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THE RÉNYI DISTANCES OF GAUSSIAN MEASURES

Jiř́ı Michálek

The author in the paper evaluates the Rényi distances between two Gaussian measures
using properties of nuclear operators and expresses the formula for the asymptotic rate of
the Rényi distances of stationary Gaussian measures by the corresponding spectral density
functions in a general case.

INTRODUCTION

This paper deals with the calculation of the Rényi distances of Gaussian measures
defined by random processes with a continuous time. In the case of stationary
measures the asymptotic rate of the Rényi distances is evaluated by the use of the
corresponding spectral measures in a very general case.

The Rényi distances of probability measures are important information-theoretical
measures of similarity between probabilities, often used in mathematical statistics.
The Rényi distances are parametrized by a real parameter a. For us the case
a ∈ 〈0, 1〉 will be of the main interest. The limit cases a = 0 and a = 1 are
very closely connected with the Kullback–Leibler divergences. Generally speaking,
the Rényi distances are derived from the Hellinger integrals. They are defined as
follows

Ra(P |Q) =
lnHa(P |Q)
a(a− 1)

for a 6= 0, a 6= 1, where
Ha(P |Q) = Eµ

{(
p

q

)a}

is the Hellinger integral with p = dP
dµ , q = dQ

dµ and µ is an arbitrary σ-finite domi-
nating measure. For a = 1 we put on the basis of continuity

R1(P |Q) = lim
a↑1

Ra(P,Q) = I1(P |Q),

for a = 0
R0(P |Q) = lim

a↓0
Ra(P,Q) = I0(P |Q),
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where
I1(P |Q) =

∫
p ln

p

q
dµ, I0(P |Q) =

∫
q ln

q

p
dµ = I1(Q|P ).

Evidently,

I1(P |Q) = EP

{
ln
p

q

}
, I0(P |Q) = EQ

{
ln
q

p

}
.

There are many papers and books describing properties of the Rényi distances and
other f -divergences. We will quote here the monograph due to Vajda [14].

Generally speaking, the Rényi distance is meaningful for each real a if we accept
the value +∞, too. The Rényi distances are very exceptionally metrics because they
do not fulfill the triangular inequality, in general.

1. ABSOLUTE CONTINUITY OF GAUSSIAN MEASURES

A Gaussian probability measure is in a unique way determined by its mean and
covariance function. A main advantage of Gaussian measures with respect to their
absolute continuity is the fact that two particular cases can be analyzed separately.
The first case is that both measures have different means but the same covariance,
the other one is that means are zero and covariance functions are different. The
case with different means is more transparent than the other one and some results
concerning the Rényi distances in this situation can be found in Michálek [8]. In
that paper the case with different covariances is solved too, but not in full generality.
The existence of the Rényi distances of Gaussian measures was proved in Michálek
[8] under the assumption of a strong equivalence of measures. This notion will be
mentioned later.

Let two covariance functions R(·, ·) and S(·, ·) be given on 〈0, T 〉. Let PT , QT

be the corresponding Gaussian measures with vanishing means and covariances
R(·, ·), S(·, ·) respectively, i. e.

EPT {x(s)x(t)} = R(s, t), EQT {x(s)x(t)} = S(s, t) respectively.

The question of absolute continuity of Gaussian measures is in detail answered, e. g.
in the monograph of Rozanov [13]. For a better understanding it is necessary to
introduce the following basic notions.

Let LT be a linear hull over all the observations x(t), t ∈ 〈0, T 〉, i. e.

ξ ∈ LT ⇐⇒ ξ =
n∑
1

ci x(ti), ti ∈ 〈0, T 〉.

As we have two Gaussian measures PT , QT we must consider also two closures of
LT with respect to the convergence in the quadratic mean. In general, the closures
LT (PT ), LT (QT ) can be different although the linear hull LT is everywhere dense
in both topologies. It is easy to show that the case L(PT ) 6= LT (QT ) leads to the
orthogonality of PT and QT , for details see Rozanov [13]. Then a necessary condition
for the equivalence between PT and QT sounds

LT = LT (PT ) = LT (QT ).
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This means that both the topologies generated by the convergences with respect the
quadratic mean must be equivalent, i. e. that the relation

0 < C1 ≤ ‖ξ‖PT

‖ξ‖QT

≤ C2 < +∞

must be valid on LT . If we wish to study conditions for the equivalence between PT

and QT we must begin with two Hilbert spaces, namely
(
LT , ‖ · ‖PT

)
,

(
LT , ‖ · ‖QT

)
.

At this moment we will define an operator AT on LT ⊂ LT (QT ), i. e. Dom (AT ) =
LT and Range (AT ) = LT ⊂ LT (PT ). In other words, AT is a linear mapping from(
LT , ‖ · ‖QT

)
into

(
LT , ‖ · ‖PT

)
defined by

AT ξ = ξ

for every ξ ∈ LT . AT must have the adjoint operator A∗ defined in the unique way
by 〈η, AT ξ〉PT = 〈A∗T η, ξ〉QT .

Surely, Dom (A∗T ) ⊂ LT (PT ), Range (A∗T ) ⊂ LT (QT ) and η ∈ Dom(A∗T ) if and
only if 〈η, AT ξ〉PT

is a bounded linear functional on
(
LT , ‖ · ‖QT

)
. For each couple

ξ, η ∈ LT the operator A∗T AT is then well defined because

〈A∗T AT η, ξ〉QT
= 〈AT η, AT ξ〉PT

= 〈η, ξ〉PT
.

Hence this operator can be extended onto the whole space LT . Let us denote it by
BT .

The operator BT can be defined by a simpler way, namely using the relation
connecting the scalar products on LT . Thanks to the equivalence between the norms
‖ · ‖QT

, ‖ · ‖PT
the scalar product 〈η, ξ〉PT

must be a linear bounded functional on
the space

(
LT , ‖ · ‖QT

)
, i. e.

〈BT η, ξ〉QT
= 〈η, ξ〉PT

.

We immediately see that BT is positive because

〈BT η, η〉QT
= 〈η, η〉PT

≥ 0.

It is well known (see Rozanov [13]) that the measures PT , QT are mutually equivalent
if and only if the operator I −BT , where I is the identity on LT , is of the Hilbert–
Schmidt type and B−1

T exists and is bounded. This condition of existence and
boundedness of B−1

T is equivalent to that of equivalence between 〈·, ·〉PT
and 〈·, ·〉QT

,
which implies the coincidence of LT (PT ) and LT (QT ). In other words, the operator
I −BT must not have 1 as its eigenvalue.

As known from the theory of Hilbert–Schmidt operators such an operator is
totally continuous and it possesses at most a countable number of proper values
{αi}∞i=1 that satisfy ∞∑

1

α2
i < +∞.
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In our case it means for the operator I −BT that
∞∑
1

(1− αi)2 <∞, (1)

where {αi}∞i=1 are the proper values of the operator BT . The convergence of the
series (1) immediately gives, as αi → 1 when i→∞, that the series

∞∑

i=1

(
1− 1

αi

)2

is convergent, too. But this fact says that the operator I − B−1
T is of the Hilbert–

Schmidt type, too and this property proves the mutual equivalence of the measures
PT and QT . If a stronger condition about the convergence of series (1) is valid,
namely if ∞∑

1

|1− αi| <∞,

then in accordance with Hájek [4] we speak about the strong equivalence of Gaussian
measures. Then the series ∞∑

1

∣∣∣∣1−
1
αi

∣∣∣∣

is also convergent and hence this type of equivalence of probability measures is
mutual, too. It is important to notice that all the proper values of BT must be
strictly positive so that their reciprocals 1/αi are proper values belonging to the
inverse operator B−1

T . The condition of strong equivalence says that the operators
I −BT and I −B−1

T are nuclear because their traces are finite.
Let {ξi}∞i=1 be the proper vectors of BT in the space LT . Then the corresponding

Radon–Nikodym derivative of PT with respect to QT equals

dPT

dQT
(ω) = lim

n→∞





(
n∏
1

αi

)−1/2

exp

{
−1

2

n∑

i=1

1− αi

αi
ξ2i (ω)

}



in the sense a. s. [QT ], for details see Hájek [4]. If the measures PT , QT are strongly
equivalent then the infinite product

∏∞
1 αi is convergent because it is nothing but

the Fredholm determinant of the operator I − BT and the corresponding Radon–
Nikodym derivative can be expressed in a more closed form, namely

dPT

dQT
(ω) =

( ∞∏
1

αi

)−1/2

exp

{
−1

2

∞∑

i=1

1− αi

αi
ξ2i (ω)

}
.

Some conditions ensuring the strong equivalence of Gaussian measures can be found
in Hájek [4]. But in general, the Fredholm determinant need not exist and we can
use the properties following only from the convergence of the series

∞∑
1

(1− αi)2 < +∞.
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As was said earlier this convergence ensures the finiteness of the series
∞∑
1

(1− αi)2

αi
,

because αi → 1 as i→∞. One easily sees that for each n ∈ N
n∑

i=1

(1− αi)2

αi
=

n∑

i=1

(
1
αi

+ αi − 2
)

=
n∑

i=1

(
1
αi
− 2 + αi − lnαi − ln

1
αi

)

=
n∑

i=1

(αi − lnαi − 1) +
n∑

i=1

(
1
αi
− ln

1
αi
− 1

)
.

As lnx < x− 1 for every positive x 6= 1, the last series have positive terms.Since the
original series having positive numbers too was split into two positive series, they
must be convergent too. Hence the proper values of BT must satisfy

∞∑

i=1

αi − lnαi − 1 < +∞,

∞∑

i=1

1
αi
− ln

1
αi
− 1 < +∞.

Using these facts, the Radon–Nikodym derivative can be rewritten into the form

dPT

dQT
(ω) = lim

n→∞





(
n∏
1

αi e
1−αi

)−1/2

exp

{
−1

2

n∑

i=1

1− αi

αi
ξ2i (ω)− (1− αi)

}

 .

Since

ln
n∏

i=1

αi e
1−αi =

n∑

i=1

ln(αi e
1−αi) = −

n∑

i=1

αi − lnαi − 1,

it follows the convergence of the infinite product
∞∏
1

αi e
1−αi .

Due to the properties of martingales the other part of the Radon–Nikodym derivative
must be also convergent and hence we finally reach the following expression

dPT

dQT
(ω) = D

−1/2
1 exp

{
−1

2

∞∑

i=1

1− αi

αi
ξ2i (ω)− (1− αi)

}
.

The quantity D1 =
∏∞

i=1(1 − (1 − αi)) e1−αi is called the regularized Fredholm
determinant of the operator I −BT , see, e. g. Gohberg and Krein [1]. This form of
a determinant substitutes the Fredholm determinant for operators of the Hilbert–
Schmidt type.

Now we will present several notes about the proper vectors {ξi}∞i=1 of the operator
BT . These vectors belong to the space LT and are Gaussian with respect to both
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the probability measures PT and QT . Thanks to the orthogonality with respect to
both the scalar products, they are independent and satisfy

ξi ∼
PT

N(0, αi), ξi ∼
QT

N(0, 1).

These facts follow from the spectral decomposition of the operator I −BT in
(LT , ‖ · ‖QT

)
(I −BT ) η =

∞∑

i=1

(1− αi) 〈η, ξi〉 ξi.

The construction of the proper vectors ξi, i = 1, 2, . . . is enabled by the simultaneous
“diagonalization” of covariance functions or covariance operators generated by them,
which is a generalization of a famous fact of matrix calculation, for details, see
Kadota [6].

2. THE RÉNYI DISTANCES

Now we are ready to evaluate the Rényi distances in the case of two Gaussian
measures PT , QT on 〈0, T 〉 with different covariance functions. We start with the
expression of the Radon–Nikodym derivative using the proper values of I −BT . We
have

ln
dPT

dQT
= −1

2
lnD1 − 1

2

∞∑

i=1

{
1− αi

αi
ξ2i − (1− αi)

}
.

Hence

R1(PT , QT ) = EPT

{
ln

dPT

dQT

}
= −1

2
lnD1 =

1
2

∞∑

i=1

(αi − lnαi − 1),

because EPT {ξ2i } = αi and the series in the expression of ln dPT

dQT
is convergent in the

quadratic mean, too.
In a quite analogous way we can obtain

R0(PT |QT ) = R1(QT |PT ) =
1
2

∞∑

i=1

(
1
αi
− ln

1
αi
− 1

)

which is the regularized Fredholm determinant of the operator I −B−1
T .

Now we will express Ra(PT |QT ) for a ∈ (0, 1). We must calculate the expected
value with respect to the measure QT

EQT

{(
dPT

dQT

)a}
= D

−a/2
1 EQT



exp



−

a

2

∞∑

j=1

(
1− αi

αi
ξ2i − 1 + αi

)







= D
−a/2
1 EQT

{ ∞∏

i=1

(
exp

{
−a

2
1− αi

αi
ξ2i

}
exp

{a
2
(1− αi)

})}

= D
−a/2
1

∞∏

i=1

exp
{a

2
(1− αi)

}
EQT

{
exp

{
−a

2
1− αi

αi
ξ2i

}}

=
∞∏

i=1

(
αi e

1−αi
)−a/2

∞∏

i=1

e−
a
2 (αi−1)

√
αi

αi + (1− αi) a
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because

EQT

{
e
− a(1−αi) ξ2

i
2αi

}
=

√
αi

αi + (1− αi) a
.

Due to the convergence of the regularized Fredholm determinants of I −BT and of
I −B−1

T we finally obtain

EQT

{(
dPT

dQT

)a}
= exp

{
−1

2

∞∑

i=1

ln
(
aαa−1

i + (1− a)αa
i

)
}
.

Using the last formula expressing the corresponding Hellinger integral the Rényi
distance between PT and QT equals

Ra(PT |QT ) =
1

2(1− a) a

∞∑

i=1

ln
(
aαa−1

i + (1− a)αa
i

)
,

where {αi}∞i=1 are proper values of the operator BT .
One immediately sees that for each a ∈ (0, 1)

ln
(
a xa−1 + (1− a)xa

)
> 0

for each x > 0, x 6= 1, as

ln
(
a xa−1 + (1− a)xa

)
> a lnxa−1 + (1− a) lnxa = 0.

Hence the infinite series standing in the formula for Ra(PT |QT ) consists of positive
members and its sum is always meaningful if we accept the value +∞, too. Let us
prove that in the case of absolute continuity of the pair PT , QT the Rényi distance
is finite for each a ∈ 〈0, 1〉.

Theorem 1. Let two covariance functions R(·, ·) and S(·, ·) be given on 〈0, T 〉.
Let PT , QT be the corresponding Gaussian measures with vanishing means and
covariances R(·, ·), S(·, ·), respectively. The measures PT , QT are mutually absolute
continuous when there exists at least one a0 ∈ 〈0, 1〉 with

Ra0(PT |QT ) < +∞.

Then for others a ∈ 〈0, 1〉 the corresponding Ra(PT |QT ) exists and is finite, too. The
converse is also true, i. e. PT , QT are absolutely continuous then Ra(PT |QT ) < ∞
for all a ∈ 〈0, 1〉.

P r o o f . Let us denote by

ϕa(x) =
ln(a xa−1 + (1− a)xa)

a(1− a)

for a ∈ (0, 1). We know that ϕa(x) > 0 for x > 0, x 6= 1, ϕa(1) = 0. Let us calculate
ϕ′a(1), ϕ′′a(1). After it we immediately see that in a neighbourhood of the point 1

ϕa(x) =
1
2
(x− 1)2 + o(|x− 1|2).
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This fact gives the following conclusion: when the series
∑∞

i=1(1−λi)2 is convergent
then the series

∑∞
i=1 ϕa(λi) is also convergent for each a ∈ (0, 1) and for a = 0, a = 1

as was proved above. Now we prove the opposite conclusion. If there exists a0 ∈
〈0, 1〉 such that the series

∞∑

i=1

ϕa0(λi) < +∞

then
∑∞

i=1(1 − λi)2 is convergent, too and the operator I − BT is of the Hilbert–
Schmidt type. 2

Remark. The value of Ra(PT |QT ) can be expressed in a somewhat different form,
namely using directly the operator BT . The operator BT is bounded with the
spectral decomposition

BT η =
∞∑

i=1

αi〈η, ξi〉 ξi,

where supi∈N αi < +∞ because limi→∞ αi = 1. Hence we can consider the operator

ϕa(BT ) η =
∞∑

i=1

ϕa(αi) 〈η, ξi〉 ξi.

The operator ϕa(BT ) is bounded if and only if

sup
i∈N

ϕa(αi) < +∞.

But, we will prove even more using the fact that the series
∑∞

i=1 ϕa(λi) is con-
vergent if PT , QT are equivalent. Then we can assert that the operator ϕa(BT ) is
even nuclear and

Ra(PT , QT ) =
1

2(1− a) a
tr(ϕa(BT )),

where tr means the trace of an operator. Further, we can also prove that there exists
a limit in the nuclear norm

lim
a↗1

I − aBa−1
T − (1− a)Ba

T

a(a− 1)
= BT − lnBT − I

and symmetrically

lim
a↘0

I − aBa−1
T − (1− a)Ba

T

a(a− 1)
= B−1

T − lnB−1
T − I.

These facts are based on the following
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Theorem 2. For each a ∈ 〈0, 1〉 the operator

ψa(BT ) = aBa−1
T + (1− a)Ba

T − I

is positive and nuclear.

P r o o f . If {αi}∞i=1 are proper values of BT then the operator ψa(BT ) has its
proper values of the form

aαa−1
i + (1− a)αa

i .

Using the inequality x − 1 ≥ lnx one can state that with αi > 0, i = 1, 2, . . . and
αi 6= 1, i = 1, 2, . . .

a αa−1
i + (1− a)αa

i > 0,

which proves the positiveness of ψa(BT ). To prove the property of a finite trace we
must study the infinite series

∞∑

i=1

[
aαa−1

i + (1− a)αa
i − 1

]
.

The convergence of this series immediately follows from the local behaviour of the
function ψa(·) in a neighbourhood of 1 because αi → 1 as i → ∞. By a simple
calculation we obtain the relation

ψa(x) =
a(1− a)

2
(x− 1)2 + o(|x− 1|2).

Due to the absolute continuity of PT and QT the series
∞∑
1

(1− αi)2

is convergent and hence the series

∞∑

i=1

ψa(αi)

is convergent, too. This fact shows that the operator ψa(BT ) is nuclear for each
a ∈ 〈0, 1〉. 2

Till now we have considered evaluating Ra(PT |QT ) for a ∈ 〈0, 1〉 only. Now we
will make some remarks about a /∈ 〈0, 1〉. First, a < 0. In order to be able to speak
about the finiteness of Ra(PT |QT ) it is necessary to ensure the existence of the mean
value

EQT

{
e
− a

2
(1−αi)

αi
ξ2

i

}
=

1√
2π

∫ +∞

−∞
e
− 1

2

“
a(1−αi)

αi
+1
”

x2

dx

figuring in the formula for EQT

{(
dPT

dQT

)a}
= Ha(PT |QT ).
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The integral on the right hand side is convergent if and only if

a(1− αi)
αi

+ 1 > 0.

As αi > 0, then this inequality is equivalent to another one, namely

a(1− αi) + αi > 0

for each i = 1, 2, 3, . . . But, it means that the inequality

αi > − a

1− a

must be valid simultaneously for each i = 1, 2, . . .. When there exists αi < 1 and as
the sequence {αi} has the only limit point equal to one, there exists an index i0 ∈ N
such that

0 < αi0 = min
i∈N

αi.

As αi0 > 0, one can find a0 < 0 such that

αi >
−a0

1− a0

for each i = 1, 2, . . .. In the case of αi > 1 for every i = 1, 2, . . . the inequality
αi > − a

1−a holds for every a < 0. This choice is, of course, dependent on the
character of the operator I − BT . Therefore we can assert that in the case of
absolute continuity between PT and QT there exists a left neighbourhood of 0, let
us say (a0, 0) where the Rényi distance is still finite.

A similar situation occurs in the other case with a right hand neighbourhood of
1. For finiteness of Ra(PT , QT ) we must demand that for each i = 1, 2, . . .

αi <
a

a− 1
.

As the sequence {αi}∞i=1 is convergent to 1 and this is the only limit point of this
sequence there exists αi1 = maxi∈N αi under the assumption that at least one αi > 1.
But then there exists such an a1 > 1 that

αi <
a1

a1 − 1

for each i = 1, 2, . . ., because lima↘1
a

a−1 = +∞. When αi < 1 for every i = 1, 2, . . .
the previous inequality is valid for each a1 > 1.

We have just proved that for every absolutely continuous pair of Gaussian mea-
sures PT , QT there exists a right neighbourhood (1, a1) of the point 1 where the
Rényi distance is still finite. This result will be summarized in the following
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Theorem 3. Let two covariance functions R(·, ·) and S(·, ·) be given on 〈0, T 〉.
Let PT , QT be the corresponding Gaussian measures with vanishing means and
covariances R(·, ·), S(·, ·), respectively. If PT ∼ QT there exist two positive real
numbers a0, a1 depending on the pair (PT , QT ) such that the corresponding Rényi
distance Ra(PT , QT ) is finite in an open interval (−a0, 1 + a1).

P r o o f . See above. 2

The interval (−a0, 1+a1) described in the Theorem 2 is maximal in the following
sence:

lim
a↘−a0

Ra(PT , QT ) = +∞ and lim
a↗1+a1

Ra(PT , QT ) = +∞.

The next theorem uses the behaviour of the Hellinger integral Ha(PT , QT ) in
〈0, 1〉 and leads to an interesting property of the proper values of the operator I−BT .

Theorem 4. Let the Gaussian measures PT , QT considered in Theorem 3 be
strongly equivalent. Then ‖BT ‖ > 1 and also ‖B−1

T ‖ > 1.

P r o o f . On the basis of the previous result we know that in the case of equivalence
between PT and QT there exists finite Ra(PT |QT ) in 〈0, 1〉 and hence the Hellinger
integral exists also because the sum

∞∑

i=1

ln
(
aαa−1

i + (1− a)αa
i

)

is convergent. At the first sight H0(PT |QT ) = H1(PT |QT ) = 1. At this moment, we
can use a result given in Vajda [14] about the existence of the derivative of any order.
Hence the function Ha(PT , QT ) in the parameter a is differentiable in (0, 1) and we
can calculate its derivative. We will immediately see why the strong equivalence for
the calculation of this derivative must be assumed. Namely,

∂

∂a
Ha(PT |QT ) = Ha(PT |QT ) · 1

2

∞∑

i=1

[1− αi] [αi + a(a− 1)]
αi[a+ (1− a)αi]

.

From this formula we see why we demand the strong equivalence between PT , QT .
The convergence ∞∑

i=1

|1− αi| < +∞

ensures the existence of an absolutely convergent majorant and thus we can in-
terchange the infinite summation and differentiation. Now, let us suppose that
supi∈N αi ≤ 1. Then αi < 1 for each i ∈ N because 1 is not a proper value of BT and
‖BT ‖ ≤ 1 would be. But in such a case 1−αi > 0 and the derivative of Ha(PT |QT )
would be positive, i. e. the function Ha(PT , QT ) would be in (0, 1) strictly increas-
ing. This of course contradicts the fact H1(PT , QT ) = 1 = H0(PT , QT ). Similarly
we can continue under the assumption ‖B−1

T ‖ ≤ 1. As B−1
T has the proper values

1
αi

, we would reach the αi > 1 for each i ∈ N and the derivative H ′
a(PT |QT ) would

be negative in (0, 1). We would come to a contradiction again. 2
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Remark. The previous theorem says that the proper values of I − BT by the
strong equivalence between PT and QT must be situated on both sides of the limit
point 0.

In the next part of the paper we will study the asymptotic behaviour ofRa(PT , QT )
when T → ∞ under the stationarity of PT and QT . For this reason we must men-
tion in detail some notions and relations, which concern the asymptotic behaviour of
proper values of Toeplitz operators. Here we use mainly results given in Grenander
and Szegő [3].

3. TOEPLITZ OPERATORS

The Toeplitz matrices play a very important role in the theory of weakly stationary
random sequences because they present covariance matrices. The Toeplitz operators
are in a certain sense a generalization of the notion of Toeplitz matrices in the case
of a continuous time.

Let (X,X , µ) and (S,σ, ν) be two spaces with measures. We do not exclude the
case X = S and µ = ν. Let a kernel ϕ(x, s) be such that the integral operator given
on X × S

(T u) (x) =
∫

S

ϕ(x, s)u(s) dν(s)

is defined for each u(·) ∈ L2(S,σ, ν). We demand T u(·) ∈ L2(X,X , µ) and T
preserves a norm, i. e.

‖T u‖X = ‖u‖S .

If the range of the operator T is everywhere dense in L2(X), then the operator T
can be enlarged into a unitary mapping T : L2(S) → L2(X). Under fulfilling these
conditions the kernel ϕ(·, ·) is called an orthogonal kernel.

Let f(·) be an integrable function on (X, X ), let λ be a real number and let us
define

eλ = {x : f(x) ≤ λ} = f−1{(−∞, λ〉})
eλ ∈ X for each λ ∈ R1 and for each u(·) ∈ L2(S) let us define a decomposition

(T u) (x) = (T u) (x)ψeλ
(x) + (T u) (x) (1− ψeλ

(x)),

where ψeλ
(x) = 1 for each x ∈ eλ and ψeλ

(x) = 0 otherwise. As T is unitary, there
exists T−1 and let us put

Eλ u(·) = T−1((T u)ψeλ
) = T−1 ψeλ

T,

where the transformation ψeλ
means a linear mapping presented by multiplying by

the function ψeλ
(·) on the space L2(X,X , µ). One can prove that the system of

operators {Eλ} on the space L2(S,σ, ν) forms a resolution of identity, i. e. {Eλ} is a
collection of projectors

Eλ Eµ = Eµ Eλ = Emin(λ,µ)

and
lim

λ→+∞
Eλ = I, lim

λ→−∞
Eλ = 0.
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Using this resolution we can define a new operator K, namely

K =
∫ +∞

−∞
λ dEλ.

If we prove that the definition domain of K will be dense everywhere in L2(S) then
the operator K will be well defined. In general, K need not be bounded. If the
generating function f(·) is bounded then K is also bounded. The definition domain
Dom (K) is determined by all u ∈ L2(S) for which the following integral exists

‖K u‖2S =
∫ +∞

−∞
λ2 d〈u, Eλu〉 =

∫ +∞

−∞
λ2 d

∫

eλ

|(T u) (x)|2 dµ(x)

=
∫ +∞

−∞
|(T u) (x)|2 f2(x) dµ(x).

We will consider the case f(·) ≥ 0 only. Then obviously, the operator K is positive
and its definition domain contains all the functions u(·) ∈ L2(S) for which (T u) (·)
are bounded on X a. e. [µ] and X -measurable. Then the operator K will be self-
adjoint, but unbounded in general. The bilinear form 〈Ku, v〉S on L2(S) can be
expressed as

〈Ku, v〉S =
∫ +∞

−∞
λ d〈EλU, v〉 =

∫ +∞

−∞
λd

∫

eλ

T uT udµ(x)

=
∫

X

T uT v f(x) dµ(x).

As
T u =

∫

S

ϕ(x, s)u(s) dν(s), T v =
∫

S

ϕ(x, s) v(s) dν(s),

then

〈Ku, v〉S =
∫

X

(∫

S

ϕ(x, s)u(s) dν(s)
∫

S

ϕ(x, t) v(t) dν(t)
)
f(x) dµ(x)

=
∫

S

∫

S

(∫

X

ϕ(x, s)ϕ(x, t) f(x) dµ(x)
)
u(s) v(t) dν(s) dν(t).

This relation provides a formula for the operator K, namely

〈Ku, v〉 =
∫

S

∫

S

K(s, t)u(s) v(t) dν(s) dν(t)

where
(K u) (t) =

∫

S

K(s, t)u(s) dν(s).

Any operator defined in this way will be called a Toeplitz operator.
At this moment for a better understanding we will present some examples, which

will be useful in the sequel.
Let (X,X , µ) = (S,σ, ν) = (R1,B1,Leb) and let

ϕ(x, s) =
1√
2π

eixs.
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Then T is nothing but the well known Fourier–Plancherel transformation defined on
L2(R1,Leb)

(T u) (x) =
1√
2π

∫ +∞

−∞
eixs u(s) ds.

Then the kernel K(·, ·) expresses a stationary covariance function as follows from
the Bochner theorem

K(s, t) =
1
2π

∫ +∞

−∞
ei(s−t) xf(x) dx.

In the other example we will consider a kernel ϕ(·, ·) onX×S satisfying the condition
∫

X

ϕ(x, s)ϕ(x, t) dµ(x) = δst,

where δst is the Kronecker symbol. Then one can easily prove that the kernel ϕ(·, ·)
is orthogonal, because the mapping T defined by

(T u) (x) =
∫

S

ϕ(x, s) dν(s)

is unitary and the mapping K is surely a Toeplitz operator defining a covariance
function

Kf (s, t) =
∫

X

ϕ(x, s)ϕ(x, t) f(x) dµ(x)

belonging into the Karhunen class of covariance functions. In fact, we obtained a very
interesting subclass of the Karhunen class. Some properties of random sequences
having covariance functions of this type, i. e. S = Z (integers) can can be found in
Michálek and Rüschendorf [9]. Another information about Toeplitz operators one
can find in Grenander [2] or in Kac [5].

Using the operators of the Toeplitz type we can say something about the asymp-
totic behaviour of their proper values. Let us formulate now the problem of asymp-
totic behaviour of proper values distribution of a Toeplitz operator.

Let Kf (·, ·) be a kernel of a Toeplitz operator on L2(S,σ, ν) generated by a
function f(·) defined on (X,X , µ) as described earlier. For simplicity, let |f(·)| ≤
const on X, then the corresponding operator K(f) is bounded. Let in (S,σ) be
given a nondecreasing family of measurable subsets Sα, α ∈ Λ such that Sα ↗ S
and let the orthogonal kernel ϕ(·, ·) defining a unitary mapping T be bounded on
Sα, i. e. |ϕ(x, s)| ≤ Cα

on X × Sα. Let us denote by Fα the set of σ-measurable functions bounded on
Sα and vanishing outside of Sα in S. It is clear that

⋃
α Fα is everywhere dense in

L2(S). Further, we require that
{
T u : u(·) ∈

⋃
α

Fα

}
is dense everywhere in L2(X).

Now, for each α ∈ Λ (index set) we can define an operator Kα on L2(Sα) by the
relation

(Kα(f)u) (t) =
∫

Sα

Kf (s, t)u(s) dν(s).
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It is clear that Kα(f) is an operator of the Hilbert–Schmidt type when ν(Sα) < +∞.
Let {λ(α)

j }∞j=1 be proper values belonging to Kα(f) and the problem is to find

an asymptotic distribution of {λ(α)
j }∞j=1 on the real line if Sα ↗ S. As we see

that Kα(f) → K(f) in some sense it is suitable to use the behaviour of proper
values {λ(α)

j }∞j=1 for describing proper values {λj}∞j=1 of the operator K(f) that
cannot be attainable in a usual way, e. g. due to computation problems. Using this
approach we immediately see how we could utilize asymptotic properties of proper
values belonging to a Toeplitz operator: proper values are included in the formula
for Rényi distances Ra(PT , QT ).

In the rest of paper we will be interested in Toeplitz operators with orthogonal
Fourier kernels and their suitable approximation by operators of the Hilbert–Schmidt
type.

Let ϕ(x, s) = 1√
2π
eixs and f(·) be a real nonnegative function, f(·) ≤ M and

integrable in R1. Then the covariance function

Kf (s, t) = Kf (s− t) =
1
2π

∫ +∞

−∞
ei(s−t) x f(x) dx

can be called as a Fourier kernel. In our case S = R+
1 and we put ST = 〈0, T 〉

(it is possible, of course, to consider S = R1 and ST =
〈−T

2 ,
T
2

〉
). We will study

asymptotic behaviour of proper values of an integral operator K(f) generated by
the integral equation ∫ T

0

Kf (s− t)ϕ(t) = λϕ(s)

for T ↗ +∞, i. e. for large T .
The kernel Kf (s− t) will be approximated by a periodical kernel that generates

a Hilbert–Schmidt operator whose proper values and functions can be found in an
easy way and their asymptotic behaviour is very close to the asymptotic distribution
of proper values of K(f). For this purpose, let A > 0 and define a function

fA(x) =
1

2πA

∫ +∞

−∞

(
sin 1

2A(x−u)

(x− u)

)2

f(x) dx.

This function is bounded, fA(x) ≤ M , nonnegative and integrable. Using this
function let us define an approximating covariance function

KA(s− t) =
1
2π

∫ +∞

−∞
ei(s−t) x fA(x) dx.

As well known

KA(τ) =
(

1− |τ |
A

)
K(τ) for |τ | ≤ A

= 0 for |τ | > A.
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The similarity between the operators K(f) and KA(f) can be measured by the
Hilbert–Schmidt norm

1
T
‖K(f)−KA(f)‖2 ≤ 2A2

T 2

∫ A

0

|K(s)|2 ds+ 2
∫ ∞

A

|K(s)|2 ds.

Now we define a periodic kernel LA,T (s),

LA,T (s) = KA(s) for − 1
2
T < s <

1
2
T,

with the period T . Then, similarly as above,

1
T
‖KA(f)− LA,T ‖2 ≤ 2A

T

∫ ∞

0

|K(s)|2 ds.

Combining the last two inequalities under A < 1
2T we can assert that

1
T
‖K(f)− LA,T ‖2 ≤ [O(T−2) + 2ε]1/2 +O(T−1/2),

where ε is chosen such that
∫∞

A
|K(s)|2 ds < ε.

In this way we have constructed a suitable approximation of the original Toeplitz
operator K(f) by a sequence of Hilbert–Schmidt operators with periodic kernels.

Let us consider the integral equation with the periodic kernel LA,T (·):
∫ T

0

LA,T (s− t)ϕ(t) dt = λϕ(s).

One can prove that under the choice ϕj,T (t) = exp{2πtij/T}, j ∈ Z we obtain
proper functions of this equation with proper values

λj,t =
∫ T

0

LA,T (t) e−2πijt/T dt.

As well known, the system of functions {ϕj,T (t)} is complete in L2〈0, T 〉 and hence
no other proper functions and values exist. Using properties of Fourier transform
we easily find that

λj,T = fA

(
2πj
T

)
, j = 0,±1,±2, . . .

Let p ∈ N . It is possible to prove (using the Poisson summation formula) that

1
T

+∞∑

j=−∞
(λj,T )p −→

T→∞
A→∞

1
2π

∫ +∞

−∞
fp(x) dx.

This convergence proves the asymptotic behaviour of the moments belonging to the
distribution of {λj,T } for T →∞. The obtained result, very important in the sequel,
can be summarized as follows.
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Theorem 5. (Grenander and Szegő [3]) Let f be a bounded real function in-
tegrable over R1, let K(·, ·) be a Toeplitz kernel (covariance function) defined by
Fourier kernel

Kf (s− t) =
1
2π

∫ +∞

−∞
ei(s−t) x f(x) dx.

Then the proper values of the integral equation
∫ T

0

K(s− t)ϕ(t) dt = λϕ(s), 0 ≤ x ≤ T

have an asymptotic distribution equal to that of a random variable f(X), where the
random variable X has an improper probability density function equal to 1

2π all over
the real line.

This theorem will be extensively used in the next chapter in evaluating the asymp-
totic rates of the Rényi distances between two Gaussian and stationary probability
measures.

4. ASYMPTOTIC RATE OF THE RÉNYI DISTANCES

Let two covariance functions R(·, ·), S(·, ·) be given on 〈0, T 〉. Let PT , QT be the
corresponding Gaussian measures with vanishing means.

In Chapter 2 we introduced necessary and sufficient conditions under which PT

and QT are mutually absolutely continuous and we evaluated the corresponding the
Rényi distances using proper values of the operator BT . This operator is defined on
a somewhat abstract space constructed from the observations x(t), t ∈ 〈0, T 〉. It is
possible, of course, to construct a similar Hilbert–Schmidt operator connected with
two covariance functions R(·, ·) and S(·, ·) defining the measures PT and QT . This
situation describes the following

Theorem 6. (Pitcher [12]) Let two continuous covariance functions R(·, ·) and
S(·, ·) be given on 〈0, T 〉. Let R(·, ·) be strictly positive and both belong to L2〈0, T 〉.
Let R̂ and Ŝ be the corresponding integral operators defined on L2〈0, T 〉. Then the
Gaussian measures generated by R(·, ·) and S(·, ·) are equivalent if and only if the
operator

I − R̂−1/2 Ŝ R̂−1/2

is of Hilbert–Schmidt type.

We obviously see that the role of the operator I − BT is played here by I −
R̂−1/2 Ŝ R̂−1/2, which is defined on L2〈0, T 〉. We have

(R̂ f) (t) =
∫ T

0

R(s, t) f(s) ds, (Ŝ f) (t) =
∫ T

0

S(s, t) f(s) ds.

As we assume positive definiteness of R(·, ·), the corresponding operrator R̂ must be
positive, too, and it is possible to consider its inverse R̂−1 which however need not
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be bounded, in general. The operator R̂−1 is also positive and hence its square root
is well defined. PT and QT are mutually absolute continuous and this fact implies
that Ŝ−1 must exist, too. The nonexistence of an inverse operator to Ŝ would lead
in such a situation to perpedicularity of Gaussian measures.

Let us start with the formula for Ra(PT |QT ) and properties of the operator
aBa−1

T + (1 − a)Ba
T where BT = R̂−1/2 Ŝ R̂−1/2 on L2〈0, T 〉. The Rényi distance

can be written in the form

Ra(PT |QT ) =
1

2(1− a) a
tr lnBa,

where Ba = aBa−1
T + (1 − a)Ba

T . As the operator BT − I is nuclear according to
Theorem 2, the distance Ra(PT |QT ) can be also expressed as

Ra(PT |QT ) =
1

2(1− a) a
ln det Ba,

where det Ba =
∏∞

1

(
aαa−1

i + (1− a)αa
i

)
is convergent.

For the boundary points a = 0 and a = 1 the operators

B0 = B−1
T − lnB−1

T − I, B1 = BT − lnBT − I

have also finite traces. Let {ui}∞i=1 be an orthonormal system of proper functions
corresponding to proper values {αi}∞i=1 of the operator BT . Then using a result of
Hájek [4] we can approximate the Fredholm determinant of BT by a sequence of
matrix determinants, namely

det BT = lim
n→∞

det {〈BT ui, uj〉}n
i,j=1 .

Since 〈BT ui, uj〉 = 〈Ŝ ui, R̂
−1uj〉 = 〈R̂−1 Ŝ ui, uj〉,

we obtain
det{〈BT ui, uj〉} = det{〈R̂−1ui, uj〉} det{〈S ui, uj〉}.

This easily yields

ln det {〈BT ui, uj〉}n
i,j=1 =

n∑

i=1

ln(µi)− ln(λi),

where {µi}∞i=1 are proper values of Ŝ and {λi}∞i=1 are proper values of R̂. In this
way we established the possibility to express Ra(PT , QT ) by means of proper values
of Ŝ and R̂,

Ra(PT |QT ) =
1

2(1− a) a

∞∑

i=1

ln

(
a

(
µi

λi

)a−1

+ (1− a)
(
µi

λi

)a
)
.

Now it is natural to apply Theorem 5 about asymptotic behaviour of proper values
belonging to Toeplitz operators with Fourier kernels.
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Theorem 7. Let Gaussian stationary measures PT , QT be absolutely continuous
for each T > 0. Let fP , fQ be their corresponding spectral density functions. We
need fP , fQ to be bounded. Then there exists the asymptotic rate of the Rényi
distance in the form

lim
T→∞

1
T
Ra(PT |QT ) =

1
4π(1− a) a

∫ +∞

−∞
ln

(
a

(
fQ(x)
fP (x)

)a−1

+(1−a)
(
fQ(x)
fP (x)

)a
)

dx

but we must accept the value +∞, too.

P r o o f . We have shown that det BT can be approximated by determinants of
covariance functions R(·, ·) and S(·, ·). Therefore

ln det BA = lim
n→∞

(
a ln det nBT + ln det(a nB

−1
T + (1− a)En)

)
,

where nBT is an n-dimensional approximation of the operator BT , which can be
expressed by using a matrix form. In this way we get to the formula

Ra(PT , QT ) =
1

2(1− a) a

∞∑

i=1

ln

(
a

(
µi,T

λi,T

)a−1

+ (1− a)
(
µi,T

λi,T

)a
)
,

where {λi,T } and {µi,T } are proper values of R̂ and Ŝ operating only on L2〈0, T 〉.
At this place we need the following properties of Toeplitz operators. Let f1, f2 be
two real functions generating Toeplitz operators K(f1), K(f2). Then

K(a f1 + b f1) = aK(f2) + bK(f2), K(f1 f2) = K(f1)K(f2).

On the basis on this fact we can easily prove that if {λi,T } and {µi,T } are proper
values of the operators K(f1), K(f2) operating on L2〈0, T 〉 then for any polynomial
fN (x, y) of two variables

1
T

∞∑

i=1

fN (λi,T , µi,T ) −→
T→∞

1
2π

∫ +∞

−∞
fN (f1(x), f2(x)) dx.

As every continuous function g(x, y) can be approximated by a sequence of polyno-
mials, we can conclude that

1
T

∞∑

i=1

g(λi,T , µi,T ) −→
T→∞

1
2π

∫ +∞

−∞
g(f1(x), f2(x)) dx

provided the infinite sums and integral are convergent. Hence we get the formula
for the asymptotic rate of the Rényi distance

Ra(P, Q) =
1
4π

∫ +∞

−∞
ln

(
a

(
fQ(x)
fP (x)

)a−1

+ (1− a)
(
fQ(x)
fP (x)

)a
)

dx. 2
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Remark. Unfortunately, the absolute continuity of two stationary Gaussian mea-
sures PT and QT for each T > 0 does not ensure the convergence of the integral
figuring above. There is an example, even with rational spectral density functions
where PT ∼ QT for each T > 0 but

R1(P, Q) < +∞ and R1(Q|P ) = +∞,

see Pisarenko [11].
In Pinsker [10] are given formulae for the asymptotic rate of the Rényi distances

only for the boundary cases a = 0 and a = 1, claimed to be valid even for multidimen-
sional Gaussian processes. Unfortunately these results were stated without proof.
Analogous result concerning the one dimensional case was given later in Kullback,
Keegal and Kullback [7]. But the proof presented there is also incomplete.

(Received December 11, 1997.)
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