The dynamics is defined by the system equation (1) where
F : X×A×<k → X is a given (known) measurable function, and {ξt} is a sequence
of independent and identically distributed (i.i.d.) random vectors (r.v.’s) on a prob-
ability space (Ω,F , P ), with values in <k and common distribution with a unknown
density ρ. Finally, the cost-per-stage c(x, a) is a nonnegative measurable real-valued
function on K, possibly unbounded.

Throughout the paper, the probability space (Ω,F , P ) is fixed and a. s. means
almost surely with respect to P . In addition, we assume that the realizations ξ0, ξ1, . . .
of the disturbance process and the states x0, x1, . . . are completely observable.
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Control policies. We define the spaces of admissible histories up to time t by
H0 := X and Ht := (K × <k)t × X, for t ∈ N := {1, 2, . . .}. A typical element of
Ht is written as ht = (x0, a0, ξ0, . . . , xt−1, at−1, ξt−1, xt). A control policy π = {πt}
is a sequence of measurable functions πt : Ht → A such that πt(ht) ∈ A(xt), for all
ht ∈ Ht, t ∈ N. We denote by Π the set of all control policies.

Let F be the family of measurable functions f : X → A such that f(x) ∈ A(x) for
all x ∈ X. A sequence {ft} of functions ft ∈ F is called a Markov policy. A Markov
policy {ft} is said to be stationary if ft = f for all t = 0, 1, . . . and some f ∈ F. In
this case we use the notation

c(x, ft) := c(x, ft(x)) and F (x, ft, s) := F (x, ft(x), s)

for all x ∈ X, s ∈ <k, and t ≥ 0.

3. DISCOUNTED OPTIMALITY CRITERION

When using a policy π ∈ Π, given the initial state x0 = x, we define the total
expected α-discounted cost as

V (π, x) := Eπ
x

[ ∞∑
t=0

αtc(xt, at)

]
, (3)

where α ∈ (0, 1) is the so-called discount factor, and Eπ
x denotes the expectation

operator with respect to the probability measure Pπ
x induced by the policy π, given

the initial state x0 = x (see, e. g., [3] for the construction of Pπ
x ).

The optimal control problem associated to the control model M, is then to find
an optimal policy π∗ ∈ Π such that V (π∗, x) = V ∗(x) for all x ∈ X, where

V ∗(x) := inf
π∈Π

V (π, x), x ∈ X,

is the optimal α-discounted cost, which we call value function.

Assumptions. To guarantee the existence of “measurable minimizers”, we need
the following standard continuity and compactness conditions on the components of
the control model M.

Assumption 3.1. (a) For every x ∈ X, the one-stage cost c(x, a) is nonnegative
and continuous on a ∈ A(x). Moreover, there exist a measurable function W : X →
[1,∞) and constants c > 0 and β > 0, such that 0 < αβ < 1, supA(x) c(x, a) ≤
cW (x) and ∫

<k

W [F (x, a, s)]ρ(s) ds ≤ βW (x).

(b) For each x ∈ X, A(x) is a compact set.
(c) For each x ∈ X and v ∈ B(X), the function a → ∫

<kv[F (x, a, s)]ρ(s) ds is
continuous and bounded on A(x).
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(d) For each x ∈ X, the function a → ∫
<kW [F (x, a, s)]ρ(s) ds is continuous on A(x).

We denote by BW (X) the normed linear space of all measurable function u : X →
< with

‖u‖W := sup
x∈X

|u(x)|
W (x)

< ∞.

A first consequence of Assumption 3.1 is the following (see, e. g., [10]):

Proposition 3.2. Suppose that Assumption 3.1 holds. Then:
a) V ∗ ∈ BW (X) is a solution to the α-discounted optimality equation

V ∗(x) = min
a∈A(x)

{
c(x, a) + α

∫

<k

V ∗(F (x, a, s))ρ(s) ds

}
, x ∈ X. (4)

b) There exists f ∈ F such that f(x) ∈ A(x) attains the minimum in (4), i. e.,

V ∗(x) = c(x, f) + α

∫

<k

V ∗(F (x, f, s))ρ(s) ds, x ∈ X, (5)

and moreover, the stationary policy {f} is optimal.

4. APPROXIMATION AND ESTIMATION

Remark 4.1. In [9] there were presented several approximation schemes to the
value function V ∗, for instance, the “recursive bounded-cost approximations” defined
as follows. Let {c̄n}n∈N be a sequence of nonnegative bounded and continuous
functions on K such that c̄n ↗ c. We define the sequence {un} of functions on B(X)
as:

u0 ≡ 0;

un(x) := min
a∈A(x)

{
c̄n(x, a) + α

∫

<k

un−1(F (x, a, s))ρ(s) ds

}
, x ∈ X, n ≥ 1. (6)

Then, under Assumption 3.1, un ↗ V ∗. Our approach is motived by this approxi-
mation scheme.

Let ξ0, ξ1, . . . , ξn−1 be independent r.v.’s (observed up to time n − 1) with the
unknown density ρ. We consider the control model

Mn =
(
X, A, {A(x) ⊂ A|x ∈ X} ,<k, F, ρn, cn

)

satisfying the following conditions. The state space X, the control space A and the
function F are as in (2); ρn(s) := ρn(s; ξ0, ξ1, . . . , ξn−1), s ∈ <k, is an estimator of
ρ such that, for some γ > 0,

E

∫

<k

|ρn(s)− ρ(s)| ds = O(n−γ) as n →∞; (7)

and, finally, cn : K→ < is the truncated cost defined as

cn(x, a) := min {c(x, a), n} , (x, a) ∈ K. (8)

Estimators satisfying (7) are given, for instance, in [2, 6].



Approximation and Estimation in Control Processes 685

Remark 4.2. a) In particular, observe that (see Remark 4.1)

Un ↗ V ∗ as n →∞, (9)

where {Un} is the sequence of function on B(X) defined in (6) corresponding to the
truncated cost (8). That is,

U0 ≡ 0;

Un(x) := min
a∈A(x)

{
cn(x, a) + α

∫

<k

Un−1(F (x, a, s))ρ(s) ds

}
, x ∈ X, n ≥ 1. (10)

In fact, since cn(x, a) ≤ n for each n ≥ 0, it is easy to see that

Un(x) ≤
n∑

k=1

kαn−k ≤
n∑

k=1

k =
n(n + 1)

2
, x ∈ X. (11)

b) In addition, under Assumption 3.1, supA(x) cn(x, a) ≤ cW (x) for all x ∈ X, n ≥ 0.
Furthermore, {Un} is a sequence of functions on BW (X), such that,

Un(x) ≤ cW (x)
1− αβ

.

For each fixed t ≥ 0, we define the sequence {V ρt
n } of functions on B(X) as:

V ρt

0 ≡ 0;

V ρt
n (x) := min

a∈A(x)

{
cn(x, a) + α

∫

<k

V ρt

n−1(F (x, a, s))ρt(s) ds

}
, x∈X, n≥1. (12)

Now, let us choose an arbitrary real number ν ∈ (0, γ/3) (γ as in (7)) and define
a sequence {nt} of integer numbers as nt := [tν ] , where [x] represents the integer
part of x.

Remark 4.3. Applying standard arguments on the existence of minimizers (see,
e. g., [7, 9] and references therein), under Assumption 3.1 we have that for each
t ∈ N, there exists f̂t ≡ fρt

nt
∈ F such that

V ρt
nt

(x) = cnt(x, f̂t) + α

∫

<k

V ρt

nt−1(F (x, f̂t, s))ρt(s) ds, ∀x ∈ X, (13)

where the minimization is done for every ω ∈ Ω. Moreover, by a result of Schäl
[13], there is a stationary policy {f∞} for the control model M such that for each
x ∈ X, f∞(x) ∈ A(x) is an accumulation point of

{
f̂t(x)

}
. That is, there exists a

subsequence {ti} of {t} (ti = ti(x)) such that f̂ti(x) → f∞(x) as i →∞.
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Theorem 4.4. Suppose that Assumption 3.1 holds. Then:
a) E

∥∥V ρt
nt
− Unt

∥∥ → 0 as t →∞.

b) For each x ∈ X,

E
∣∣V ρt

nt
(x)− V ∗(x)

∣∣ → 0 as t →∞.

c) If moreover, the set-valued mapping x 7−→ A(x) is upper semicontinuous and F
is continuous in a ∈ A(x) for all x ∈ X, then the stationary policy {f∞} is optimal
for the model M.

Remark 4.5. (a) Observe that from (13), letting ti = i for notational convenience,
we have for each i ∈ N,

V ρi
ni

(x) = cni
(x, f̂i) + α

∫

<k

V ρi

ni−1(F (x, f̂i, s))ρi(s) ds a. s., ∀i ≥ 0, x ∈ X. (14)

(b) Upper semi-continuity of x 7−→ A(x) means: for each open set A′ ⊂ A, the set
{x ∈ X : A(x) ⊂ A′} is open in X. This assumption together Assumption 3.1 implies
that the value function V ∗ is lower semi continuous (see, e. g., [9]).

5. PROOF OF THEOREM 4.4

a) From (12) and (10), adding and subtracting the term α
∫
<k Unt−1(F (x, a, s))ρt(s) ds

we have
∣∣V ρt

nt
(x)−Unt(x)

∣∣ ≤ sup
a∈A(x)

∣∣∣∣
∫

<k

V ρt

nt−1(F (x, a, s))ρt(s) ds−
∫

<k

Unt−1(F (x, a, s))ρ(s) ds

∣∣∣∣

≤ sup
a∈A(x)

{∫

<k

∣∣V ρt

nt−1(F (x, a, s))− Unt−1(F (x, a, s))
∣∣ ρt(s) ds

+
∫

<k

Unt−1(F (x, a, s)) |ρt(s)− ρ(s)| ds

}

≤
∥∥V ρt

nt−1 − Unt−1

∥∥ + ‖Unt−1‖
∫

<k

|ρt(s)− ρ(s)| ds, t ≥ 0.

Hence,
∥∥V ρt

nt
− Unt

∥∥ ≤
∥∥V ρt

nt−1 − Unt−1

∥∥ + ‖Unt−1‖
∫

<k

|ρt(s)− ρ(s)| ds, t ≥ 0.

Iterating this inequality and using that V ρt

0 = U0 = 0, we obtain
∥∥V ρt

nt
− Unt

∥∥ ≤ (‖U0‖+ · · ·+ ‖Unt−1‖)
∫

<k

|ρt(s)− ρ(s)| ds, t ≥ 0,

which in turn yields
∥∥V ρt

nt
− Unt

∥∥ ≤ nt ‖Unt−1‖
∫

<k

|ρt(s)− ρ(s)| ds

≤ n2
t (nt − 1)

2

∫

<k

|ρt(s)− ρ(s)| ds a. s. t ≥ 0, (15)
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since {Un} is a increasing sequence, and from (11).

Now, by the definition of nt we have

n2
t (nt − 1)

2
= O(t3ν) as t →∞.

Thus, from (7) and taking expectation on both sides of (15), we get

E
∥∥V ρt

nt
− Unt

∥∥ = O(t3ν)O(t−γ) = O(t3ν−γ) → 0 as t →∞

because ν < γ/3 (see the definition of nt). This completes the proof of the part (a).

b) This result is a consequence of part (a) and (9). Indeed, for each x ∈ X and
t ≥ 0,

∣∣V ρt
nt

(x)− V ∗(x)
∣∣ ≤ ∣∣V ρt

nt
(x)− Unt

(x)
∣∣ + |Unt

(x)− V ∗(x)| a. s.

Taking expectation on both sides of this inequality and letting t → ∞, we obtain
the desired result.

c) We fix an arbitrary x∈X. Adding and subtracting the terms∫
<kUni−1(F (x, a, s))ρ(s)ds and

∫
<kUni−1(F (x, a, s))ρi(s)ds, we have, for each i≥0,

∣∣∣∣
∫

<k

V ∗(F (x, f̂i, s))ρ(s) ds−
∫

<k

V ρi

ni−1(F (x, f̂i, s))ρi(s) ds

∣∣∣∣
∣∣∣∣≤

∫

<k

V ∗(F (x, f̂i(x), s))ρ(s) ds−
∫

<k

Uni−1(F (x, f̂i(x), s))ρ(s) ds

∣∣∣∣

+ sup
a∈A(x)

∫

<k

Uni−1(F (x, a, s)) |ρi(s)− ρ(s)| ds

+ sup
a∈A(x)

∫

<k

∣∣Uni−1(F (x, a, s))− V ρi

ni−1(F (x, a, s))
∣∣ ρi(s) ds. (16)

Now, the facts f̂i → f∞, Un ∈ BW (X) (see Remark 4.2 (b)), Fatou’s Lemma (see
Lemma 8.3.7 in [10]) and (9) yield,

∣∣∣∣
∫

<k

V ∗(F (x, f̂i, s))ρ(s) ds−
∫

<k

Uni−1(F (x, f̂i, s))ρ(s) ds

∣∣∣∣ → 0 as i →∞. (17)

Now, from (11) and (15) we get

βi := sup
a∈A(x)

∫

<k

Uni−1(F (x, a, s)) |ρi(s)− ρ(s)| ds

≤ (ni − 1)ni

2

∫

<k

|ρi(s)− ρ(s)| ds ≤ n2
i

∫

<k

|ρi(s)− ρ(s)| ds, x ∈ X; (18)
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and

δi := sup
a∈A(x)

∫

<k

∣∣Uni−1(F (x, a, s))− V ρi

ni−1(F (x, a, s))
∣∣ ρi(s) ds

≤ (ni − 1)2(ni − 2)
2

∫

<k

|ρi(s)− ρ(s)| ds ≤ n3
i

∫

<k

|ρi(s)− ρ(s)| ds, x ∈ X. (19)

Thus, taking expectation on both sides of (18) and (19), the definition of ni together
with (7) implies,

Eβi = O(i2ν)O(i−γ) → 0 as i →∞; (20)
and

Eδi = O(i3ν)O(i−γ) → 0 as i →∞. (21)

Hence, from (16) – (21) we get,

E

∣∣∣∣
∫

<k

V ∗(F (x, f̂i, s))ρ(s) ds−
∫

<k

V ρi

ni−1(F (x, f̂i, s))ρi(s) ds

∣∣∣∣→0 as i→∞, (22)

which implies that

lim inf
i→∞

E

∫

<k

V ρi

ni−1(F (x, f̂i, s))ρi(s) ds ≥
∫

<k

V ∗(F (x, f∞, s))ρ(s) ds. (23)

Indeed, for each i ∈ N,

∫

<k

V ρi

ni−1(F (x, f̂i, s))ρi(s) ds =
[∫

<k

V ρi

ni−1(F (x, f̂i, s))ρi(s) ds

−
∫

<k

V ∗(F (x, f̂i, s))ρ(s) ds

]
+

∫

<k

V ∗(F (x, f̂i, s))ρ(s) ds.

Now, taking expectation and lim inf as i → ∞ on both sides of this equality, from
(22) we get

lim inf
i→∞

E

∫

<k

V ρi

ni−1(F (x, f̂i, s))ρi(s) ds ≥ lim inf
i→∞

E

∫

<k

V ∗(F (x, f̂i, s))ρ(s) ds.

Thus, (23) follows from the lower semicontinuity of V ∗ (see Remark 4.5 (b)), the
continuity of F in a ∈ A(x), and Fatou’s Lemma. Hence, taking expectation and
lim inf as i → ∞ in (14), and using the fact supa∈A(x) |c(x, a)− cni(x, a)| → 0 (see
Assumption 3.1), we obtain

c(x, f∞) + α

∫

<k

V ∗(F (x, f∞, s))ρ(s) ds ≤ V ∗(x). (24)

Finally, as x was arbitrary, by (4), the equality holds in (24) for every x ∈ X, and
therefore (see Proposition 3.2 (b)) {f∞} is optimal for the model M.
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6. EXAMPLE

We consider a storage system of the form

xt+1 = (xt + at − ξt)+, t = 0, 1, . . . , (25)

x0 given, with state space X = [0,∞) and action set A(x) = A = [0, θ] for all
x ∈ X and some θ > 0. In addition the random variables ξ0, ξ1, . . . , are i.i.d. with a
continuous and bounded density, satisfying

E[ξ0] > θ. (26)

In particular, relation (25) describes an inventory-production system where xt

represents the stock level at the beginning of period t, the control at is the quantity
ordered or produced at the beginning of period t, and the random variable ξt is the
demand during that period.

Let Ψ be the moment generating function of the random variable θ − ξ0, that is,
Ψ(t) = E [exp t(θ − ξ0)] . Then, (26) implies Ψ′(0) < 0, and since Ψ(0) = 1, there
exists λ > 0 such that

β0 := Ψ(λ) < 1. (27)

Now we fix a discount factor α = 1/2, and let c(x, a) be a nonnegative and
continuous one-stage cost function such that

sup
a∈A

c(x, a) ≤ ceλx,

for all x ∈ X and some c > 0. Defining W (x) := ceλx, we have for all x ∈ X, a ∈ A,

∫ ∞

0

ceλ(x+a−s)+ρ(s) ds ≤ c +
∫ ∞

0

ceλ(x+a−s)ρ(s) ds

≤ c + ceλx

∫ ∞

0

eλ(θ−s)ρ(s) ds

= c + β0ce
λx ≤ βceλx,

where β := (1 + β0). Observe that from (27) β < 2, and therefore Assumption 3.1
(a) is satisfied.

To verify Assumption 3.1 (c), let v be a bounded measurable function on X, and
for every a ∈ A(x), let ρa be the density of a− ξ0. Observe that

ρa(y) = ρ(a− y), −∞ < y ≤ a.

In addition, for each y ∈ <, a → ρa(y) is continuous on A. Then,
∫ ∞

0

v(x + y)+ρa(y) dy = v(0)
∫ −x

−∞
ρa(y) dy +

∫ ∞

−x

v(x + y)ρa(y) dy

= v(0)
∫ −x

−∞
ρa(y) dy +

∫ ∞

0

v(y)ρa(y − x) dy.
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Thus, by Scheffé’s Theorem,

a →
∫ ∞

0

v[(x + a− s)+]ρ(s) ds

defines a continuous function on A. Finally, replacing v by the function W, and using
similar arguments, we obtain that Assumption 3.1 (c) and (d) hold.

(Received December 17, 2003.)
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