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SIMULTANEOUS STABILIZATION BASED ON
OUTPUT MEASUREMENT

Herbert Werner and Katsuhisa Furuta

Based on a recent convex programming algorithm for simultaneous stabilization by linear
state feedback, we propose two types of control law for stabilizing a family of systems, when
either a simultaneously stabilizing state feedback gain or a simultaneously stabilizing output
injection matrix exists, and complete state information is not available. The proposed
control laws are illustrated by a numerical example.

1. INTRODUCTION

The problem of simultaneously stabilizing a whole family of plants has received con-
siderable attention for many years. The present work was motivated by a recent
result [1] that provides a relatively simple algorithm for solving the following prob-
lem: Given a family of plants in state space representation (Φi,Γi), i = 1, . . . , M ,
find a linear state feedback gain F such that (Φi + ΓiF ) is stable for i = 1, . . . , M ,
or determine that no such F exists. This method is based on mapping the set of all
simultaneously stabilizing linear feedback gains into a convex set, and employing a
cutting plane technique involving a sequence of linear programming problems. In
this note, we discuss ways of utilizing this approach for the case where complete
state information is not available.

Dynamic Compensators

One way of approaching the simultaneous stabilization problem with incomplete
state information is to use observer-based control laws, i. e. dynamic compensators.
Necessary and sufficient conditions for the existence of simultaneously stabilizing
compensators were given in [2], using coprime factorization. However, these con-
ditions are tractable only for the case of two systems. In [3] it is in fact shown that
for three or more systems the existence of a stabilizing compensator is “rationally
undecidable” (i. e. there exists no explicit criterion).

Turning to the convex programming approach, the problem with observer-based
controllers is that state feedback and state estimation cannot be separated in face
of the uncertainty represented by a whole family of systems. Assuming that a
simultaneously stabilizing state feedback gain has been found, it is possible to use
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the above-mentioned algorithm to search for a simultaneously stabilizing full order
observer gain, but this search is dependent on the state feedback gain previously
obtained. If no stabilizing observer for this state feedback exists, nothing can be
said because there may exist stabilizing observers for different feedback gains.

In order to search directly for the compensator parameters, the problem can be
transformed into an equivalent static output feedback problem; the difficulty in this
case is that the set of all stabilizing output feedback gains cannot be mapped into a
convex set. A way of attacking this problem is to search for a matrix which belongs
to a convex set, and whose inverse belongs to another convex set. In [4] an algorithm
for this problem is discussed, but this algorithm involves solving a sequence of convex
programming problems, and its convergence is not guaranteed in general.

Periodic Output Feedback and Fast Output Sampling

Our approach taken here is based on the well known fact that if a system is con-
trollable and observable, the poles of the system discretized at output sampling rate
can be arbitrarily assigned by piecewise constant periodic output feedback, pro-
vided the number of gain changes during one output sampling interval is not less
than the systems controllability index [5]. We show that the existence of a simul-
taneously stabilizing output injection matrix generically implies the existence of a
simultaneously stabilizing piecewise constant periodic output feedback gain. The
algorithm proposed in [1] can be used to search for such an output injection matrix,
and any such matrix defines a set of stabilizing feedback gains, namely those which
realize this output injection for the whole family of systems. Naturally it is desirable
to choose within this set a feedback gain that yields the ‘best performance’ in some
sense. Moreover, the condition that an admissible gain realize the same output in-
jection for every system of the family is unnecessarily restrictive, and we propose an
optimization procedure that allows to relax this condition and therefore to search
for the optimal gain over a larger set.

The effect of using piecewise constant periodic output feedback can be viewed
as increasing the number of inputs of an associated discrete-time system, such that
the range space of that systems input matrix becomes the whole state space. This
approach is different from simultaneous stabilization by periodic dynamic compen-
sators proposed e. g. in [6]. The latter are essentially based on dividing an output
sampling interval into as many subintervals as there are plants to stabilize, and to
include a deadbeat controller for each plant. Unlike the approach taken here, in this
case no attention is paid to performance considerations.

In addition to periodic output feedback for the case where a simultaneously stabil-
izing output injection matrix exists, we consider the dual case where a simultaneously
stabilizing state feedback gain can be found. The dual approach then requires to
increase the row rank of the measurement matrix of an associated discretized sys-
tem, which can be achieved by sampling the output several times during one input
sampling interval, and constructing the control signal from these output samples.
We give conditions for the existence of a simultaneously stabilizing control law of
this type.

This paper is organized as follows. Problem definition and preliminary results are
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given in Section 2. Section 3 presents results on periodic output feedback, and in
Section 4 fast output sampling is discussed. In Section 5, the results are illustrated
by a simple numerical example.

2. PROBLEM FORMULATION, PRELIMINARY RESULTS

We consider the problem of stabilizing simultaneously the collection of systems S =
{Ai, Bi, Ci}, defined by

ẋ (t) = Aix(t) + Biu(t) (1)
y(t) = Ci x(t), i = 1, . . . , M.

with A ∈ <n×n, B ∈ <n×m, C ∈ <p×n.
We assume that each (Ai, Bi, Ci) is controllable and observable.
Two types of control laws will be considered.

a) Periodic Output Feedback

Output measurements are available at time instants t = kτ, k = 0, 1, . . . . The
control signal is generated according to

u(t) = Kl y(kτ), kτ + l∆ ≤ t < kτ + (l + 1) ∆, Kl+N = Kl, (2)

for l = 0, 1, . . ., where a sampling interval τ is divided into N subintervals ∆ = τ/N .
Note that the sequence of gain matrices {K0,K1, . . . , KN−1}, when substituted into
(2), generates a time-varying, piecewise constant output feedback gain K(t) for
0 ≤ t < τ .

b) Fast Output Sampling

Here output measurements are taken at time instants t = l∆, l = 0, 1, . . ., whereas
a constant control signal is applied over a period τ . The control signal is generated
according to

u(t) = [L0 L1 . . . LN−1]




y(kτ − τ + ∆)
y(kτ − τ + 2∆)

...
y(kτ)


 , kτ < t ≤ (k + 1)τ. (3)

Convex Programming

We briefly summarize the convex programming approach proposed in [1], in its
version for discrete-time systems.

Let Φi ∈ <n×n, Γi ∈ <n×r, q = n + r. Given a family of systems

S = {Φi, Γi}, i = 1, . . . , M,
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one can define a convex cone C(S) ⊂ <q×q and a mapping g : <q×q → <r×n with
the properties

∃F : ρ(Φi + ΓiF ) < 1, i = 1, . . . ,M

⇐⇒ C(S) 6= ∅
and

W ∈ C(S), F = g(W ) =⇒ ρ(Φi + ΓiF ) < 1, i = 1, . . . ,M,

where ρ() denotes spectral radius. Moreover, by defining a convex function <q×q →
< with the property

f(W ) ≥ ‖F‖,
one can formulate the search for a simultaneously stabilizing gain F as a convex
programming problem

min
W∈C(S)

f(W ),

where the minimization yields a matrix with an upper bound on its norm minimized.
This problem can then be solved by Kelley’s cutting plane algorithm [7], i. e. by
solving a sequence of linear programming problems. Because of the structure of the
constraint region, computing separating hyperplanes is particularly simple in this
case and involves only an eigenvalue problem.

The above algorithm is guaranteed to converge, if a solution exists, or other-
wise the linear programming problem becomes unfeasible after a finite number of
iterations.

3. PERIODIC OUTPUT FEEDBACK

Consider a system

ẋ = Ax + Bu, (4)
y = Cx,

and let Φ = eA∆, Γ =
∫ ∆

0
eAsB ds. Applying periodic output feedback (2) yields

a closed loop system that satisfies

x(kτ + τ) = (ΦN + ΓKC)x(kτ), (5)

where
Γ = [ΦN−1Γ . . . Γ],

KT = [KT
0 . . . KT

N−1].

Note that asymptotic stability of (5) implies asymptotic stability of (4). Turning to
the problem of stabilizing a family of systems {Ai, Bi, Ci}M

i=1, equation (5) suggests
the following: search for an output injection matrix G with the property

ρ(ΦN
i + GCi) < 1, i = 1, . . . , M,
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and, if it exists, find K such that

ΓiK = G, i = 1, . . . , M. (6)

Any K that satisfies (6) yields a simultaneously stabilizing periodic output fedback
gain when the corresponding matrix blocks are substituted into

K(t) = Kl, l∆ ≤ t < (l + 1)∆, l = 0, 1, . . .

Existence of a Simultaneously Stabilizing Periodic Output Feedback
Gain

We show that the existence of a simultanously stabilizing output injection matrix
generically implies the existence of a simultaneously stabilizing output feedback gain
K. By ‘generically’ we mean the following [8]: denote by G the set of all control-
lable families of systems S for which a simultaneously stabilizing output injection
matrix exists, and by G̃ the subset of G for which a stabilizing periodic output gain
exists. Then G̃ is open and dense in G. (Here we consider G and G̃ as subsets of
<M(n2+nm+np).)

To prove the above claim, assume G is simultaneously stabilizing, and define

Φ̃ =




Φ1 0
. . .

0 ΦM


 , Γ̃ =




Γ1

...
ΓM


 , G̃ =




G
...
G


 , (7)

then the linear equation

[
Φ̃N−1Γ̃ . . . Γ̃

]



K0

...
KN−1


 = G̃ (8)

has a solution if (Φ̃, Γ̃) is controllable with controllability index ν̃c, and N ≥ ν̃c; and
any solution satisfies (6).

The following Lemma completes the proof.

Lemma 3.1. Controllability of (Φi, Γi), i = 1, . . . , M , generically implies control-
lability of (Φ̃, Γ̃).

P r o o f . See the appendix. 2

Thus we have established the following

Theorem 3.1. For a family S of controllable systems, existence of a simultaneously
stabilizing output injection matrix generically implies the existence of a simul-
taneously stabilizing periodic output feedback gain.
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Remark. For the case where the matrices Φ1 . . . ΦM have no common eigenvalue,
it follows from the proof of Lemma 3.1 that existence of a simultaneously stabilizing
output injection matrix always implies the existence of a simultaneously stabilizing
periodic output feedback gain.

Closed Loop Performance

The above result is concerned with the existence of simultaneously stabilizing output
feedback gains. Now we consider the closed loop performance under a simultaneously
stabilizing control law. This point is crucial because a time-varying feedback gain
may, even if stabilizing, cause excessive control action.

Assume that for a given family of plants a simultaneously stabilizing output injec-
tion matrix exists. Fix N ≥ ν̃c, then the solutions of (8) form a set of simultaneously
stabilizing gains. Within this set, we wish to find a gain that minimizes a perfor-
mance index. But this set is unnecessarily narrow. If G is obtained by convex
programming as discussed in Section 2, then it corresponds to an interior point of
the convex cone C(S). By the nature of the cutting plane technique employed, a
solution point will always lie on the boundary of a closed convex set contained in
C(S), thus having a certain distance from the ‘stability boundary’. Therefore, by
not insisting that a feedback gain achieve the same right hand side in (6) for every
system of the family, minimization can be carried out over a larger set, thereby im-
proving performance. Requirement for simultaneous stability is of course that the
Gi in

[
Φ̃N−1Γ̃ . . . Γ̃

]



K0

...
KN−1


 =




G1

...
GM


 (9)

are all stabilizing.
To accommodate the above considerations, we define a performance index as

follows. Consider the auxiliary discrete-time system (Φ̃, Γ̃, C̃), with Φ̃ and Γ̃ defined
as in (7), and

C̃ =
1
M

[C1 . . . CM ].

Denote the auxiliary state by ξl, i. e.

ξl+1 = Φ̃ξl + Γ̃ul,

and consider the N -periodic output feedback law

ukN+l = KlC̃ξkN , Kl+N = Kl.

Choose weight matrices

R, Q̃ = diag(Q1 . . . QM ), P̃ = diag(P1 . . . PM ),

whith R ∈ <m×m, Qi, Pi ∈ <n×n positive definite and symmetric. Let ξ∗kN denote
the state that would be reached at instant l = kN , given ξ(k−1)N , if the gain K
would satisfy (8), i. e.

ξ∗kN = (Φ̃N + G̃C̃)ξ(k−1)N .
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Then we want to find the gain that minimizes

J(K) =
∞∑

l=0

[ξT
l uT

l ]
[

Q̃ 0
0 R

] [
ξl

ul

]
+

∞∑

k=1

(ξkN − ξ∗kN )T P̃ (ξkN − ξ∗kN ). (10)

Before we show how to (approximately) minimize this cost function, we discuss
the effect the two cost terms and its weights have on the solution. Roughly speaking,
the first term represents ‘averaged’ state and control energy of all systems of the
family, whereas the second term penalizes deviation of the Gi’s in (9) from G. As
stated in Corollary 3.1 below, Gi → G for i = 1, . . . ,M as P̃ →∞.

To see the relation between the first term and the performance of the systems to
be stabilized, partition ξT = [x(1)T

. . . x(M)T

]T , and consider the closed loop solution
of the auxiliary system




x
(1)
l
...

x
(M)
l


 =







Φl
1

. . .
Φl

M




+
1
M




Φl−1
1 Γ1 . . . Γ1

...
...

Φl−1
M ΓM . . . ΓM







K0

...
Kl−1


 [C1 . . . CM ]




x
(1)
0
...

x
(M)
0







=




Φl
1 + 1

M Fl
1KC1

1
M Fl

1KC2 . . . 1
M Fl

1KCM

1
M Fl

2KC1 Φl
2 + 1

M Fl
2KC2

...
...

. . .
...

1
M Fl

MKC1 . . . . . . Φl
M + 1

M Fl
MKCM







x
(1)
0
...

x
(M)
0


 ,

where Fl
i = [Φl−1

i Γi . . . Γi]. Assuming that the individual systems all start at the
same initial state, it follows that

x
(i)
l = (Φl

i + Fl
iKC̄)x0,

C̄ =
1
M

M∑

i=1

Ci.

This shows that summing over ξT Q̃ξ gives the combined state energy of all systems
to be stabilized, with the measurement matrices Ci replaced by their mean-value C̄.

Now let Φ̃cl be the matrix that satisfies

ξkN+N = Φ̃clξkN ,

define P̃0 = diag(P0 . . . P0), P0 = x0x
T
0 , and let Σ be the solution of the discrete-time

Lyapunov equation
Φ̃clΣΦ̃T

cl − Σ + P̃0 = 0. (11)

Then we have
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Theorem 3.2. The periodic output feedback gain K = {K0, . . .KN−1} that min-
imizes (10) is given by

Kl = −R−1Γ̃T Λl, l = 0, . . . , N − 1 (12)

where Λl is obtained from the solution of the two-point boundary value problem
[

Ωl+1

Λl+1

]
= H

[
Ωl

Λl

]
+

[
0
γl

]
,

with

H =
[

Φ̃ −Γ̃R−1Γ̃T

−Φ̃−T Q̃Φ̃ Φ̃−T (I + Q̃Γ̃R−1Γ̃T )

]
,

γl = −Φ̃−T Q̃Φ̃l+1ΣC̃T (C̃ΣC̃T )−1,

and boundary conditions

Ω0 = 0, ΛN = Φ̃−1P̃ (ΩN − G̃).

P r o o f . See the appendix. 2

Remark 1. The forcing term in the above two-point boundary value problem
depends on Φ̃cl (via Σ), which is itself dependent on K. In order to obtain an
approximate solution, one can replace Φ̃cl by (Φ̃N + G̃C̃). To justify this, consider
that the rationale behind the cost function (10) is to allow the Gi’s in (9) to move
around in a neighborhood of G. So ‖Gi − G‖ will be small, and for this case the
above will be a close approximaton of Φ̃cl. Moreover, as P̃ →∞, this approximation
becomes exact (see Corollary 3.1).

Remark 2. The boundary condition on ΛN is expressed in terms of ΩN . To
compute ΛN , partition H l as

H l =
[

hl
11 hl

12

hl
21 hl

22

]
(13)

and define

Πl
iγ =

l−1∑

j=0

hl−j−1
i2 γj , h̃2 = hN

22(h
N
12)

−1, g̃ = h̃2ΠN
1 γ −ΠN

2 γ,

then
ΛN = h̃2ΩN − g̃. (14)

Combining this and the boundary condition yields

ΛN = (I − h̃2P̃
−1Φ̃)−1 (h̃2G̃− g̃). (15)

Comparing (14) and (15), immediately gives the following
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Corollary 3.1. For K as in (12), the Gi on the right hand side of (9) satisfy

Gi → G as P̃ →∞.

Also, for P̃ → ∞, the solution of the two-point boundary value problem simplifies
to

Λl = hl−N
21 G̃−

N−1∑

j=l

hl−j−1
22 γj . (16)

To sum up the results of this section: We have shown that existence of a sim-
ultaneously stabilizing output injection matrix for a family of systems generically
implies the existence of a simultaneously stabilizing periodic output feedback gain.
The algorithm in Section 2, applied to {(ΦN

i )T , CT
i }, can be used to determine if

such a matrix exists, and if so to find one. If it exists, Theorem 3.2 provides a
way to compute an output feedback gain. One can start with P̃ large, which forces
Gi → G, i = 1, . . . , M . To relax this condition and allow searching over a larger
set of gains (and at the same time put more relative weight on performance), one
can solve the two-point boundary value problem for decreasing values of P̃ , until
a satisfactory performance is achieved, or the solution ceases to be simultaneously
stabilizing.

4. FAST OUTPUT SAMPLING

In the previous section, we considered the case where a simultaneously stabilizing
output injection matrix exists, and a periodic output feedback law (2) is used to
increase the column rank of the input matrix of the system discretized at output
sampling rate. In this section, we consider the dual case, where a simultaneously
stabilizing state feedback gain exists, and fast output sampling (3) is used to increase
the row rank of the measurement matrix of the system discretized at input sampling
rate.

Consider again a continuous-time system (A, B,C). Let (Φ, Γ, C) denote this
system sampled at rate 1/∆, and (Φτ , Γτ , C) the same system sampled at rate 1/τ .
Assume F is a state feedback gain such that (Φτ +ΓτF ) is stable and has no poles at
the origin. Let yT

kτ = [yT (kτ−τ+∆) . . . yT (kτ)]T , and use ykτ+τ = (C0+DF )xkτ

and (3) to obtain the closed loop system

xkτ+τ = (Φτ + ΓτLC) xkτ = (Φτ + ΓτF ) xkτ , (17)

where
L = [L0 . . . LN−1],

C = (C0 + DF ) (Φτ + ΓτF )−1, (18)

and

C0 =




CΦ
CΦ2

...
CΦN


 , D =




CΓ
CΦΓ

...
C

∑N−1
j=0 ΦjΓ


 .
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A matrix L that satisfies LC = F exists if FT ∈ Im (CT ). Introduce the following
condition:

Definition 4.1. For an observable system (Φ, Γ, C), let

Tl = [(Φl−1)T CT . . . CT ],

then a gain matrix F is said to satisfy condition (∗) for this system if

(Φl)T CT + FT ΓT Tl




I
...
I


 6∈ Im Tl, l = 1, . . . , νo,

where νo is the systems observability index.

The following is straightforward to verify.

Lemma 4.1. An output feedback gain matrix L that satisfies (17) exists if (Φ, C)
is observable and F satisfies condition (∗).

Now we turn to the problem of simultaneously stabilizing a family of systems
{Ai, Bi, Ci}M

i=1. Assume there exists F such that (Φτ.i + Γτ.iF ) is stable and has no
poles at the origin for i = 1, . . . , M . Define

Φ̃ = diag(Φ1 . . . ΦM ), Φ̃τ = diag(Φ1.τ . . . ΦM.τ ),

Γ̃ = diag(Γ1 . . . ΓM ), Γ̃τ = diag(Γ1.τ . . . ΓM.τ ),

C̃ = [C1 . . . CM ],

F̃ = diag(F . . . F ).

It follows from Lemma 3.1 that observability of (Φ, C) generically implies observ-
ability of (Φ̃, C̃). Thus, assume that (Φ̃, C̃) is observable with observability index
ν̃o, fix N ≥ ν̃o, and let C̃ be the matrix obtained when substituting the above into
(18). Then we have

Theorem 4.1. If F̃ satisfies condition (∗) for (Φ̃, Γ̃, C̃), then

LC̃ = [F . . . F ]

has a solution L, and any such solution simultaneously stabilizes {Ai, Bi, Ci} when
substituted into (3).

Remark. Note that the state feedback gain F is assumed to be such that there
is no closed loop pole at the origin for the whole family of systems to be stabilized.
When using the convex programming algorithm introduced in Section 2 to search
for a simultaneously stabilizing F , it is straightforward to change the definition of
the convex cone C(S) such that (Φτ.i + Γτ.iF ) has all roots inside the unit disc and
outside a disc with radius ε around the origin for i = 1, . . . , M .



Simultaneous Stabilization Based on Output Measurement 405

5. NUMERICAL EXAMPLE

In this section we illustrate the two proposed types of control law with a simple
numerical example.

We consider the problem of stabilizing the system
[

ẋ1

ẋ2

]
=

[
0 αi

−1 0

] [
x1

x2

]
+

[
0
1

]
u,

y = [ζi 0]x, xT
0 = [1.0 1.0],

under two operating points

α1 = 0.5, ζ1 = 3.0,

and
α2 = 1.5, ζ2 = 1.0.

Discretized at a sampling interval τ = 1.0, state and input matrices for these oper-
ating points are

Φτ.1 =
[

0.760 0.459
−0.919 0.760

]
, Γτ.1 =

[
0.240
0.919

]
,

Φτ.2 =
[

0.339 1.152
−0.768 0.339

]
, Γτ.2 =

[
0.661
0.768

]
.

Periodic Output Feedback

Using the convex programming algorithm presented in Section 2, a simultaneously
stabilizing output injection matrix obtained after 15 iterations is

GT = [0.1061 − 0.1817].

For N = 4, (Φ̃, Γ̃) is controllable. We choose

R = 1, Q =
[

1 0
0 1

]
, P = p

[
1 0
0 1

]
,

Q̃ = diag(Q, Q), P̃ = diag(P, P ).

For p = 106, application of Theorem 3.2 yields a gain sequence

{Kl} = {6.77,−17.06, 16.27,−6.42}.

The closed loop response to x0 under the control law (2) with this gain is shown in
Fig. 1.

Reducing the terminal cost to p = 104, gives a gain sequence

{Kl} = {0.95,−0.25,−0.39,−0.76}.
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The corresponding closed loop response is shown in Fig. 2.

a) System 1 b) System 2

Fig. 1. Closed-loop response with periodic output feedback, p = 106.
Above: states, below: control signal.

Fast Output Sampling

By convex programming, a simultaneously stabilizing state feedback gain obtained
after 14 iterations is

F = [−0.2467 0.5100].

For N = 4, (Φ̃, C̃) is observable. Using Theorem 4.1, an output gain is computed as

L = [7.45 − 25.75 30.53 − 12.20].

The closed loop response to x0 under the control law (3) with this gain is shown in
Fig. 3.

a) System 1 b) System 2

Fig. 2. Closed-loop response with periodic output feedback, p = 104.
Above: states, below: control signal.
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a) System 1 b) System 2

Fig. 3. Closed-loop response with fast output sampling.
Above: states, below: control signal.

APPENDIX

Proof of Lemma 3.1.

Let G be the set of families S = {Φi, Γi} of controllable systems for which a simul-
taneously stabilizing output injection matrix exists, and G̃ the subset of G for which
(Φ̃, Γ̃) is controllable. We have to show that G̃ is open and dense in G, or equivalently,
that the following holds

(i) ∀S ∈ G̃, ∃ ε > 0 : Bε(S) ⊂ G̃

(ii) ∀S 6∈ G̃, ∀ ε > 0 : Bε(S) ∩ G̃ 6= ∅,

where Bε(S) denotes a neighbourhood of S with radius ε.
We show that (i) holds. Consider any S ∈ G̃. Controllability of (Φ̃, Γ̃) implies

that no left eigenvector q of Φ̃ is orthogonal to Γ̃

q(λ) Φ̃ = λq(λ) =⇒ q(λ) Γ̃ 6= [0 . . . 0]. (19)

Let νj(λ), j = 1, . . . , µ(λ) be the indices of those matrices Φνj of which λ is an
eigenvalue. Partition q = [q1 . . . qM ], then (19) is equivalent to

qνj (λ)Φνj = λqνj (λ) =⇒

µ(λ)∑

j=1

qνj (λ) Γνj 6= [0 . . . 0], ∀λ ∈ σ(Φ̃). (20)
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Define

c(λ) =

∥∥∥∥∥∥

µ(λ)∑

j=1

qνj (λ) Γνj

∥∥∥∥∥∥
> 0.

Now let S be perturbed to S + ∆S; assume first that the perturbation affects only
the input matrix Γ̃. (Φ̃, Γ̃+∆Γ̃) is controllable if every left eigenvector q of Φ̃ satisfies

µ(λ)∑

j=1

qνj
(λ) (Γνj

+ ∆Γνj
) 6= [0 . . . 0], ∀λ ∈ σ(Φ̃)

This clearly holds if
∥∥∥∥∥∥

µ(λ)∑

j=1

qνj
(λ)∆Γνj

∥∥∥∥∥∥
< c(λ), ∀λ ∈ σ(Φ̃),

which shows that there exists a neighborhood of Γ̃ for which (Φ̃, Γ̃ + ∆Γ̃) is con-
trollable. (For multiple eigenvalues, the argument can be adjusted by considering
invariant subspaces.)

Next, consider a perturbation of the state matrix Φ̃ to Φ̃ + ∆Φ̃. Let ∆qνj denote
the change in the eigenvector partition with index νj as defined above, caused by this
perturbation. Then (Φ̃ + ∆Φ̃, Γ̃) is controllable if every left eigenvector of Φ̃ + ∆Φ̃
satisfies

µ(λ)∑

j=1

(qνj (λ) + ∆qνj (λ)) Γνj 6= [0 . . . 0], ∀λ ∈ σ(Φ̃)

This holds if ∥∥∥∥∥∥

µ(λ)∑

j=1

∆qνj (λ) Γνj

∥∥∥∥∥∥
< c(λ), ∀λ ∈ σ(Φ̃),

which shows that there exists a neighborhood of Φ̃ for which (Φ̃+∆Φ̃, Γ̃) is control-
lable.

Combining these two results shows that there exists a neighborhood of S which
is contained in G̃; since S was arbitrary, this proves (i).

To show that (ii) holds, consider any family S for which (Φ̃, Γ̃) is not controllable.
Then there exist some eigenvectors q of Φ̃ such that qΓ̃ = [0 . . . 0]. Density of G̃
follows from the fact that it is possible to choose an arbitrary small perturbation
that makes q∆Γ̃ 6= [0 . . . 0]. This completes the proof. 2

Remark. The fact that controllability is a generic property, is well known; see [9],
where a somewhat different definition of genericity is used. What has been shown
here is that generically, the parallel connection of controllable systems as in (7) is
also controllable. It follows from the proof that the parallel connection is always
controllable if the systems share no common eigenvalues. Moreover, if they do share
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eigenvalues, the families of systems whose parallel connection is not controllable,
can be identified as belonging to a union of µs linear varieties determined by (20),
where µs is the number of shared eigenvalues.

Proof of Theorem 3.2.

It must be shown that K given by (12) minimizes J . We drop the tilde on system
and cost matrices.

The cost function (10) can be rewritten as

J = tr
N−1∑

l=0

[
(Φl + ΩlC)T (KlC)T

] [
Q 0
0 R

] [
Φl + ΩlCKlC

]
Σ

+ tr CT (ΩN −G)T P (ΩN −G)CΣ, (21)

where

Ωl =
l−1∑

j=0

Φl−j−1ΓKj , (22)

and Σ is the solution of the discrete-time Lyapunov equation (11).
Denote by SN the space of matrix sequences {M0, M1 . . . MN−1}. Define an inner

product on SN

〈M, N〉 =
N−1∑

l=0

tr MT
l Nl

and the operator L : SN (<m×p) → SN (<n×p) by

LM = {L0M, L1M, . . . , LN−1M},

LlM =
l−1∑

j=0

Φl−j−1ΓMj , L0 = 0.

With these definitions, (21) can be written as

J = 〈{Φl}+ LKC,Q({Φl}+ LKC)Σ〉+ 〈KC, RKCΣ〉
+ tr CT (ΩN −G)T P (ΩN −G)CΣ, (23)

where K stands for the sequence {Kl}, and {Φl} for {I, Φ, . . . , ΦN−1}.
Employing the adjoint operator L∗, and introducing the positive definite operator

Y : SN (<m×p) → SN (<m×p) and the sequence X ∈ SN (<m×n) defined by

Yl = R + L∗l QL,

Xl = L∗l Q{Φl},
obtain

J = 〈KC, (Y KC + 2X)Σ〉
+ tr CT (ΩN −G)T P (ΩN −G) CΣ
+ (terms independent of K). (24)
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For K to minimize (24), the first variation δJ must be zero for all possible pertur-
bations K + εK̃

δJ =
〈
K̃C, 2(Y KC + X + ΓT {ΦN−l−1}T P (LNK −G)C) Σ

〉
= 0,

which holds if

Y K = −XΣΨ− ΓT {ΦN−l−1}T P (LNK −G)

where

Ψ = CT (CΣCT )−1.

Substituting for X and Y gives

Kl = −R−1
(
L∗l Q{LjK + ΦjΣΨ}+ ΓT (ΦN−l−1)T P (LNK −G)

)
.

Using

L∗l M = ΓT
N−1∑

j=l+1

(ΦT )j−l−1Mj

and

Ωj = LjK,

we get

Kl = −R−1ΓT Λl,

where

Λl =
N−1∑

j=l+1

(ΦT )j−l−1Q(Ωj + ΦjΣΨ) + (ΦN−l−1)T P (ΩN −G). (25)

Λl and Ωl as given by (25) and (22), are solutions of the difference equations

Λl = ΦT Λl+1 + Q(Ωl+1 + Φl+1ΣΨ),

Ωl+1 = ΦΩl + ΓKl,

with boundary conditions

Ω0 = 0, ΛN = Φ−T P (ΩN −G).

Rearrangement yields the statement of the theorem.

(Received September 6, 1994.)
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