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OPTIMAL RESOURCE ALLOCATION IN A LARGE
SCALE SYSTEM UNDER SOFT CONSTRAINTS1

ZdzisÃlaw Duda

In the paper there is discussed a problem of the resource allocation in a large scale
system in the presence of the resource shortages. The control task is devided into two
levels, with the coordinator on the upper level and local controllers on the lower one.

It is assumed that they have different information. The coordinator has an information
on mean values of users demands, an inflow forecast and an estimation of the resource
amount in a storage reservoir. On the basis on this information it determines (by a nu-
merical way) values of a coordinating variable transmitted to the local controllers. The
ith local controller receives the measurement of the ith user demand and the value of the
coordinating variable from the coordinator. On the basis on this information it calculates
the decision on the resource allocation.

For a coordination an isoperimetric constraint is proposed. Due to this, the lower level
optimization problem consists in independent local tasks which depend on the coordinating
variable.

In the paper two strategies of the coordinator are proposed. The first algorithm is based
on the open-loop feedback strategy, while the second one takes into account probabilistic
constraints on the aggregate variable and on the amount of the resource in a storage
reservoir.

For static, scalar subsystems and a quadratic performance index some properties of an
obtained solution are discussed.

1. INTRODUCTION

Control and optimization for large scale systems are usually based on a decomposi-
tion of a global system into subsystems so as to decrease computational requirements
and decrease an amount of information to be transmitted to and processed by deci-
sion makers. A conflict between local controllers is softened by the coordinator on
the upper level, which performs some supervisory tasks.

Decomposition and coordination methods have been developed for large scale
systems. Studies on decomposition methods can be found e. g. in [3, 7, 8, 10, 11,
13, 15]. A lot of these methods are applied to steady-state deterministic systems.

1This work was partially supported by the Polish Science Research Committee under Grant No.
8T11A012 19.
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Problems with different controllers and different available information are studied
in the team decision theory, as well as in the hierarchical control [2, 6].

Control problems with decentralized measurement information become more com-
plicated. In [16] it is shown that the Linear Quadratic Gaussian case is nontriv-
ial when the information pattern is nonclassical. Further results can be found in
[1, 2, 14, 17].

In the present paper there is discussed a problem of the resource allocation in
a large scale system, in the presence of the resource shortages. The control task is
devided into two levels, with the coordinator on the upper level and local controllers
on the lower one.

It is assumed that the coordinator has information on mean values of users de-
mands, an inflow forecast and an estimation of the resource amount in a storage
reservoir. On the basis of this information it determines (by a numerical way) values
of an aggregate variable and then, (by an analytical way), values of a coordinating
variable transmitted to the local controllers.

The ith local controller receives the measurement of the ith user demand and
the value of the coordinating variable from the coordinator. On the basis of this
information it calculates the decision on the resource allocation.

For a coordination an elastic constraint is proposed [4]. Due to this, the lower
level optimization problem consists in independent local tasks which depend on the
coordinating variable.

The upper level numerical problem is the one of the coordinator, which chooses
the values of the aggregate variables.

In the paper two strategies of the coordinator are considered.
The first algorithm is based on the open-loop feedback (OLF) control strategy

and it is most closely related to [4]. From a problem statement it results, that
some reserve capacity is necessary in a storage reservoir, which depends on a control
variance. Sometimes it can be found by an analytical way.

In the second algorithm the aggregate variable has a linear form and it is realized
in a closed loop system. This strategy takes into account probabilistic constraints
on the aggregate variable and on the amount of the resource in the storage reservoir.

2. MODEL OF A SYSTEM

Consider the system composed of M static subsystems (receivers of the resource),
which derive the resources from the storage reservoir supplied by the inflow dn.
Users’ demands zi

n, i = 1, 2, . . . , M, n = 0, 1, . . . , N as well as the inflow dn, n =
0, 1, . . . , N , where N denotes the stopping time, are random variables with given
probability distribution functions.

In principle, the considerations concern the case of the shortages of the resource
which means that sometimes users’ demands cannot be fully satisfied.

The performance index defining the losses resulting from a deficit of the resource
in some period of time has the form:

I = E

N∑
n=0

M∑

i=1

(zi
n − ui

n)2 (1)
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where E denotes the mean operation, zi
n is the demand of the ith subsystem in the

period of time [n, (n + 1)] and ui
n represents an amount of the resource assigned to

the ith subsystem in the period of time [n, (n + 1)].
The problem is to allocate the resource from the storage reservoir into M sub-

systems so as to minimize the performance index (1) under the constraint on the
storage capacity:

hmin ≤ hn + dn −
M∑

i=1

ui
n ≤ hmax, n = 0, 1, . . . , N (2)

where hn, hmin, hmax are real, minimum and maximum admissible amount of the
resource in the storage reservoir; dn is the inflow.

Of course, one can introduce costs of the control ui
n and consider the performance

index in the general form:

I = E

N∑
n=0

M∑

i=1

(Qi
nzi2

n + Gi
nui

nzi
n + Hi

nui2
n ). (3)

3. PROBLEM FORMULATION

The complexity of the solution depends on information and control structures.
In the present paper it is assumed the two-level hierarchical control structure

with the coordinator on the upper level and the local controllers on the lower level.
Proposed structure is justified for large scale distributed systems large (M), in which
transmission of the demands zi

n, i = 1, 2, . . . , M, n = 0, 1, . . . , N to one central
controller is difficult to realize.

It is assumed that the coordinator has the information on the mean values of
the demands z̄i

n = Ezi
n, i = 1, 2, . . . ,M, n = 0, 1, . . . , N , the inflow forecast and

the estimation of the resource amount in the storage reservoir. On the basis of this
information it determines (at time n) the amount of the resource en to be preleminary
allocated to the receivers and then it calculates a value of the coordinating variable
λn, which is transmitted (e. g. by radio) to the local controllers.

The ith local controller receives at time n the value of zi
n and the value of the

coordinating variable λn from the coordinator. On the basis of this information it
calculates the decision ui

n.
From assumed information and control structures it results that admissible con-

trol law of the ith local controller and the coordinator have the forms: ui
n =

ai
n(zi

n, λn) and en = cn(mn), λn = bn(en, z̄1
n, . . . , z̄M

n ), respectively, where mn

denotes the information available for the coordinator at time n.
Additionally it is assumed that the functions ai

n and cn fulfil the elastic constraint
[4]:

E|mn

M∑

i=1

ai
n(.) = en (4)

where E|mn
(.) denotes the condition mean, given mn.
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The information and control structures imply that the constraint on the amount
of the resource in the storage reservoir in the form (2) can not be taken into account
by the coordinator (ui

n and dn are random variables).
In the sequel are discussed two modifications of the constraint (2).

The first one relies on replacement (2) by:

hmin + ∆hn ≤ ĥn + d̂n − en ≤ hmax, en ≥ 0 (5)

where ∆hn is a reserve capacity, ĥn, d̂n are estimates of hn and dn, respectively.
Notice that for chosen realization it may happen that:

M∑

i=1

ui
n > en. (6)

It suggests that some reserve capacity ∆hn taken into account in (5) is necessary in
the storage reservoir.

The second strategy of the coordinator takes into account the constraints [5]:

Prob(emin ≤ en ≤ emax) ≥ 2α− 1, α ∈ (0.5, 1) (7)
Prob(hmin ≤ hn ≤ hmax) ≥ 2β − 1, β ∈ (0.5, 1) (8)

where α, β are given numbers.

4. SYNTHESIS OF THE LOCAL CONTROL LAWS

From assumed information and control structures it results that the local optimal
control laws aio

n , i = 1, 2, . . . , M, n = 0, 1, . . . , N can be found by the minimization
of the performance index:

In = E

M∑

i=1

(zi
n − ai

n)2 (9)

under constraint (4).
Using the method of Lagrange multipliers, we can take into account the constraint

(4) in (9) and perform independently, for each subsystem, the minimization of the
Lagrange function:

Li
n = E min

ui
n

E|zi
n,λn

[(ui
n − zi

n)2 + 2λnui
n] (10)

where E|zi
n,λn

denotes the mean operation given zi
n, λn; λn is Lagrange multiplier.

Differentiating the expression in the bracket [·] in (10) with respect to ui
n and

equating to zero, the optimal control law takes the form:

ui
n = zi

n + λn (11)

The values of λn, n = 0, 1, . . . , N are determined by the coordinator and transmitted
to the subsystems.

Notice that for λn = 0 users’ demands can be fully satisfied.
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5. SYNTHESIS OF THE COORDINATOR CONTROL LAWS

The task of the coordinator at time n is to determine the values of the variables en

and λn.
Substituting (11) into (4) we obtain λn in the form:

λn =
1
M

(en − z̄n) (12)

where z̄n =
∑M

i=1 Ezi
n =

∑M
i=1 z̄i

n.
Substituting (11) into (1) and, resulting from (12), the performance index for the

whole system takes the form:

I =
1
M

E

N∑
n=0

(en − z̄n)2. (13)

The problem of the coordinator is a numerical minimization of the performance
index (13) with respect to en, n = 0, 1, . . . , N under the constraint (5) or (7) – (8)
and then the determination of λn according to (12).

Notice that for en =
∑M

i=1 z̄i
n = z̄n, λn = 0, which gives ui

n = zi
n.

Determination of the optimal en by the minimization (13) under the constraint
(5) may be difficult, even numerically. Thus it is proposed to solve a suboptimal
problem based on the open-loop feedback (OLF) control strategy.

In accordance with this idea, the coordinator determines at time n values of
variables e∗n+N ′|n = {ek|n}, k = n, n+1, . . . , n+N ′, which minimize the performance
index:

In =
n+N ′∑

k=n

(ek|n − z̄k)2 (14)

under constraints:

hmin + ∆hn+j−1 ≤ ĥn+j|n, j = 1, 2, . . . , N ′ + 1 (15)
en+j|n ≥ 0, j = 0, 1, . . . , N ′, (16)

where ĥn+j|n is the estimate of the variable hn+j given information mn, N ′ is a
moving horizon of the control.

For realization, at time n, only en = en|n is applied.
The estimate ĥn+j|n may be determined from the equation:

ĥn+j|n = ĥn|n +
n+j−1∑

k=n

d̂k|n −
n+j−1∑

k=n

ek|n, (17)

where ĥn|n and d̂k|n are the estimates of the hn and dk, given information mn.
Determination of random variable estimate is known in the literature [9] and it is
not discussed in this paper.
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As it was mentioned earlier, the surplus of the resource over en is necessary to
satisfy randomly increased demands and the reserve capacity ∆hn should be in the
storage reservoir.

From (11) and (12) it results that:

M∑

i=1

ui
n = en +

M∑

i=1

(zi
n − z̄i

n). (18)

Let u∗n be the minimal value of the resource for which the probability that∑M
i=1 ui

n ≤ u∗n given en is equal to γ, i. e.:

P

(
M∑

i=1

ui
n ≤ u∗n|en

)
= γ (19)

After substituting (18) into (19) we have:

P

[
M∑

i=1

(zi
n − z̄i

n) ≤ u∗n − en|en

]
= γ (20)

From (20) it results that:

∆hn = F−1
zn

(γ)−
M∑

i=1

z̄i
n (21)

where ∆hn = u∗n−en and F−1
zn

(γ) is the value of the inverse of a distribution function
of zn =

∑M
i=1 zi

n for given γ.
If the random variables zi

n, i = 1, 2, . . . , M are gaussian → N(z̄i
n, σi

n), then the

random variable zn is gaussian → N(
∑M

i=1 z̄i
n,

√∑M
i=1 σi2

n ). For given γ, the value
of F−1

zn
(γ) can be found with using e. g. a toolbox Stats in Matlab.

Example 1. Consider the system composed of M subsystems with gaussian de-
mands zi

n → N(3, 1).
In Table 1 are presented the values of ∆h for different M and γ.
Notice that for given γ, the ratio ∆hPM

i=1 z̄i
n

decreases when number of the subsys-
tems increases.

5.1. Synthesis of the aggregate variable en under the constraints
(7) – (8)

The strategy of the coordinator presented above requires the determination of the
reserve capacity ∆hn and a good inflow-forecast.
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Table 1. The influence of M and γ

on the reserve capacity ∆hn.

γ ∆h

0.98 6.5

M = 10 0.90 4.05PM
i=1 z̄i

n = 30 0.85 3.30

0.80 2.65

0.98 14.52

M = 50 0.90 9.06PM
i=1 z̄i

n = 150 0.85 7.33

0.80 5.95

0.98 45.90

M = 500 0.90 28.65PM
i=1 z̄i

n = 1500 0.85 23.10

0.80 18.80

Now, it will be presented a strategy of the coordinator, which minimizes (13)
under constraints (7) – (8). In this algorithm it is assumed that:

en = ēn + G(hn − h̄n) (22)

where ēn, h̄n are mean values of the variables en, hn, respectively, and hn is described
by the equation:

hn+1 = hn + dn −
M∑

i=1

ui
n. (23)

Substituting (18) into (23) we have:

hn+1 = hn + d∗n − en (24)

where d∗n = dn −
∑M

i=1(z
i
n − z̄i

n).
In the sequel it is assumed that the random variables d∗n and h0 are gaussian

→ N(d̄∗n, σd∗n), N(h̄0, σh0), respectively.
Substituting (22) into (13) it is obtained:

I =
1
M

E

N∑
n=0

[(ēn − z̄n)2 + G2(hn − h̄n)2]. (25)

After performing the mean operation of the both sides in (24) and subtracting from
(24) we have:

h̃n+1 = (1−G)h̃n + d∗n − d̄∗n (26)

where h̃n+1 = hn+1 − h̄n+1.
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Notice that the stochastic process h̃n, n = 0, 1, . . . does not depend on ēn. Then,
the task of the coordinator is to minimize the performance index:

I∗ = E

N∑
n=0

(ēn − z̄n)2 (27)

with respect to ēn, under the constraint:

h̄n+1 = h̄n + d̄n − ēn. (28)

Further constraints on ēn result from (7) – (8) and will be discussed in the sequel.

5.2. Analysis of the constraints (7) – (8)

Write the constraint (7) in the form:

Prob(emin − ēn ≤ ẽn ≤ emax − ēn) ≥ 2α− 1 (29)

where ẽn = en − ēn. From (22) it results that

ẽn = en − ēn = Gh̃n. (30)

Notice that the random variable ẽn is gaussian → N(0, σẽn), where σ2
ẽn

= G2Eh̃2
n =

G2σ2
h̃n

.
It is seen that the inequalities:

Prob(ẽn ≤ emax − ēn) ≥ α (31)
Prob(ẽn ≤ emin − ēn) ≤ 1− α (32)

guarantee a fulfilment of the constraint (29).
The inequalities (31), (32) can be written in the form:

Fẽn(emax − ēn) ≥ α (33)
Fẽn(emin − ēn) ≤ 1− α (34)

where Fẽn is the distribution function of the variable ẽn.
From (33) it results that:

ēn ≤ emax − F−1
ẽn

(α) (35)

For a gaussian distribution function with a zero mean value it is true that F (z) =
1− F (−z). Then (34) can be written in the form:

ēn ≥ emin + F−1
ẽn

(α). (36)

Finally we have:
emin + F−1

ẽn
(α) ≤ ēn ≤ emax − Fẽn(α). (37)
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After similar analysis we can write (8) in the form:

hmin + F−1

h̃n
(β) ≤ h̄n ≤ hmax − F−1

h̃n
(β). (38)

Notice that the constraints (37) or (38) are unfeasible in the case, when:

F−1
ẽn

(α) >
emax − emin

2
=

∆e

2
(39)

or

F−1

h̃n
(β) >

hmax − hmin

2
=

∆h

2
. (40)

The inequalities (39), (40) can be written in the form:

α > Fẽn

(
∆e

2

)
(41)

β > Fh̃n

(
∆h

2

)
. (42)

Remember that the random variables h̃n and ẽn are gaussians → N(0, σh̃n
),

N(0, Gσẽn), respectively. Then the distribution functions Fẽn(·) and Fh̃n
(·) in (41)

and (42) depend on the distribution function of the random variable h̃n.
From (26) it results that:

σ2
h̃n+1

= (1−G)2σ2
h̃n

+ σ2
d̃∗n

(43)

where σ2
d̃∗n

= E(d∗n − d̄∗n)2.

Let for given G and some n = n∗ the variance of the variable σ2
h̃n∗

is maximal.
Then the variance of the variable ẽn∗ takes the maximum, too. Then for n = n∗ the
distribution functions Fh̃n∗

(∆h
2 ) and Fẽn∗ (

∆e
2 ) take minimal values, which depend

on chosen G.
The constraints (37) and (38) are feasible if:

α ≤ Fẽn∗

(
∆e

2

)
(44)

β ≤ Fh̃n∗

(
∆h

2

)
. (45)

The maximization of the expression:

max
G

→ (Fẽn∗ + Fh̃n∗
) (46)

provides the feedback gain G in (22) and gives the possibility to choose the values
of α and β as good as possible.
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Example 2. Consider a system composed of M subsystems with gaussian demands
zi
n → N(1, 3). Assume that emin = 0, emax =

∑M
i=1 z̄i

n, hmin = 0, hmax = 2
∑M

i=1 z̄i
n.

The values of G for given M,N and σ2
dn

= E(dn− d̄n)2 are presented in Table 2.

Table 2. The influence of M, N

and σdn on G.

M N σ2
dn

G

10 2 0 0.415

50 2 0 0

500 2 0 0

10 3 0 0.480

50 3 0 0

500 3 0 0

10 2 10 0.485

50 2 50 0

500 2 500 0

10 3 10 0.485

50 3 50 0

500 3 500 0

From Table 2 it is seen that for a large number of the subsystems the coordinator
determines en in the open-loop system.

From numerical investigations it results that for data from Table 2, the values of
α and β may be less then one.

In the Tables 3 and 4 are presented the admissible values of ēn and h̄n resulting
from (37) and (38) for M = 50, N = 2, σ2

dn
= 0, G = 0 and M = 50, N = 2, σ2

dn
=

50, G = 0, respectively, given α and β.

Table 3. Admissible ēn and h̄n for M = 50, N = 2, σ2
dn

= 0, G = 0

and chosen α, β.

α β Range of ēn Range of h̄n

0 ≤ ē0 ≤ 150 14.5 ≤ h̄1 ≤ 285

0.98 0.98 0 ≤ ē1 ≤ 150 20.5 ≤ h̄2 ≤ 279

0 ≤ ē2 ≤ 150

0 ≤ ē0 ≤ 150 9.06 ≤ h̄1 ≤ 291

0.90 0.90 0 ≤ ē1 ≤ 150 12.8 ≤ h̄2 ≤ 287

≤ ē2 ≤ 150
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Table 4. Admissible ēn and h̄n for M = 50, N = 2, σ2
dn

= 50, G = 0

and chosen α, β.

α β Range of ēn Range of h̄n

0 ≤ ē0 ≤ 150 20.53 ≤ h̄1 ≤ 279.5

0.98 0.98 0 ≤ ē1 ≤ 150 29.04 ≤ h̄2 ≤ 271.2

0 ≤ ē2 ≤ 150

0 ≤ ē0 ≤ 150 12.8 ≤ h̄1 ≤ 287.1

0.90 0.90 0 ≤ ē1 ≤ 150 18.1 ≤ h̄2 ≤ 281.9

0 ≤ ē2 ≤ 150

Notice that for G = 0, the variance of σ2
h̃n

increases when n increases, while the
variance of σ2

ẽn
= 0. Then the range of ēn is emin ≤ ēn ≤ emax, while the range of

h̄n decreases for increased n.

6. CONCLUSIONS

In the paper the control of the resource allocation in the large scale system is con-
sidered. An interesting point of the considerations is the assumption that particular
decision-makers have different information.

For assumed information and control structures it is possible to partially decom-
pose the calculations and to realize the partially decentralized control.

The problem stated in the paper and the proposed method of the solution make
it possible to obtain the analytical optimal control laws of the local controllers.

Two numerical algorithms for the coordinator are proposed. In the first strategy
it is necessary to determine the value of the reserve capacity in the storage reservoir.
For some distribution functions it can be done by an analytical way.
In the second algorithm are introduced the probabilistic constraints on the control
and state variables. The control law is assumed to have the linear form. Then the
deterministic problem is solved during the realization of control.

(Received January 22, 1999.)
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