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FEEDBACK LINEARIZATION IDLE–SPEED CONTROL:
DESIGN AND EXPERIMENTS1

Rolf Pfiffner and Lino Guzzella

This paper proposes a novel nonlinear control algorithm for idle-speed control of a
gasoline engine. This controller is based on the feedback linearization approach and extends
this technique to the special structure and specifications of the idle-speed problem. Special
static precompensations and cascaded loops are used to achieve the desired bandwidth
separation between the fast spark and slow air-bypass action. A key element is the inclusion
of the (engine-speed dependent) induction to power stroke delay in the engine model and in
the subsequent controller design. The proposed method is partially validated on an engine
test bench using the air paths, only. For the analyzed five cylinder engine, the results
show no superior behaviour of the nonlinear approach compared to classical idle-speed
controllers. For engines with fewer cylinders, however, the nonlinear approach is expected
to perform substantially better.

1. INTRODUCTION

The idle-speed control (ISC) problem is a classical example of an automotive control
application. The set-up corresponds to a disturbance rejection problem where the
main plant output (engine speed) has to be maintained at a (low) constant value de-
spite the torque disturbances acting on the engine crank-shaft (servo-steering pump,
air-conditioning compressor, etc.). The relevance (comfort, fuel consumption, etc.)
and the technical challenges (nonlinear plant with large time delays) of this control
problem have led to many different control strategies. PID [10], LQ [8], H∞ [3, 15],
`1 [2], fuzzy control [1], adaptive control [11], sliding mode [6] and neural networks
[13] are some of the frameworks used to treat this problem.

Feedback linearization was investigated in [6] and [9], but the engine’s induction to
power stroke delay (IPS delay, see [4]) was neglected in these papers. Unfortunately
this effect, that depends moreover on the engine speed, is often the limiting factor
for the controller design. For this reason, the work presented herein approximates
this delay with first order low pass elements, which have an engine-speed dependent
time constant.

1Paper presented at the 5th IEEE Mediterannean Conference on Control and Systems held in
Paphos (Cyprus) on July 21 – 23, 1997.
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The resulting nonlinear plant with two inputs (air-bypass valve and spark-advance)
is not affine in the inputs. However, the plant is shown to be exactly feedback
linearizable by introducing additional static compensations. The linearized plant
permits the application of well-known linear control design methods. In this paper
the different bandwidths of the two input-channels are used in a setting similar to
the one presented by [3, 15] to guarantee an optimal engine operation, both under
transient and steady-state conditions.

The paper is organized as follows. The notation used is shown in Section 2,
and Section 3 introduces the nonlinear engine model in detail. Section 4 treats the
feedback linearization of this MIMO model and its application to the idle speed
control problem. Due to hardware limitations the experimental verification was
possible only for the single-input case, i. e., the ignition channel could not be used
for the controller verification. For this reason, in Section 5 the results of Section 4
are specialized to this SISO problem.

Finally, Section 6 shows the results of the experimental verification of the SISO
controller. The engine used in the experiments had five cylinders and therefore a
rather small IPS delay. Consequently, the proposed nonlinear controller did not
behave better than a linear one. However, it is expected that in the case of small
cylinder numbers this situation will be different (three or even two cylinder engines
are at the moment proposed by many groups for the next generation super efficient
“80 miles per gallon” cars).

2. NOTATION

The following notation is used in this paper:

θ : first input, air-bypass valve
ṁ : air-bypass valve mass flow rate
P : intake manifold pressure
Pa : atmospheric pressure
T : intake manifold air temperature
R : air gas constant
Vm : intake manifold volume
Ṁ : cylinder air mass flow rate
N : engine speed
Te : net engine torque

Tl : engine load torque
Td : disturbance torque
Kτ : delay parameter
τ : IPS delay
δ : second input, spark-advance
Ki : regular load torque parameter
Je : effective engine rotational inertia
αi : model parameter (engine pumping)
βi : model parameter (throttle-plate)
ϕi : model parameter (engine torque)

Fig. 1. Nonlinear engine model.
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3. NONLINEAR SI–ENGINE MODEL

The nonlinear engine model is based on the work of Powell and Cook [12]. A block
diagram of it is presented in Figure 1.

Assumptions. A constant intake manifold temperature, no intake manifold leaks
and constant stoichiometric air/fuel-ratio is assumed in this work. Notice that the
assumption of neglectable influence of the air/fuel-ratio is acceptable since modern
engines are air/fuel-ratio controlled even at idle. At non-idling conditions, where
stoichiometric operation is a must to fulfill emission standards, multivariable controls
for both speed and air/fuel-ratio are then to be preferred [7].

Under the mentioned assumptions the model of the analyzed plant is described
by the following set of equations. For the throttle-plate behaviour

ṁ = f1(θ, P ) = fθ(θ)fP (P )

where
fθ(θ) = β0 + β1θ + β2θ

2

and

fP (P ) =





1, P ≤ Pa/2

2
Pa

√
PPa − P 2, P > Pa/2,

for the manifold air-mass-balance

Ṗ = K(ṁ− Ṁ), where K = R T/Vm, (1)

for the engine pumping behaviour

Ṁ = f2(N,P ) = α0NP + α1NP
2, (2)

for the IPS delay
τ = Kτ/N, (3)

for the engine torque output

Te = ϕ0 + ϕ1Ṁ(t− τ) + ϕ2δ + ϕ3δ
2

+ ϕ4δN + ϕ5N + ϕ6N
2, (4)

for the load torque
Tl = N2/K2

i + Td (5)

and finally, for the engine’s rotational dynamic

Ṅ =
1
Je

(Te − Tl). (6)

Equations (1) – (6) are the mathematical description of the nonlinear engine
model. They are the basis for the following synthesis of the feedback linearization,
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the linear feedback controller and for all the MIMO simulations. The numerical
values of the model parameters are shown in Appendix A.

The disturbance torque Td is assumed to be unmeasurable and unpredictable, i. e.,
all disturbances that are measurable or predictable are assumed to be compensated
by a feed-forward controller (not discussed in this paper).

One important aspect of the controller synthesis is the following fact. The control
of the engine-speed using the spark-advance path is inherently much faster than using
the air-bypass channel. Therefore, a typical ISC transient must be composed of two
subsequent periods. In the first part, the controller uses the spark-advance as main
input and after that, the engine speed becomes controlled by acting on the air-bypass
and the spark-advance returns to its nominal value.

Of course, the first phase should be as short as possible, since during that period a
non-ideal combustion takes place (increased fuel consumption, thermal stress, etc.).
It is the specific contribution of this paper to investigate approaches that minimize
these effects by enhancing the response characteristics of the slower air-channel using
nonlinear methods.

4. MULTI–INPUT CASE

4.1. Delay approximation

The IPS delay cannot be described by a finite dimensional ODE. For controller
design it is therefore often approximated by rational transfer functions. Moreover,
the IPS delay is engine speed dependent. For these reasons it will be approximated
below by a first order element whose “time-constant” depends on the inverse engine
speed (this corresponds, as will become clearer later, to a bilinear system).

ẏ(t) = τ̃(t)−1(−y(t) + u(t)). (7)

This form of the approximation (no finite zeros) is necessary to guarantee that the
relative degree of the complete system will be equal to its order and will therefore
contain no zero-dynamics [5]. Higher order approximations (several elements (7) in
series-connection) are also possible, see Section 5.

The variable τ̃ is chosen to minimize the error area between the step response
h(t) of a linear reference system

G(s) = e−sτ(N0) (8)

and the step-response h̃(t) of (7) for a fixed engine speed N = N0, i. e.,
∫ ∞

0

|h(t)− h̃(t)| dt != min. (9)

It turns out that the best choice for τ̃ in the sense of (9) is given by

τ̃ =
τ(N0)
σ

, (10)

where σ = 1.678346 . . ..
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Remark 1. Notice that the engine speed does not influence the weighting factor
σ and that therefore the choice (10) is generally applicable, i. e., that

τ̃(t) =
τ(t)
σ

=
Kτ

N(t) σ
(11)

is a point-wise optimal solution.
Defining a new state-variable y = x2 and the input u = Ṁ , the description of the

IPS delay approximation used below is then given by

ẋ2 =
σ

Kτ
N(Ṁ − x2). (12)

Remark 2. The proposed approximation works well only if the dynamic of the
engine speed N (6) is substantially slower than the dynamic of the cylinder air mass
flow rate Ṁ (2). Fortunately, in typical engine settings this is the case (the manifold
pressure P and therefore Ṁ varies much faster than the engine speed N).

4.2. MIMO feedback linearization

Before discussing the main issue of this section, a slight technical difficulty has to
be resolved. The plant description as introduced in (1) – (6) does not fit completely
into the usual framework, i. e., the system’s equations are not affine in the two
inputs. However, by introducing two fictitious new inputs u1 and u2 and solving the
following two quadratic equations

u1 =
1
Je

(ϕ2 + ϕ4N + ϕ3 δ) δ (13)

u2 = β0 + β1θ + β2θ
2 (14)

(which corresponds to a static nonlinear transformation in each input-channel) the
problem can be transformed to its standard form (the ambiguity of the solutions of
(13) and (14) can be resolved by physical arguments).

With the above modifications of the system description and the static compen-
sation of the input nonlinearities, the system can be written as follows

ẋ1 = a0 + a1x1 + a2x1
2 + a3x2 + u1 − adTd

ẋ2 = a4x1x2 + a5x
2
1x3 + a6x

2
1x

2
3

ẋ3 = a7x1x3 + a8x1x
2
3 + a9fP (x3)u2

(15)

where x1 = N and x3 = P and the coefficients ai follow directly from the “physical”
parameters of the model (1) – (6).

The special structure and the time scale separation of the two input channels
of this system will play a crucial role in the following considerations. Instead of
pursuing a “regular” square MIMO-system feedback linearization [5], a cascade-like
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approach is chosen. As a first step the fast spark-channel in (15) is linearized by a
precompensation involving the engine speed only

u1 = v1 − (a0 + a1x1 + a2x1
2) (16)

where v1 is the new spark-channel input. Notice that the link to the (slower) air-
channel (represented by the term a3x2) is not canceled. Beside the fact that this
is not needed (the link is already linear) this would also make little sense for the
control problem at hand.

To formalize this step a first coordinate transformation is introduced

z1(t) = x1(t) (17)

and by construction
ż1 = a3x2 + v1 − adTd. (18)

An obvious choice for a second coordinate transformation is

z2(t) = x2(t)

z3(t) = a4x1x2 + a5x
2
1x3 + a6x

2
1x

2
3.

(19)

The resulting dynamic equations are

ż2(t) = z3

ż3(t) = ϕ(x, v1) + ψ(x)u2 − ξ(x)Td

(20)

where x = [x1, x2, x3]T and (all time dependencies have been omitted for space
reasons)

ϕ = (v1 + a3x2) (a4x2 + x1x3 (2a5 + 2a6x3))

+ x3
1x

2
3 (a4a6 + a5a8 + 2a6a7 + 2a6a8x3)

+ a2
4x

2
1x2 + x3

1x3a5 (a4 + a7)

ψ = a9x
2
1fP (x3) (a5 + 2a6x3)

ξ = ad

(
a4x2 + 2a5x1x3 + 2a6x1x

2
3

)
.

(21)

Choosing the air bypass control input as follows

u2(t) = ψ(x)−1 [v2 − ϕ(x, v1)] (22)

produces an input-output-linearized system whose structure is depicted in Figure 2.
The function ξ̃(.) is defined by

ξ̃(z) = ξ ◦ Φ(z) (23)

where Φ(z) is the inverse coordinate transformation

x = Φ(z) =




z1
z2

−a5
2a6

+
√

a2
5

4a2
6
− a4z1z2−z3

a6z2
1


 (24)
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(again, the ambiguity arising from the solution of the involved quadratic equation
can be resolved by physical arguments).

Fig. 2. Structure of the feedback linearized system.

Remark 3. The control (22) is singular for all points on the set defined by ψ(x)=0.
However, this set is not relevant for physically meaningful values of the two variables
x1 = N > 0 and x3 = P > 0 (the three parameters a5, a6 and a9 are all positive
and in idle conditions the manifold pressure P remains always below the ambient
pressure Pa).

4.3. MIMO simulations

After having compensated all nonlinearities the next step is to design a linear feed-
back controller that satisfies all specifications and limitations of the ISC problem.
This design-step is performed here for illustration purposes using a cascade-like LQR-
approach. The control structure of the complete system with the linear controller is
shown in Figure 3.

Fig. 3. Control structure of the complete system.

The controls are assumed to have the following bounds

δ ∈ [−10◦, 30◦], θ ∈ [0◦, 90◦]. (25)
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The controller is designed in an hierarchical manner: in a first step the v1-loop is
closed by a proportional feedback kp, and in a second step the v2-loop is extended by
an additional integrator on the engine speed (to eliminate constant disturbances) and
a LQR-regulator klqr is designed for the remaining SISO plant. The numerical values
of the controller parameters used for the simulations are listed in Appendix D. Notice
that the controller utilizes 4 states, of which only three (engine speed, integrated
engine speed and manifold pressure) are available. The state x2 has to be estimated
using a (partial) observer. The resulting linear controller is of order 2 (one for the
partial observer, one for the integral action).

Although the calculated feedback linearization laws (16) and (22) are based on
the approximation of the IPS delay, simulations using the exact delay instead of
the first order low pass filter, show a very similar behaviour. This fact indicates an
inherent robustness of the proposed controller with respect to modelling errors.

The simulations shown in Figure 4 and 5 were performed on the original nonlinear
plant, i. e., with the true speed-dependent IPS delay. The achievable responses with
the limitations (25) are comparable with those published in previous papers.

The main benefit of the proposed approach is that the different speed require-
ments for the two input channels can be easily satisfied. In fact the v1 channel is
closely (but not completely) linked to the spark-action. Consequently, manipulat-
ing this input substantially influences these dynamics, only. At steady state, with
vanishing speed error, the spark-action vanishes, since the spark-controller contains
no memory.

The slower air-bypass channel is designed to compensate for constant load torque,
i. e., contains one integrator (according to the Internal Model Principle). Its dynamic
can be as slow as necessary to satisfy robustness and actuator requirements.

Fig. 4. Normalized state variables: engine speed (solid, nominal value = 740 rpm, range

= 60 rpm), manifold pressure (dashed, nominal value = 28 kPa, range = 42 kPa) for a

5 Nm disturbance step.



Feedback Linearization Idle–Speed Control: Design and Experiments 449

Fig. 5. Normalized control actions: spark (dashed, nominal value = 15◦, range = 9◦),
air-bypass (solid, nominal value = 5◦, range = 6◦) for a 5 Nm disturbance step.

5. SINGLE–INPUT CASE

5.1. Model changes

For the reasons mentioned in Section 1 the spark advance δ is assumed in this section
to be constant. Under this assumption, the model of the analyzed plant is described
by (1) – (6) with the exception of equation (4) that changes to

Te(t) = ϕ̃0 + ϕ̃1Ṁ(t− τ(t)) + ϕ̃2N(t) + ϕ̃3N(t)2. (26)

Equations (1) – (6) with the modification (26) are the mathematical description
of the nonlinear single-input engine model (the parameters are the same as in the
MIMO case, see Appendix A). These equations are the basis for the following syn-
thesis of the feedback linearization, the linear feedback controller and for all the
SISO simulations.

Another difference to the MIMO case is introduced by using two (instead of one)
elements (7) for the IPS delay approximation (a series connection of any number
of elements (7) can be used, with larger numbers producing better approximations
but, of course, at higher computational costs; moreover, it can be shown that with
increasing number the approximation error tends to zero). The resulting approxi-
mation is described by

q̈(t) =
w(t)− [τ̃1(t) + τ̃2(t)] q̇(t)− q(t)

τ̃1(t)τ̃2(t)
. (27)

Again, the two variables τ̃1,2(t) are chosen to minimize the error area (9) between
the step response h(t) of a linear reference system (8) and the step-response h̃(t) of
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(27) for a fixed engine-speed N = N0. It turns out that the best choice for τ̃1,2 in
the sense of (9) is given by

τ̃ = τ̃1 = τ̃2 =
τ(N0)

2.6740 . . .
. (28)

Remark 4. Remarks 1 and 2 remain valid in the SISO case, too.

Remark 5. The series connection of two systems (7) in general includes also the
derivative of the “time-constant” τ̃(t) (and hence the derivative of the the engine-
speed)

q̈(t) =
w(t)− 2τ̃(t)q̇(t)− q(t)

τ̃(t)2
−

˙̃τ(t)q̇(t)
τ̃(t)

.

However, in ISC problems and for typical engine parameters (inertia, engine and
load-torque, etc.) the variable ˙̃τ(t) is much smaller than 2 and can therefore be
neglected.

Introducing for (27) the two state-variables x2 and x3 with the following dynamics

ẋ2(t) =
1
τ̃(t)

(x3(t)− x2(t)) (29)

ẋ3(t) =
1
τ̃(t)

(Ṁ(t)− x3(t)) (30)

the engine-torque (26) can then be approximated by

Te(t) = ϕ̃0 + ϕ̃1x2(t) + ϕ̃2N(t) + ϕ̃3N(t)2. (31)

5.2. SISO feedback linearization

Again, a static precompensation (14) is made first. Defining x1 = N , x4 = P , the
system (1) – (6) with (29) – (31) can now be approximated compactly as follows

ẋ1 = a0 + a1x1 + a2x
2
1 + a3x2 − adTd

ẋ2 = a4x1x2 + a5x1x3

ẋ3 = a6x1x3 + a7x
2
1x4 + a8x

2
1x

2
4

ẋ4 = a9x1x4 + a10x1x
2
4 + a11fP (x4)u

(32)

where the constants ai follow in an obvious manner from the original “physical”
plant parameters.

With these modifications, the system can be written in the standard input affine
form.

ẋ(t) = f(x(t)) + g(x(t))u(t),

y(t) = h(x(t)) = x1(t)
(33)
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where x = [x1, x2, x3, x4]T . The specific choice of the engine-speed as output function
in equation (33) is somewhat arbitrary (since state-feedback will be applied, any
linear combination of the four states is in principle feasible). However, it turns out
that this (physically meaningful) choice produces a system (33) with relative degree
n and is therefore directly amenable to feedback linearization [5].

In fact, the matrix

M(x) =
[
g, adf g, ad

2
f g, ad

3
f g

]
(x) (34)

(see [5] for the definition of the operator adk
f g) has the determinant

det(M(x)) = a4
11a3a

2
5x

8
1 [a7 + 2a8x4]

3
. (35)

All parameters ai are nonzero, x1 = N = 0 is not possible in this context and
the condition x4 = P = −a7/(2a8) is also never satisfied since both a7 and a8

are positive. Therefore the matrix M(x) has full rank for all physically meaningful
values of the state-variables. This is a sufficient (and also necessary) condition [5]
for the existence of a transformation

z = Φ(x) (36)

and a feedback

u(t) =
a(x(t)) + v(t)

b(x)
(37)

such that in the new coordinates (i. e., from the new input v to the engine-speed)
the system after feedback (37) is given by a series connection of four integra-
tors (Brunovsky canonical form) with a nonlinear disturbance injection at each
integrator-input

żi(t) = zi+1(t) + µi(z(t))Td(t), i = 1, 2, 3

ż4(t) = v(t) + µ4(z(t))Td(t).
(38)

The transformation Φ and the function a(x), defined by
〈
∂z4
∂x

, f

〉
(x) (39)

(〈·, ·〉 denotes the inner product), are shown in Appendix C. The important fact is
that these expressions are polynomial functions of the state-variables only. Therefore,
for physically reasonable operating conditions, all expressions remain finite.

Remark 6. The denominator b(x) coincides with the expression (35), which has al-
ready been shown to never vanish inside the physically meaningful operating regime.
Hence, the proposed control (37) exists for all points x in this region.
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5.3. SISO simulations

The validity and the benefits of the proposed approach are first checked by simula-
tions. Three cases have been analyzed:

1) Feedback linearizing controller acting on the nonlinear plant

2) Linear controller acting on the locally linearized plant

3) Linear controller acting on the nonlinear plant.

For each case a “design” and a “simulation” step has to be distinguished. Table 1
summarizes the different cases.

Fig. 6. Control structure of the feedback linearized system.

In case 1) the outer loop (i. e., the loop after compensation (37) of the control-
channel nonlinearities of the original plant (1) – (6)) is closed with an integral action
lqr-controller. This controller is designed to control the linear system (38), i. e., a
simple chain of integrators.

Notice that in the plant-model the IPS delay is not approximated by (27) but
implemented as a true time delay. The delay approximation (27) introduces two
non-physical states, which have to be reconstructed by the “partial observer” within
the feedback linearization (see Figure 6).

In case 2) and 3) a controller is used that was synthesized using the linearization
of the plant at the nominal engine-speed N0. For that step the IPS delay is approx-
imated in the same way as in case 1). The design is such that an almost identical
closed-loop response is achieved in the linear setting, i. e., in the design phase the
engine-speed in case 1) and in case 2) are almost the same.
For the numerical values of the controller parameters see Appendix D.

Table 1. Simulation and design cases.

design simulation
case 1) s−4 nonlinear plant
case 2) linearized plant linearized plant
case 3) linearized plant nonlinear plant
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As Figure 7 shows, the performance of the linear controller degrades quite severely
when it acts on the nonlinear plant (case 3), whereas the feedback-linearizing con-
troller (case 1) produces a speed-trajectory that is not affected by the plant’s non-
linearities.

Fig. 7. Engine-speed N (rpm) for case 1) – solid, case 2) – dotted and case 3) – dashed,

after a disturbance torque-step of 9 Nm at t = 0.5 s.

Of course, there is a price to pay for this superior controller performance. Figure 8
shows that in case 1) the air-bypass has to compensate for the nonlinear effects with
substantially larger control action.

Fig. 8. Air bypass signal θ (degrees) for case 1) – solid, case 2) – dotted and case 3) –

dashed, after a disturbance torque-step of 9 Nm at t = 0.5 s.
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6. EXPERIMENTS

The experimental verification of the proposed SISO controller was done on a 2.2 l
five cylinder SI-engine equipped with multi-port fuel injection and (unfortunately)
hard-wired ignition system. The engine was mounted on a standard rack and flanged
to a dynamometer (see Figure 9). The engine’s ISC valve was removed and a very
fast bypass valve was installed.

Fig. 9. Test-bench with engine and controller hardware.

Fig. 10. Measurements of the engine-speed N (rpm) after a disturbance torque-step of

14 Nm at t = 0.5 s for case 1) – black and case 3) – gray.

The controller was implemented using commercially available rapid prototyping
SW-tools and digital signal processor hardware.

The model parameters used in the simulations were taken from the literature [14].
Therefore, in a first step the corresponding values for the experimental set-up had
to be determined. Using static measurements almost all necessary parameters were
estimated using (nonlinear) least-squares methods. The “dynamic parameters” K
in (2) and Je in (6) were determined through the comparison of measured step



Feedback Linearization Idle–Speed Control: Design and Experiments 455

responses with the corresponding simulations. All values obtained are listed in
Appendix B.

Two different controllers (case 1) and case 3) from Section 5) were implemented
and tested. The corresponding closed-loop engine-speed responses to a disturbance
step of 14 Nm are shown in Figure 10.

No substantial improvements are visible for the nonlinear controller, neither in the
measurements nor in the simulations. Obviously, the engine used can be controlled
at idle quite well with linear approaches. The system’s nonlinearities and its IPS
delay variations are not so large that nonlinear controllers would offer substantial
advantages (recall, the IPS decreases with increasing number of cylinders).

7. CONCLUSION

In this paper it has been shown that the ISC problem is feedback linearizable even
when nonlinear IPS delays are taken into consideration.

Compared with “classical” approaches, nonlinear controllers can enhance the
closed-loop performance of ISC, although at the price of higher complexity and larger
control action (but not necessarily controller bandwidth!). A detailed analysis of the
idle-speed plant and especially of its time delays is crucial.

For the outer linear controller an intuitive design approach, which is based on
physical information, remains possible despite the multivariable structure of the
plant. The design approach is cascade-like and the physical intuition is not com-
pletely lost due to the nonlinear transformations.

The experimental verification of the proposed control algorithm did not show
substantial improvements compared to a purely linear approach. This might change
when the engine’s dynamic is more nonlinear, due for example to smaller cylinder
numbers or increased engine nonlinearities.

APPENDIX

A. Engine parameters used for simulations

The engine parameters used for the simulations are taken from [14]. They were
adapted to the purpose of this paper.

β0 = 1 (g/s) β1 = 0.907 (g/(s deg))

β2 = 0.0998 (g/(s deg2)) α0 = 0.020 (g/kPa)

α1 = 1.054 · 10−4 (g/(kPa)2) Kτ = 0.75 (–)

ϕ0 = 3.922 (N m) ϕ1 = 0.387 (N m s/g)

ϕ2 = 6.350 · 10−2 (N m/degCA) ϕ3 = −1.120 · 10−3 (N m/(degCA)2)

ϕ4 = 4.241 · 10−4 (N m s/degCA) ϕ5 = 1.357 · 10−2 (N m s)

ϕ6 = −4.027 · 10−4 (N m s2) ϕ̃0 = 4.623 (N m)

ϕ̃1 = 0.387 (N m s/g) ϕ̃2 = 0.020 (N m s)

ϕ̃3 = −4.027 · 10−4 (N m s2) Pa = 101.325 (kPa)

Ki = 4.386 (1/(m
√

kg)) Je = 0.1760 · (2π) (m2 kg)

N0 = 12.34 (1/s) T = 293 (K)

R = 287 (J/(kg K)) Vm = 2.0 · 10−3 (m3)
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B. Engine parameters of the experiment

The engine parameters of the 2.2 l five cylinder SI-engine were determined using
measurements. While these measurements were taken, the engine was operated at
stoichiometric air/fuel-ratio. Almost all parameters were estimated using nonlinear
least-squares methods applied on static measurements. A different method was
applied for the estimation of the “dynamic parameters” K in (2) and Je in (6).
They were determined through the comparison of measured step responses with the
corresponding simulations. The following table shows the obtained numerical values
of the engine parameters.

β0 = 3.412 (g/s) β1 = 0.0134 (g/(s deg))

β2 = 4.323 · 10−5 (g/(s deg2)) α0 = 0.0069 (g/kPa)

α1 = 1.251 · 10−5 (g/(kPa)2) Kτ = 0.6 (–)

ϕ̃0 = −2.587 (N m) ϕ̃1 = 15.832 (N m s/g)

ϕ̃2 = −4.835 (N m s) ϕ̃3 − 1/(Ki)
2 = −8.695 · 10−3 (N m s2)

Pa = 101.325 (kPa) Je = 0.2403 · (2π) (m2 kg)

N0 = 11.34 (1/s) T = 293 (K)

R = 287 (J/(kg K)) Vm = 4.2 · 10−3 (m3)

C. Single–input linearizing control

The following expressions are valid for the case P ≤ Pa/2 in equation (1) (so called
“choked” situation, where the flow through the air by-pass valve reaches sonic con-
ditions in the narrowest part of the orifice). Similar expressions can be derived for
the sub-sonic case, but in idle the engine is operated almost all of the time in sonic
conditions.

Transformation z = Φ(x) (36):

z1 = x1

z2 = a0 + a1x1 + a2x2
1 + a3x2

z3 = (a1 + 2a2x1)(a0 + a1x1 + a2x2
1 + a3x2) + a3x1(a4x2 + a5x3)

z4 = a3x1(a1 + 2a2x1 + a4x1)(a4x2 + a5x3) + a3a5x2
1(a6x3 + a7x1x4 + a8x1x2

4)

+(a0 + a1x1 + a2x2
1 + a3x2)(a

2
1 + 2a0a2 + 6a1a2x1 + 6a2

2x2
1 + 2a2a3x2 + a3a4x2 + a3a5x3)

Function a(x) used in (37):

a(x) = −a3x1(a4x2 + a5x3)(a
2
1 + 4a0a2 + a0a4 + 8a1a2x1 + 2a1a4x1 + 8a2

2x2
1 + 3a2a4x2

1 + a4
2x2

1

+4a2a3x2 + 2a3a4x2 + a3a5x3) + a3a5x4
1x4(a9 + a10x4)(a7 + 2a8x4)

+a3a5x1(a0 + 2a1x1 + 3a2x2
1 + a4x2

1 + a6x2
1 + a3x2)(a6x3 + a7x1x4 + a8x1x2

4)

+(a0 + a1x1 + a2x2
1 + a3x2)(a

3
1 + 8a0a1a2 + 14a2

1a2x1 + 16a0a2
2x1 + 36a1a2

2x2
1 + 24a3

2x3
1

+8a1a2a3x2 + 2a1a3a4x2 + 16a2
2a3x1x2 + 6a2a3a4x1x2 + 2a3a2

4x1x2 + 2a1a3a5x3

+6a2a3a5x1x3 + 2a3a4a5x1x3 + 2a3a5a6x1x3 + 3a3a5a7x2
1x4 + 3a3a5a8x2

1x2
4)
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D. Numerical values of the controller parameters

MIMO state feedback gains SISO state feedback gains

case 1) case 2)& 3)
kInt = 2909.5 kInt = 4.1301 · 105 kInt = 10
kz1 = 1459.3 kz1 = 2.8007 · 105 kx1 = 4.8403
kz2 = 165.06 kz2 = 8.1450 · 104 kx2 = 0.0375
kz3 = 21.419 kz3 = 5248.7 kx3 = 0.0365
kp = 1.3 kz4 = 124.07 kx4 = 0.0365

(Received April 8, 1998.)
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