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A NECESSARY AND SUFFICIENT CONDITION FOR
STATIC OUTPUT FEEDBACK STABILIZABILITY OF
LINEAR DISCRETE–TIME SYSTEMS1

Danica Rosinová, Vojtech Veselý and Vladiḿır Kučera

Necessary and sufficient conditions for a discrete-time system to be stabilizable via static
output feedback are established. The conditions include a Riccati equation. An iterative
as well as non-iterative LMI based algorithm with guaranteed cost for the computation of
output stabilizing feedback gains is proposed and introduces the novel LMI approach to
compute the stabilizing output feedback gain matrix. The results provide the discrete-time
counterpart to the results by Kučera and De Souza [8].

Keywords: discrete-time systems, output feedback, stabilizability, stabilizing feedback,
Riccati equations, LMI approach

AMS Subject Classification: 93D15

1. INTRODUCTION

Stabilization of linear systems using static output feedback has attracted consider-
able interest during the past decades. Various approaches have been used to study
two aspects of the stabilization problem, namely conditions under which the linear
system described in state-space can be stabilized via static output feedback and
the respective procedure to obtain a stabilizing control law. A body of literature
deals with the output stabilization problem for the continuous-time systems. An
approach based on linear-quadratic regulator theory applying Lyapunov results to
output stabilization was presented in Levine and Athans [9], leading to an iterative
solution of three coupled matrix equations. Trinh and Aldeen [11] indicate an iter-
ative algorithm to find output control gains derived from state-feedback solution to
the corresponding Riccati equation. The existence of a solution or convergence of the
algorithm is not discussed. Various other approaches and results for continuous-time
systems are surveyed in Kučera and De Souza [8]. In the above paper Kučera and
De Souza [8] found necessary and sufficient conditions for the existence of output
feedback stabilizing control for continuous-time systems and proposed an iterative
algorithm to find a stabilizing feedback gain.

1Preliminary version of this paper was presented at the IFAC Conference on Control Systems
Design held in Bratislava on June 18–20, 2000.
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Output feedback stabilization of discrete-time systems employing LQ regulator
theory can be found in Kolla and Farison [7], Sharav-Schapiro et al. [10], De Souza
and Trofino [3]. The latter papers are devoted to a more complex problem including
robustness aspects. The output stabilization is discussed as a special case. Kolla
and Farison [7] derived the system of five matrix equations that should be solved
by gradient methods to obtain control gains. Sharav-Schapiro et al. [10] study the
output stabilizing robust control problem. They treat both Lyapunov and Riccati
equation based controllers and develop the criterion for the existence of the so called
output min-max controller. Crusius and Trofino [2], De Souza and Trofino [3] provide
the sufficient conditions for output feedback stabilization that are convex and given
in terms of linear matrix inequalities (LMIs).

The crucial point in the stabilizing output feedback statement is non-convex prob-
lem formulation. The existing approaches either use iterative algorithms to cope with
non-convexity or add the appropriate constraint to restrict the problem to a convex
one appropriate for LMI solution and thus the necessary and sufficient conditions are
reduced to sufficient ones. Another approach employs bilinear matrix inequalities
(BMIs), see Goh, Safonov and Papavassilopoulos, [5].

In this paper the linear discrete-time systems counterpart to the results of Kučera
and De Souza [8] is presented in Section 2, and modified in Section 3 to provide the
necessary and sufficient conditions for static output feedback stabilization. The
corresponding iterative and also non iterative LMI based algorithm to compute a
stabilizing static output feedback gain matrix with guaranteed cost is proposed.
In Section 3 the novel approach to LMI algorithm proposal is developed to cope
with non-linear terms and avoid iterative procedures. The use of LMI approach is
motivated by the existence of standard packages and efficient LMI solvers as well
as possibility to extend the results to robust static output feedback stabilization of
linear time invariant (LTI) systems with polytopic models. The notation is standard,
and will be defined as the need arises. Much of the notation and terminology follows
references Kučera and De Souza [8], Zhou, Doyle and Glover [13].

2. MAIN RESULTS

Consider a linear discrete-time system

x(k + 1) = Ax(k) + Bu(k) (1)

y(k) = Cx(k)

with static output feedback
u(k) = Ky(k) (2)

where x(k) ∈ IRn, u(k) ∈ IRm, y(k) ∈ IRp are state, control and output vector
respectively, and A,B, C,K are real matrices of corresponding dimensions.

Let us recall several commonly used notions. Matrix X is called stable when all
its eigenvalues have modulus less than 1. System (1) with a stable matrix A is called
stable. System (1) or pair (A,B) is called stabilizable if there exists a real state
feedback gain matrix F such that A + BF is a stable matrix. System (1) is called
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output feedback stabilizable if there exists a real output feedback gain matrix L such
that A + BLC is a stable matrix. The pair (A, C) is called detectable if there exists
a real matrix Y such that A + Y C is stable.

The basic aim of applying control law (2) to the system (1) is to achieve stability of
the closed-loop system. In the following theorem, necessary and sufficient conditions
for static output feedback stabilizability of the studied system (1) are given.

Theorem 1. The discrete-time system (1) is static output feedback stabilizable if
and only if

(i) the pair (A,B) is stabilizable, the pair (A,C) is detectable, and either of the
following statements holds

(ii-a) there exist real matrices K and G such that

G = KC + (BT PB + R)−1BT PA (3)

where P is the real symmetric nonnegative definite solution of

AT PA− P −AT PB(BT PB + R)−1BT PA + CT C + GT (BT PB + R)G = 0 (4)

and R is a real symmetric positive definite matrix of appropriate dimensions

(ii-b) there exist real matrices K1 and G1 such that

G1 = (BT P1B + R)−
1
2 BT P1A + (BT P1B + R)

1
2 K1C (5)

where P1 is the real symmetric nonnegative definite solution of

AT P1A− P1 −AT P1B(BT P1B + R)−1BT P1A + Q + GT
1 G1 = 0 (6)

and Q and R are real symmetric positive definite matrices of appropriate dimensions.

P r o o f . Let us start with the first alternative of Theorem 1 that (i) and (ii-a)
are necessary and sufficient conditions for static output feedback stabilizability of
the system (1).

Necessity. Suppose that A + BKC is stable for some K. Then (A,B) is stabi-
lizable since A + BF is stable for F = KC and (A, C) is detectable since A + LC
is stable for L = BK. Thus (i) is proved. Since A + BKC is stable, it is known
(Zhou, Doyle and Glover [13], Lemma 21.6) that there exists a unique symmetric
nonnegative definite matrix P such that

(A + BKC)T P (A + BKC)− P + CT C + CT KT RKC = 0 (7)

for some real symmetric nonnegative definite matrix R. After rearranging, (7) yields

AT PA− P + CT KT BT PA + AT PBKC+ (8)

CT KT BT PBKC + CT C + CT KT RKC = 0
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For G defined by (3) we obtain

GT (BT PB + R)G = CT KT BT PBKC+ (9)

CT KT RKC + CT KT BT PA + AT PBKC + AT PB(BT PB + R)−1BT PA

The combination of (8) and (9) proves the equivalence of (7) and (4), with G given
by (3).

Sufficiency. Suppose that (i) and (ii-a) hold. After substitution from (3) to (4)
the Lyapunov equation (7) is obtained, where P is symmetric nonnegative definite
matrix. Obviously CT C + CT KT RKC is nonnegative definite. From detectability
of (A,C) the existence of L such that A + LC is stable is guaranteed. Thus also

[
A + BKC [CT (KC)T ]T

]

is detectable since

A + LC = (A + BKC) + [L −B][CT (KC)T ]T

Therefore from (7), considering the previous arguments, stability of A + BKC is
obtained, see Zhou, Doyle and Glover [13].

It remains to prove that (i) and (ii-b) are necessary and sufficient conditions for
static output feedback stabilizability as well. This part of the proof can be completed
using the same arguments as above. 2

Remark 1. Equation (3) is equivalent to (5) for

G1 = (BT PB + R)
1
2 G.

Remark 2. The difference between (4) and (6) is then only in constant terms:
CT C in (4) and Q in (6). Due to this difference generally different solutions P, P1

are obtained from (4) and (6) and therefore the corresponding stabilizing gains K, K1

are also different in general.

In Theorem 1 the output feedback stabilization problem is analyzed using the
linear-quadratic theory tools. The output feedback matrix K is tightly connected,
through equations (3) and (4), with the LQ optimal state feedback control gain
matrix. The weighting matrix G shows in certain sense “the difference” between the
LQ optimal state feedback gain and the proposed output gain (see equation (3)).
However, similarly to the existing literature, Theorem 1 is existential and does not
solve the computational aspects of the problem.

The discrete-time counterpart algorithm to that given in Kučera and De Souza
[8] is proposed here in two alternatives corresponding to (ii-a) and (ii-b) of Theorem
1. The idea behind the algorithm is to start from ideal case when G = 0, which
corresponds to the optimal LQ control law,

KC = −(BT PB + R)−1BT PA

where P is a solution to Riccati equation (4). However such a matrix P does not
necessarily exist for C 6= I, therefore an iterative procedure is proposed to find G
and P such that the constraints (3), (4) are both satisfied.
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Algorithm A.

Step 1. Set i = 0, Gi = 0.

Step 2. Solve the Riccati equation

AT Pi+1A− Pi+1 −AT Pi+1B(BT Pi+1B + R)−1BT Pi+1A+

CT C + GT
i (BT Pi+1B + R)Gi = 0

for Pi+1 symmetric and nonnegative definite.

Step 3. Put
Gi+1 = (BT Pi+1B + R)−1BT Pi+1A[I − CT (CCT )−1C].

Step 4. Increase i by one and go to Step 2.

If the sequence {Pi} converges to some P , an output feedback matrix that satisfies
(3) and (4) is given by

K = −(BT PB + R)−1BT PACT (CCT )−1.

Algorithm B.

Step 1. Set i = 0, G1,i = 0.

Step 2. Solve the Riccati equation

AT P1,i+1A− P1,i+1 −AT P1,i+1B(BT P1,i+1B + R)−1

BT P1,i+1A + Q + GT
1,iG1,i = 0

for P1,i+1 symmetric and nonnegative definite.

Step 3. Put

G1,i+1 = (BT P1,i+1B + R)−
1
2 BT P1,i+1A[I − CT (CCT )−1C]

Step 4. Increase i by one and go to Step 2.

If the sequence {P1,i} converges to some P1, an output feedback gain matrix that
satisfies (5) and (6) is given by

K1 = −(BT P1B + R)−1BT P1ACT (CCT )−1.

Notice that while alternatives (ii-a) and (ii-b) in Theorem 1 are equivalent as
far as the existence of corresponding solutions is concerned, it is not necessarily the
case for Algorithm A and Algorithm B since there is a difference in Step 3 (solution
Pi is generally different from P1,i). The proposed algorithms are computationally
simple; however the question of convergence of the above algorithms still remains
open and limits their efficiency. Therefore an LMI approach will be developed in the
next section that provides a way to non-iterative computation of stabilizing output
feedback.
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3. GUARANTEED COST OUTPUT FEEDBACK CONTROL

Consider the linear discrete time system (1) with output feedback (2) and the cost
function

J =
∞∑

k=0

[x(k)T Qx(k) + u(k)T Ru(k)] (10)

where Q ∈ IRn×n, R ∈ IRm×m are real symmetric positive definite matrices. The
results on output feedback stabilization from Section 2 can be slightly modified to
get an upper bound on the closed loop value of the quadratic cost function. In this
way the so called guaranteed cost control for output feedback is given in this section.
The results are provided in terms of algebraic linear matrix inequalities to indicate
a possibility of LMI solution (Boyd, El Ghaoui, Feron and Balakrishnan, [1]).

Theorem 2. Consider system (1) and cost function (10). Then the following
statements are equivalent.

1. System (1) is static output feedback stabilizable with guaranteed cost

J ≤ xT
0 Px0 (11)

where P is a real symmetric positive definite matrix, x0 = x(0) is initial value
of the state vector x(k).

2. The pair (A,B) is stabilizable, the pair (A,C) is detectable and there exist
real matrices K and G such that

G = (BT PB + R)−
1
2 BT PA + (BT PB + R)

1
2 KC (12)

where P is the real symmetric positive definite solution of

AT PA− P −AT PB(BT PB + R)−1BT PA + Q + GT G ≤ 0. (13)

P r o o f .
2. → 1.

The first part of proof follows from Theorem 1. When conditions in statement 2.
hold that implies output feedback stabilizability of system (1). Note that (13) is for
G given by (12) equivalent to

(A + BKC)T P (A + BKC)− P + CT KT RKC + Q ≤ 0 (14)

Inequality (14) is furthermore equivalent to stability of closed loop system (A +
BKC). The upper bound on the cost function is then derived in standard way. Let
us define the function

V (k) = x(k)T Px(k)

From (14)

x(k)T [(A + BKC)T P (A + BKC)− P + CT KT RKC + Q]x(k) ≤ 0
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Considering system description (1) and (2)

x(k + 1)T Px(k + 1)− x(k)T Px(k) ≤ −[x(k)T Qx(k) + u(k)T Ru(k)]

and

∞∑

k=0

[x(k)T Px(k)− x(k + 1)T Px(k + 1)] ≥
∞∑

k=0

[x(k)T Qx(k) + u(k)T Ru(k)]

Since (A + BKC) is stable, x(k) → 0 for k →∞ and we finally obtain

J ≤ x(0)T Px(0).

1. → 2.
We will show that assuming 1. holds and 2. does not hold in Theorem 2 leads to

a contradiction. Assume that (1) is stabilizable by output feedback, i.e. there exists
K such that (A + BKC) is stable and J ≤ x(0)T P ?x(0) for a symmetric positive
definite matrix P ?. Suppose that 2. does not hold for P ? or, equivalently

(A + BKC)T P ?(A + BKC)− P ? + CT KT RKC + Q > 0 (15)

since (13) is equivalent to (14). Let us define the function V (k)? = x(k)T P ?x(k).
Then following the same steps as in the previous part of the proof for V (k)? and
inequality (15) we obtain

∞∑

k=0

[x(k + 1)T P ?x(k + 1)− x(k)T P ?x(k)] > −
∞∑

k=0

x(k)T [Q + CT KT RKC]x(k)

Since according to the assumption (A + BKC) is stable, x(k) → 0 for k → ∞ and
the last inequality reduces to

x(0)T P ?x(0) <
∞∑

k=0

[x(k)T Qx(k) + u(k)T Ru(k)] = J

that contradicts to the assumption that P ? provides an upper bound on J . 2

Inequality (13) with (12) in Theorem 2 corresponds to (6) with (5) from Theorem
1. Similarly (4) with (3) from Theorem 1 can be modified to include Q instead of
the CT C term. However then according to Remark 1 and 2 the same results are
obtained as those in (13) with (12).

The following corollary outlines a way to develop an LMI solution for output
feedback design.

Corollary 1. System (1) with cost function (10) is output feedback stabilizable
with guaranteed cost

J ≤ xT
0 Px0, P > 0
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if and only if

Φd = AT PA− P + Q−AT PB(BT PB + R)−1BT PA ≤ 0 (16)

and [ −I G
GT Φd

]
≤ 0

(17)

where G is given in (12).

In Corollary 1 the inequality (13) is split into (16) and (17) so that G and P are
formally “separated”. Thus once a P is obtained satisfying (16), output feedback
matrix can be computed from (17) as in Algorithm C below.

Algorithm C.

Step 1. Find P as a solution to (16). If (16) is not feasible the considered system is
not output feedback stabilizable.

Step 2. Compute K from (17) for P from Step 1. If (17) is feasible, a stabilizing
output feedback K is found for guaranteed cost given by P . If (17) is infeasible,
another P verifying (16) can be checked or cost function Q,R modified.

The above non-iterative Algorithm C with guaranteed cost is a discrete-time
counterpart to the algorithm introduced in Veselý [12] for continuous-time systems.
There are two non-trivial tasks to be solved in Algorithm C. Inequality of (16) is
nonlinear and does not possess any obvious convexity property. Therefore to find
the LMI solution, inequality (16) is reformulated in the following way

P = AT [P − PB(BT PB + R)−1BT P ]A + Q.

Let us denote
Re = BT PB + R, L = PB(Re)−1

then the following algorithm with respect to P is obtained.

Algorithm P.

Step 1. i = 1 P0 = I

Step 2. Pi = AT Pi−1A + Q

Step 3. Re = BT PiB + R

Step 4. L = PiB(Re)−1

Step 5. Pi+1 = (I − LBT )Pi(I − LBT )T + LRLT
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Step 6. i = i + 1 go to Step 2.

Step 7. If matrices Pi calculated on the second step converge say to P , this is the
solution of (16).

The other task is to find a matrix P subject to (16) for (17) to make it feasible.
In the following we propose alternatives to solve this task. Since in the outlined
Algorithm C the inequality (16) is solved separately from (17), the results may be
conservative. To decrease this conservativeness and “tailor” the solution of (16) to
(17) we append 4Q to the left hand side of (16)

Qn = Q +4Q (18)

To find a “suitable” 4Q, the minimization of ‖GT G‖ in (13) is included that brings
the output control gain “as close as possible” to LQ optimal state control. Solution
to

min
K
‖GT G‖ (19)

where G is given in (12) yields

K = −(BT PB + R)−1BT PAC+ (20)

where C+ is the pseudoinverse of matrix C, C+ = CT (CCT )−1 The term 4Q to be
used in (18) is equal to

4Q = (I − C+C)T AT PB(BT PB + R)−1BT PA(I − C+C) (21)

Notice that for C = I, GT G = 0 and (13) changes to the Riccati equation form.
The resulting sufficient conditions to stabilize the system (1), (2) are given by in-
equalities (17) and

Φd +4Q < 0 (22)

The modified Algorithm C runs as follows:
Step 1. Find P as a solution of (22).
Step 2. Compute K from (17) for P obtained in Step 1.

The latter, modified form of Algorithm C for K given by (20) provides the non-
iterative alternative to Algorithms A, B. The Algorithm C and (22) provide two
alternatives of non-iterative LMI solution to find stabilizing output feedback gain
matrix K for the system (1), (2) with sufficient stability conditions.

4. EXAMPLES

Three examples that illustrate the use of the algorithms proposed in Sections 2 and
3 are presented. In these examples stability is indicated through a spectral radius
ρ of the studied system (ρ(M) is the radius of the smallest circle centered in the
origin, in which all eigenvalues of matrix M lie, or ρ(M) = |λM (M)|, where λM (M)
is the eigenvalue of M with maximal modulus ).
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Example 1. Consider a DC motor described in discrete-time state-space model
by equation (1) with

A =




0.5965 0.0708 0
−0.6488 0.9647 0
−0.0788 −0.0043 1




B =




0.0586
1.4857
−0.0019


 , C =

[
1 0 0
0 0 1

]

The open loop system is not stable, ρ(A) = 1. The aim is to find an output feedback
gain matrix K so that the closed loop system A + BKC is stable. The results
obtained using Algorithms A, B, C are summarized as follows.

Algorithm A:
For R = 0.0001 the gain matrix K = [0.1195 1.0679] is obtained and ρ(A+BKC) =
0.9781.

Algorithm B:
For R = 1, Q = I, K = [0.4034 0.1816] and ρ(A + BKC) = 0.9843.
For R = 0.1, Q = I, K = [0.3975 0.1769] and ρ(A + BKC) = 0.9832.
For R = 0.01, Q = I, K = [0.3970 0.1764] and ρ(A + BKC) = 0.9831.

For Q = diag [1 0.01 1] ∗ 0.00001; R = 1 one obtains for Modified Algorithm C

eig CL = {0.7774± .1498i 0.9998}, K = [−0.1105 0.0011]

and guaranteed cost J ≤ ‖x0‖2 1.6903.

Algorithm C gives an unstable closed loop system

eig CL = {0.7792± 0.1291i 1}, K = [−0.0491 0.0001].

V-K iterative method (El Ghaoui and Balakrishnan, [4] )

eig CL = {0.6705 0.9187 0.9876}, K = [0.2673 0.0301]

and guaranteed cost J ≤ ‖x0‖2 3.1144, where eig CL are the closed loop eigenvalues.

Example 2. Consider a system described by (1), where

A =




0.8897 0.0920 0.1577
2.1211 0.8077 2.9290

0 0 0.7985




B =




0.0122 0.0412
0.3548 0.1230
0.2015 0.2301


 , C =

[
0 1 0
0 0 1

]

and ρ(A) = 1.2923; the system is unstable. The results are summarized as follows.
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Algorithm A:
For R = 0.0001 ∗ I one obtains ρ(A + BKC) = 0.9585 and a gain matrix

K = −
[

1.2799 7.1261
0.7825 0.1011

]

Algorithm B:
For R = 0.01 ∗ I, Q = I one obtains ρ(A + BKC) = 0.9552 and a gain matrix

K = −
[

1.0243 6.7405
0.9717 0.3865

]

Algorithm C:
For Q = I, R = 0.01 ∗ I one obtains a gain matrix

K = −
[

0.9932 6.2471
0.9977 0.8242

]

and ρ(A + BKC) = 0.9597, and guaranteed cost J ≤ ‖x0‖2 106.17.
For Q = I, R = 0.001 ∗ I one obtains ρ(A + BKC) = 0.9428, guaranteed cost
J ≤ ‖x0‖2 129.50 and a gain matrix

K = −
[

0.9716 6.6139
1.1540 0.7018

]

In this example the results obtained by Algorithm A, Algorithm B and Algorithm
C do not differ significantly.

Example 3. Consider the following discrete-time state space model of the lon-
gitudinal motion of a VTOL helicopter (Keel, Bhattacharyya and Howze, [6]) for
T=0.01s.

A =




0.9999963 0.0002699 0.00016457 −0.0045584
0.00047943 0.98995 −0.00017606 −0.040008
0.00099919 0.0036498 0.99303 0.014074
0.0000050006 0.000018301 0.009965 1.0001




B =




0.0044212 0.0017543
0.035272 −0.075542
−0.05494 0.044605
−0.00027513 0.00022351


 , C =

[
0 1 0 0

]

Note that the matrix A is unstable with eigenvalues

eig A = {0.9795 0.9977 1.0028± 0.0026i}

The results of gain matrix calculation can be summarized as follows. For R = r ∗ I,
r = 1; Q = diag [0.01, 10, 0.1, 0.1] ∗ 0.1 the eigenvalues of closed-loop system and
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corresponding gain matrix K are as follows:
Modified Algorithm C:

eig CL = {0.6748 0.0087 0.9974± .007i}, KT = [0.7026 4.4944]

Algorithm C:

eig CL = {0.7011 0.9982 0.9977± 0.0059i}, KT = [0.0985 0.1578]

V-K iterative method (El Ghaoui and Balakrishnan, [4]):

eig CL = {0.7915 0.9967 0.9985± .0046i}, KT = [0.8750 3.0263]

However, the cost is not guaranteed because LMI solution is not feasible though the
closed loop system is stable.

5. CONCLUSION

Necessary and sufficient conditions for a discrete-time linear system to be stabi-
lizable via static output feedback have been established in two alternatives. This
result provides the discrete-time counterpart to the result of Kučera and De Souza
[8]. The corresponding iterative as well as a novel non-iterative LMI based algo-
rithm to compute a stabilizing output feedback gain matrix with guaranteed cost is
proposed. Examples are presented to illustrate the use of the algorithms. In general,
the algorithms yield different stabilizing control gain matrices, thus providing the
designer with a possibility to choose the more appropriate one.
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