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TIME–DISCRETIZATION
FOR CONTROLLED MARKOV PROCESSES
PART II: A Jump and Diffusion Application

Nico M. van Dijk and Arie Hordijk

In a first Part I ([24]) a method of time-discretization was investigated in order to
approximate continuous-time stochastic control problems over a finite time horizon.

This approximation was based on using recursive discrete-time dynamic programming.
To this end, three conditions are to be fulfilled:

• Smoothness of the continuous-time functions

• Consistency or convergence of the discrete-time generators

• Stability or uniform boundedness of the discrete-time constructions.

In this Part II, these conditions will be verified for two practical applications:

• A controlled infinite server queue, as example of a controlled Markov jump process

• A controlled cash-balance model, as example of a controlled diffusion model.

For both applications it is shown and illustrated that the discrete-time constructions lead
to a computational feasible scheme to approximate the optimal cost function as well as to
construct an ε-optimal control.
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INTRODUCTION AND SUMMARY

This paper is a continuation of Part I as in [24], which dealt with the discrete-time
approximation of finite horizon cost functions for controlled continuous-time Markov
processes. Since the results of Part I will be applied, it is without further saying
that in this second part we adopt all notation of Part I and that we will frequently
refer to numbered expressions or statements from Part I. Sections 1–5 are in Part I,
sections 6 and 7 are in Part II. For example, relation (3.2.7) or Theorem 5.2.1 can
be found in Part I while relation (6.2.4) or Theorem 7.4.2 in Part II.

In Part I general approximation results were established provided a number of
conditions were fulfilled. Roughly speaking, these conditions are:

• Sufficient smoothness of the continuous-time functions with respect to the time
parameter (smoothness).

• A discrete-time approximation of the infinitesimal operators by means of ap-
propriate one-step transition probabilities (consistency).

• Sufficient boundedness of discrete-time constructions (stability).
In this second Part these conditions will be verified for two applications and

specifically chosen discretizations. Consequently, the discretization results obtained
in Part I can be adopted. In addition, we will consider several modifications of
these results that can be developed as well and we will put special attention to error
bounds for feasible approximations. In both applications our main objective is the
approximation of the optimal cost function and the construction of an ε-optimal
control over a finite time horizon. More precisely, that is:

• To approximate the optimal cost function within some order of the length of
the step-size h of the discrete-time parameter.

• To provide a way of constructing ε-optimal controls for a given ε by using
discrete-time dynamic programming.

In order to obtain these results, we first need to guarantee the existence of a
unique and sufficiently smooth solution of the continuous-time optimality (Bellman)
equation. In neither of the two applications this is a standard result.

The first application, presented in Section 6, concerns a controlled infinite server
queue. The underlying process of this model fits in the framework of controlled
Markov jump processes. Moreover, as special complication the jump rates are un-
bounded. Approximation results given in Section 7, Chapter II of Van Dijk [20]
for controlled Markov jump processes with bounded jump rates can therefore not
be applied. Nevertheless, a constructive approximation of the optimal cost function
will be provided.

The second application, given in Section 7, deals with a controlled cash-balance
(or investment) model. The underlying process, in this case, is a controlled diffu-
sion process. A special complication here is that the decision set is assumed to be
discrete, so that natural controls are unlikely to satisfy standard Lipschitz condi-
tions with respect to the state variable. Nevertheless, under the assumption of a
sufficiently smooth solution of the Bellman equation, a discrete-time computational
approximation of the optimal cost function will be established. As our primary
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purpose is the approximation of the optimal cost function and the construction of
an implementable ε-optimal control, we will restrict our attention to results for the
class of piecewise stationary Markov controls for the first application and of piece-
wise constant and so-called almost Markov controls for the second. Similar results
that can be obtained for arbitrary controls are left to the reader. As the details for
the verification of the necessary conditions can be rather technical and tedious, we
will often restrict the proofs to essential steps and refer to Van Dijk [20] for these
remaining technical details.

6. CONTROLLED INFINITE SERVER QUEUE

6.1. Model description and introduction

Consider a service facility where customers arrive according to a Poisson process
with parameter λ. The number of servers is controlled continuously. A customer
can only be served by one server at a time, and the number of servers may never
exceed the number of customers present. Each customer demands an amount of
service according to an exponential distribution with parameter ν. Consequently, for
a fixed control, an informal description of the underlying process, with the number
of customers present as state, can be given as follows:

Given that at time point t the actual number of customers is i and that during
[t, t + ∆t] the number of servers is j, where j ≤ i, then with probability

λ ∆t + Oi([∆t]2) there is only one arrival

[jν] ∆t + Oi([∆t]2) there is only one departure

1− [λ + jν] ∆t + Oi([∆t]2) there is no arrival nor departure





(1)

during [t, t + ∆t] and where (as can be shown similarly to p. 42 of Van Dijk [20])
for some positive constant C and all i ∈ IN, ∆t > 0:

|Oi([∆t]2)| ≤ C[i]2 [∆t]2. (2)

Costs are taken into account by means of a cost-rate function L depending on the
actual number of customers i and active servers j. We assume that for certain
constants C0, C1, C2, p1, and p2 and all i, j ∈ IN :

L(i, j) ≤ C0 + C1[i]p1 + C2[j]p2 . (3)

Hence, with j ≤ i the cost-rate function can be bounded by a polynomial only
depending on i and of order p, where:

p = max(p1, p2). (4)

Note that this condition of j ≤ i is natural if there are no switching costs in-
volved when changing the number of servers, and for a cost rate function which is
nondecreasing in the number of servers.
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To the best of our knowledge, this particular model has not been dealt with in
the literature. However, in view of applying time-discretization, there is a relation
with the analysis for a controlled M |M |1-queue given by Hordijk and Van der Duyn
Schouten [10] and [11] as well as that for a controlled M |G|1-queue given by Mitchell
[14] and Doshi [5]. Let us briefly elaborate on the results of these references.

These references also deal with the continuous control of the service capacity
based on the actual workload. To this end, time-discretization is applied in order to
derive structural results for optimal policies in the continuous-time model. Particu-
larly, by transferring structural results for discrete-time models by means of weak
convergence arguments, Hordijk and Van der Duyn Schouten [10] and [11] have been
able to prove the optimality of bang-bang policies for the continuous-time model.
The application in this section does not allow a controllable service capacity. But
in contrast:

• The service capacity is not assumed to be bounded.
• Also the computational aspect of the discretization-method is considered by

explicit error bounds for the approximation of the optimal value function and
also by constructing ε-optimal controls.

More precisely, the objectives in this section are:
(i) To approximate the finite horizon optimal cost function for some specified

accuracy (Section 6.4).
(ii) To show how to construct ε-optimal controls for some given ε by using discrete-

time dynamic programming (Section 6.5).
Since the cost rate is bounded by a polynomial the results will be given in a

weighted supremum norm with an appropriate polynomial as weighting function.
As an implication of (6.1.3), this polynomial will be of order p + 2.

6.2. Continuous- and discrete-time control objects

6.2.1. Continuous-time

Define

Bµp = {f : IN → IR | |f(i)| ≤ Kp(1 + i)p (5)
for all i ∈ IN and some constant Kp} .

Then, associated with the informal description in Section 6.1, we will consider the
control object (S, Γ, ∆, µ, DA, {Aδ | δ ∈ ∆}, L) as defined in Section 2.1, specified
by

S = IN, Γ = IN ; ∆ = {δ ∈ IN → IN | δ(i) ≤ i, i ∈ IN}
With p = max(p1, p2) :

µp(i) = (1 + i)p+2

DA = Bµp





(6)

and
Aδ f(i) = λ[f(i + 1)− f(i)] + δ(i) ν[f(i− 1)− f(i)], i ∈ IN, (7)
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and L as in Section 6.1.
The particular choices of the bounding function µ, the domain DA and the in-

finitesimal operators Aδ will be justified by Lemma 6.2.1 given below.

6.2.2. Discrete-time h-control object

With h > 0 denoting the step size of the discrete-time parameter, we will consider the
h-control object (S, Γ, ∆, {P δ

h|δ ∈ ∆}, L), as defined in Section 3.1, with {P δ
h|δ ∈

∆} defined by:

P δ
h(i, j) =





1− [h(λ + ν δ(i)) ∧ 1] , j = i,

[h(λ + ν δ(i)) ∧ 1] λ
[λ+ν δ(i)] , j = i + 1,

[h(λ + ν δ(i)) ∧ 1] ν δ(i)
[λ+ν δ(i)] , j = i− 1.

(8)

The particular choice of P δ
h results from the fact that h times the departure rate

ν δ(i) is not necessarily bounded by 1. Therefore, we cannot take one-step transition
probabilities as products of h and jump intensities as in Hordijk and Van der Duyn
Schouten [11] and Van Dijk [20].

6.2.3. Consistency and stability

In order to obtain approximation results, this subsection presents the basic inequal-
ities as direct consequences of the above defined discretization. In view of the liter-
ature on numerical analysis, the inequalities (6.2.6) and (6.2.7) may be referred to
as the consistency and the stability relation, respectively.

First recall the notation Aδ
h for the one-step operator given by

Aδ
h = [P δ

h − I] h−1

with P δ
h defined by (6.2.4). Further, for any m ∈ IN let the polynomial bounding

function µm : IN → IR be defined by:

µm(i) = (1 + i)m, i ∈ IN. (9)

The following lemma will guarantee the necessary consistency and stability of the
discrete-time construction.

Lemma 6.2.1. For constants C and K∆ and all f ∈ Bµp :

sup
δ∈∆

‖(Aδ
h −Aδ) f‖µp+2 ≤ hC‖f‖µp (10)

sup
δ∈∆

∥∥∥∥∥∥
∑

j

µp+2(j)P δ
h(·; j)

∥∥∥∥∥∥
µp+2

≤ (1 + hK∆). (11)

P r o o f . See the Lemmas 5.2.8 and 5.2.9, Chapter I of Van Dijk [20].
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The proof of (6.2.6) and our use of a polynomial bounding function of order p+2
instead of an order p, as one might expect, follows from the fact that for some
constant C and all δ ∈ ∆:

{[h(λ + ν δ(i)) ∧ 1]− h(λ + νδ(i))} / h(1 + i)2 ≤ hC, i ∈ IN. (12)

The proof of (6.2.7) is a straightforward result from the monotonicity of µp+2 and
the boundedness of the (in fact constant) arrival rate λ. 2

6.3. Finite horizon cost function: Approximation

Let h > 0 and consider a piecewise constant control π ∈ Π satisfying π(t) =
π(n h), n = bt h−1c. The following lemma shows that π is admissible and µ-bounding
such as defined in Section 2.2.

Lemma 6.3.1. There exists a unique family of transition expectation operators
{T π

s,t | s, t ≤ Z} corresponding to the control object from Section 6.2.1 and satisfying
(2.2.4) and (2.2.5). For any m ∈ IN , there is some constant M(m) such that for all
s, t ≤ Z: ∥∥T π

s,t f
∥∥

µm
≤ M(m) ‖f‖µm

. (13)

Furthermore, for all s, t ≤ Z, g ∈ Bµp+2, f ∈ Bµp ; s + ∆s ≤ bs h−1ch + h; m =
p, p + 1, p + 2; n ∈ IN ; δ ∈ ∆ and some constant C:

‖T π
s,t g‖µm ≤ C‖g‖µm . (14)

‖Aδ g‖µm+1 ≤ C‖g‖µm . (15)

‖[T π
s, s+∆s − I] f‖µp+2 ≤ ∆sC‖f‖µp . (16)

‖[(T π
nh, nh+h − I] h−1 −Aπ(nh)) f‖µp+2 ≤ hC‖f‖µp . (17)

P r o o f . By standard construction of the minimal jump process, the quadratic
order in i given in (6.1.2) and technical steps similar to Lemma 5.2.7, Chapter 1 of
Van Dijk [20]. 2

Note that the stability relation (6.2.7) implies (3.2.2), hence we have:

πh = (π(0), π(h), . . . , π(` h)) ∈ Πh(AB).

Recall V π
t and V h

j as defined by (2.2.6) and (3.2.6), where the justification of these
definitions will be given below. Then, the following approximation theorem is an
application of Theorem 5.2.1.
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Theorem 6.3.2. For some constant C and all n ≤ `:

‖V h
n − V π

nh‖µp+2 ≤ hC. (18)

P r o o f . We will apply Theorem 5.2.1. First of all, we will verify Assumptions
2.2.3 and 3.2.3, which guarantee the finiteness of V π

t and V h
j . According to the

polynomial boundedness of L,

sup
δ∈∆

‖Lδ‖µp ≤ C. (19)

Relation (6.3.7) together with (6.3.2) implies the µp- (and hence µp+2-) bound-
edness of {T π

t,s Lπ(s) | s ≤ Z} as well as of {V π
t | t ≤ Z}. Further, for t ≤ s ≤ Z

and with s, s + ∆s ∈ [nh, nh + h], the fact that π(s + ∆s) = π(s) and the relations
(6.3.2) and (6.3.4) yield:

∥∥∥T π
t,s Lπ(s+∆s) − T π

t,s Lπ(s)
∥∥∥

µp+2

≤
∥∥∥T π

t,s+∆s

(
Lπ(s+∆s) −Lπ(s)

)∥∥∥
µp+2

+‖T π
t,s

(
T π

s, s+∆s − I
)

Lπ(s)‖µp+2 ≤ ∆sC. (20)

This implies that T π
t,s Lπ(s) is piecewise µp+2-continuous and thus integrable. Con-

sequently, Assumption 2.2.3 is verified with DA = Bµp .
Obviously, also Assumption 3.2.3 is guaranteed by (6.3.7).
Next, expression (2.2.8) for Rπ

nh(V , h), relation (6.3.5), together with the µp-
boundedness of {V π

t | t ≤ Z} yield:
∥∥Rπ

nh(V , h)h−1
∥∥

µp+2
(21)

≤
∥∥∥∥∥

[∫ nh+h

nh

T π
nh, s Lπ(s)ds− hLπ(s)

]
h−1

∥∥∥∥∥
µp+2

+
∥∥∥
(
[T π

nh, nh+h − I] h−1 −Aπ(nh)
)

V π
nh

∥∥∥
µp+2

≤ hC.

Finally, the proof is completed by applying Theorem 5.2.1, using again relation
(6.3.5) and the µp-boundedness of {V π

t | t ≤ z}. 2

6.4. Finite horizon optimal cost function: Approximation

Before we can present the main approximation result on the discrete-time approxi-
mation of the continuous-time optimal cost function Φt, we first need to justify the
existence and sufficient boundedness of Φt.

Lemma 6.4.1. There exist a unique family {Φt | t ≤ Z} satisfying:

(i) The continuous-time optimality equation (2.3.2).

(ii) The family {Φt | t ≤ Z} is µp-bounded.
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P r o o f . The proof is technical and can be found in Van Dijk [21]. It is an
extension of existence results in Pliska [15] and Yushkevich [25] for the pure bounded
and the partially bounded nonnegative case. 2

Note that in the proof of the next theorem we use the same notation C for possibly
different bounding constants in the various relations we derive.

Theorem 6.4.2. For some constant C and all n ≤ `:
∥∥∥Φh

n −Φnh

∥∥∥ ≤ hC. (22)

P r o o f . We will apply Theorem 5.3.1. First of all, we need to verify Assumptions
2.3.1 and 2.3.2 for the continuous-time model as well as Assumption 3.3.1 for the
discrete-time model. Assumption 2.3.1 directly follows from Lemma 6.4.1. From the
µp-boundedness of L it follows from (6.3.3) that for all g, g1, g2 ∈ Bµp , m = p, p+1:

‖J(g)‖µm+1 ≤ C(1 + ‖g‖µm
), (23)

‖J(g1)− J(g2)‖µm+1 ≤ C‖g1 − g2‖µm . (24)

Since also: ‖g‖µm+1 ≤ ‖g‖µm , Lemma 6.4.1 together with (6.4.2) implies the µp+2-
boundedness of {J(Φt) | t ≤ Z} which together with Lemma 6.4.1 guarantees As-
sumption 2.3.2 with DA = Bµp and µ = µp+2. Similarly, by using (6.2.7) one can
easily verify Assumption 3.3.1 with f ∈ Bµp .

Next, from inequality (6.4.3) with m = p + 1 and (6.4.2) with m = p, the
continuous-time optimality equation (2.3.2) and the µp-boundedness of {Φt | t ≤ Z}
we obtain:

‖J(Φt+∆t)− J(Φt)‖µp+2 ≤ ‖Φt+∆t −Φt‖µp+1C (25)

=

∥∥∥∥∥
∫ t+∆t

t

J(Φs) ds

∥∥∥∥∥
µp+1

C ≤ ∆ t C.

Expression (2.3.3) for Rnh(Φ, h) and (6.4.4) yield:

‖Rnh(Φ, h)‖µp+2 h−1 ≤ hC. (26)

Finally, the proof is completed by applying Theorem 5.3.1, using Lemma 6.2.1,
together with the µp-boundedness of {Φt | t ≤ Z}. 2

6.5. ε-optimal piecewise stationary controls; construction

In this section we show that the results of Sections 6.3 and 6.4 enable us to construct a
piecewise stationary control which is ε-optimal for the continuous-time model, where
ε may be chosen arbitrarily small. We must first establish a discrete-time control,
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for instance by using discrete-time dynamic programming, which is optimal or γ-
optimal for an h-discrete time model. Next, this control will be implemented in the
continuous-time model as a piecewise stationary control π, which is constant on the
intervals [nh, nh+h). Finally, by combining the approximation Theorems 6.3.2 and
6.4.2 we obtain a bound for the difference ‖V π −Φ‖. More precisely:

Theorem 6.5.1. Let πh = (δ(0), δ(1), . . . , δ(`)) ∈ Πh such that for some γ ≥ 0:

‖V h
n −Φh

n‖µp+2 ≤ γ, n ≤ `. (27)

Then with π ∈ Π defined by: π(t) = δ(n) for t ∈ [nh, nh + n), t ≤ Z:

‖V π
nh −Φnh‖µp+2 ≤ γ + hC, n ≤ `. (28)

P r o o f . Since

‖V π
nh −Φnh‖µp+2 ≤ ‖V π

nh − V h
n‖µp+2 + ‖V h

n −Φh
n‖µp+2 + ‖Φh

n −Φnh‖µp+2 ,

the proof follows directly from Theorems 6.3.2 and 6.4.2 and relation (6.5.1). 2

Remark 6.5.2. The above theorem shows that for any given ε > 0 an ε-optimal
control is obtained by finding a discrete-time control which is γ-optimal for an h-
discrete-time model such that

γ + h C ≤ ε, (29)

where C is some constant, following from (6.3.6) and (6.4.1), which does not depend
on h. Consequently, in order to guarantee (6.5.4) an upper bound of C must be
known. Such a bound can be obtained theoretically from the several inequalities
used in proving (6.3.6) and (6.4.1), such as inequalities (6.3.2), (6.3.3), (6.3.4), (6.3.5)
and (6.3.7). This approach, however, would be cumbersome and very inaccurate due
to the many steps involved. An easier and, most likely, much more accurate way
for obtaining an upper bound of C is to deduct C from numerically obtained values
hC for a number of different values of h. Once an upper bound of C is established,
the finding of a sufficiently small h and γ, in order to satisfy (6.5.4), still contains
the difficulty that according to (6.5.1) these are interrelated. It is well-known from
dynamic programming that V h

n = Φh
n, thus γ = 0, if

Φh
j = inf

δ∈∆
[hLδ + T δ

h Φδ
j+1] = [h Lδ(j) + T

δ(j)
h Φh

j+1], j < `. (30)

This dynamic programming equation, however, requires the exact computation
of the infima, whereas numerical computations will involve inaccuracies. For this
reason as well as for its own right, Lemma 6.5.3 given below, as a direct application of
the approximation Lemma 4.1, may be helpful in finding a more convenient discrete-
time control satisfying (6.5.1).
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Lemma 6.5.3. Suppose that for η > 0 and all j < `:
∥∥∥∥(h Lδ(j) + T

δ(j)
h V h

j+1)− inf
δ∈∆

(h Lδ + T δ
h V h

j+1)
∥∥∥∥

µp+2

≤ η h. (31)

Then, with K∆ given by (6.2.7), relation (6.5.1) holds with γ = η exp(Z K∆).

P r o o f . The systems (3.2.6) and (3.3.2) guarantee system 4.1 specified by:

U jh = Φjh; Uh
j = V h

j ; B = Bµp+2 ;

Cjh(f) = inf
δ∈∆

[h Lδ + T δ
h(f)];

Ch
j (f) = [h Lδ(j) + T

δ(j)
h (f)].





(32)

Consequently, relation (6.5.6) guarantees (4.2). Furthermore, similarly to relation
(5.3.7), it follows that relation (6.2.7) implies (4.3) with K = K∆. Finally, U `h =
Φh

` = Uh
` = V h

` = 0. Application of Lemma 4.1 completes the proof. 2

Remark 6.5.4. Combination of Theorem 6.5.1 and Lemma 6.5.3 together with
the recursive system (3.2.6) for calculating V h

j , yield the following algorithm for
computing an ε-optimal control:





ALGORITHM:
Start: V h

` = 0.
For j = `− 1 down to 0 do:

Step 1: Determine δ(j) such that (6.5.6) holds.
Step 2: Compute V h

j according to (3.2.6).





(33)

Note that this algorithm provides functions V h
n as approximations of Φnh within an

accuracy of order O(h) without explicitly knowing Φ itself.

Remark 6.5.5. In contrast with results in Pliska [14] and Yushkevich [25], note
that Lemma 6.5.3 enables one to construct ε-optimal controls with

(i) simple one-step transition probabilities as per (6.2.4)
(ii) prespecified accuracy-value ε.

7. CONTROLLED CASH–BALANCE MODEL

7.1. Model description and introduction

Consider a controlled stochastic equation of the form

Xt+∆t = x + γ1 ∆t + γ2 W∆t, t ≥ 0 (34)

to indicate the state of a process {Xt |t ≥ 0} at time t+∆t given that the system is in
state x at time t and that during [t, t+∆t] the process is continuously controlled by
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a decision pair (γ1, γ2) from an available set of decision pairs O. Here W∆t denotes
a Wiener increment and the decision set O is assumed to be finite. This equation,
which for ∆t → 0 can be seen as a stochastic differential equation, applies to each
of the following economic models.

(i) The value (profit) of an investment of fixed amount is continuously controlled
by allocating an investment opportunity (γ1, γ2), where γ1 denotes the rate of return
and [γ2]2 indicates a value of risk given by its variance per unit of time. Costs are
involved expressed by a cost-rate function L depending on the value of the investment
(negative reward rate), the rate of return and the value of risk.

(ii) The cash-balance of a bank is continuously controlled by allocating a transfer
rate γ1 (positive, zero or negative). Fluctuations, due to deposits and withdrawals,
which may strongly vary in frequency and size per time unit, are modelled by a
Wiener process with variance [γ2]2 per time unit. Here, γ2 may have a fixed, and
thus uncontrolled, value. Costs are taken into account expressed by a cost-rate
function L depending on the actual cash-balance Xt according to a holding rate if
Xt > 0 and a shortage rate if Xt < 0, and on the transfer rate γ1 (buy and sell
rates).

For either of the descriptions the following assumption on the cost-rate function
L is made:

L(x, γ1, γ2) is three times continuously differentiable in x
for any fixed (γ1, γ2) ∈ O, and for some constant p ∈ IN,
KL > 0 and all (x, γ1, γ2):∣∣∣ ∂k

∂xk L(x, γ1, γ2)
∣∣∣ ≤ KL(1 + |x|p), k = 0, 1, 2, 3.





(35)

We note that although the system behaviour, or more precisely the drift and
diffusion coefficient γ1 and γ2 respectively, does not depend on the actual state
variable explicitly, in view of a state dependent cost-rate function the total costs
from a point of time onward do depend on the actual state, and so do natural
controls, such as (ε-) optimal controls.

Investment and particularly cash-balance models have been studied extensively
in the literature (cf. Pliska [16], Constantinides [3], Constantinides and Richard
[4], Harrison and Taksar [8]). On one hand the models presented in the literature
are sometimes more complex, such as by investing a whole fund so that the return
rate and variance of risk will be linear in the actual fund value (Pliska [16]) or by
dealing with transactions instead of a transfer rate so that actual control will be
impulsive (Constantinides [3], Constantinides and Richard [4], Harrison and Taksar
[8]). On the other hand, the above references concentrate on the stationary situation
and a specific cost structure which simplify the calculation of an optimal control.
Furthermore, general results for controlled diffusion processes as given by Fleming
and Rishel [6], Puterman [18] and Krylov [12] do not directly apply. In this respect
we note that in investment model (i) the diffusion coefficient γ2 is controllable and
that, in view of a discrete decision set, it is unnatural to impose too strong Lipschitz
conditions upon controls. Therefore, at least from a theoretical point of view, the
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model under consideration seems to be of interest for investigation. More impor-
tantly, the approximation results that will be presented give a first indication of an
obtainable accuracy that can be obtained. Further, they yield the construction of
ε-optimal controls for any desired precision ε.

As in Section 6, the main objectives in this section are:
(i) To approximate the finite horizon cost function (Section 7.3).
(ii) To establish a construction of ε-optimal controls for a given ε by means of

time-discretization (Section 7.4). Two discretizations are investigated: one
which corresponds to discretizations as used in the literature (cf. Gihman and
Skorohod [7], Christopheit [2], Bensoussan and Robin [1]), Hausmann [9] and
Kushner [13], and one which is computationally more efficient.

Since the cost rate function is bounded by a polynomial, the results will be given
in supremum norms weighted by a polynomial. Since the coefficients γ1 and γ2 are
bounded themselves, the order of that polynomial can be taken equal to that of the
cost-rate function. In Section 7.2 we formally introduce the continuous- and discrete-
time structure by presenting the corresponding control objects as given in sections
2.1 and 3.1. Further, the essential inequalities for the approximation analysis are
given.

7.2. Continuous- and discrete-time control objects

7.2.1. Continuous-time

Define

C3;p =
{

f : IR → IR
∣∣∣ dk

dxk f(x) exist and are continuous for k = 1, 2, 3;

and dk

dxk f(x) ≤ Kf (1 + |x|p), for all x ∈ IR, k = 0, 1, 2, 3

and some constant Kf

}
for any p ∈ IN .





(36)

Then, associated with the informal descriptions given in Section 7.1, we will consider
the control objects (S, Γ, ∆, µ, DA, {Aδ|δ ∈ ∆}, L), as defined in Section 2.1:

S = IR; Γ = O where O is a finite subset of IR2

∆ = {δ : IR → O | δ piecewise continuous}
L(·, γ1, γ2) ∈ C3;p for any (γ1, γ2) ∈ O and some p ∈ IN,





(37)

(38)
µ(x) = (1 + |x|p)
DA = C3;p,

}
(39)

and
Aδ f(x) = [γ1] d

dx f(x) + 1
2 [γ2]2 d2

dx2 f(x)

for δ(x) = (γ1, γ2), x ∈ IR and f ∈ C3;p.

}
. (40)
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The choices of S and Γ and the differentiability condition on L are direct con-
sequences of the description and condition (7.1.2) of Section 7.1. The particular
choices of the bounding function µ, the domain DA and the infinitesimal operators
Aδ will be justified by Lemma 7.2.1 and Lemma 7.3.1 below. The choice of ∆ guar-
antees a sufficiently wide class of controls π associated with controlled stochastic
differential equations.

7.2.2. Discrete-time h-control object

With h > 0 denoting the step size in the discrete-time parameter, we will focus
on a discrete-time h-control object (S, Γ, ∆, µ, h, {P δ

h|δ ∈ ∆}, L), as defined in
Section 3.1, where {P δ

h|δ ∈ ∆} is specified by:

P δ
h(x; {y}) =

{
1
2 for y = x + γ1h + γ2

√
h

, where (γ1, γ2) = δ(x).1
2 for y = x + γ1h− γ2

√
h

(41)

This random walk type discretization is the same as the one given in Kushner [13]
if γ1 = 0. The corresponding difference method will be computationally slow. How-
ever, as opposed to other stochastic discretizations considered in the literature (cf.
Gihman and Skorohod [7], Christopeit [2], Bensoussan and Robin [1]), at least the
approximations can be actually computed. Compared with the discretizations used
by Kushner [13] and Haussmann [9], the simple structure of the discretization (7.2.6)
greatly facilitates the form of the discrete-time dynamic programming equation.

7.2.3. Consistency and stability

As in subsection 6.2.3, we first present basic inequalities (7.2.8) and (7.2.9), which
will guarantee consistency and stability of the approximate scheme. Again, recall the
notation Aδ

h for the one step generator given by (3.1.1) with P δ
h defined by (7.2.6).

Further, throughout this section the polynomial bounding function µp : IR → IR is
defined by:

µp(x) = 1 + |x|p, x ∈ IR. (42)

Lemma 7.2.1. For constants C and K∆ and all f ∈ C3;p:

sup
δ∈∆

‖(Aδ
h −Aδ) f‖µp ≤

√
hC Kf . (43)

sup
δ∈∆

∥∥∥∥
∫

µp(y)P δ
h(·; dy)

∥∥∥∥
µp

≤ (1 + hK∆). (44)

P r o o f . Similarly to Lemmas 5.3.12 and 5.3.13, Chapter I of Van Dijk [20].
Basically, the proof of (7.2.7) follows from Taylor expansion together with the

boundedness of the drift coefficient γ1 = δ1(x) and the diffusion coefficient γ2 =
δ2(x), uniformly in x ∈ IR and δ ∈ ∆. The proof of (7.2.7) is a straightforward
result from the boundedness of the coefficients. We note that in the above reference
a polynomial bounding function of order p+3 instead of p is needed, since there the
coefficients satisfy a growth instead of boundedness condition. 2



152 N.M. VAN DIJK AND A. HORDIJK

7.3. Finite horizon cost function: Approximation

In this section we will slightly deviate from the formulation of a finite horizon cost
function for a given admissible and µ-bounding Markov control as defined in Sec-
tion 2.2. The main reason for doing so is that conditions have to be imposed upon
a Markov (feedback) control in order to guarantee the admissibility, or more pre-
cisely to guarantee the existence and uniqueness of corresponding Markov processes,
as well as sufficient smoothness of the cost functions in view of the approximation
analysis. In Van Dijk [20] the cash-balance model is analyzed under Lipschitz con-
ditions on the coefficients for a given fixed control. In the present model, however,
the decision set is discrete and therefore Lipschitz conditions are not satisfied with
decision rules other than constant decision rules. Clearly, the class of controls which
at each point of time only allow constant decision rules is too restrictive from an
optimization point of view. Therefore, instead we will restrict ourselves to the class
of controls such that for some fixed h the current control value γ ∈ O can only
change at times nh depending on the state at nh, hence this value remains constant
during [nh, nh + h) regardless of the change of the state meanwhile. First, we will
show that within each interval [nh, nh + h) an admissibility, sufficient boundedness
and sufficient smoothness are guaranteed under such a control. Let h > 0 be fixed.

Lemma 7.3.1. For any fixed γ = (γ1, γ2) ∈ O and x ∈ IR there exists a unique
Markov process {ηγ

t (x)|t ≤ h} and associated family of time-homogeneous expec-
tation operators {T γ

s |s ≤ Z} corresponding to the control object of Section 7.2.1
satisfying (2.2.4) and (2.2.5) and defined by

ηγ
t (x) = x + [γ1] t + [γ2]Wt, t ≤ h, (45)

T γ
t f(x) = IE f(ηγ

t (x)), x ∈ IR, (46)

where Wt denotes the standard Wiener measure.
Furthermore, for all γ ∈ O; g ∈ Bµp ; f ∈ C3;p; ∆t ≤ h and with C a constant,

we have:

‖T γ
∆t µp‖µp ≤ (1 + hC). (47)

‖T γ
∆t g‖µp ≤ (1 + hC) ‖g‖µp . (48)

‖[T γ
∆t − I] f‖µp ≤

√
∆t C Kf . (49)

∥∥(
[T γ

∆t − I] (∆t)−1 −Aγ
)
f
∥∥

µp
≤
√

∆t C Kf . (50)

P r o o f . The proof can be given similarly to that of Lemma 5.3.11, Chapter I and
of Lemma 8.2.17, Chapter II of Van Dijk [20].

Basically, the proof results from the fact that for any fixed (γ1, γ2) the coefficients
in (7.3.1) are Lipschitz (in fact, constant) and bounded uniformly in (γ1, γ2). 2
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Now consider a (discrete-time) control π = (δ0, δ1, . . . , δ`) ∈ Πh. Then instead
of by (2.2.6), we can recursively define cost functions V π

jh similarly to (3.2.7) such
that for all x ∈ IR, j ≤ ` and with γ = δj(x):

V π
jh(x) =

∫ Z−`h

0
T γ

s Lγ(x) ds, j = `,

V π
jh(x) =

∫ h

0
T γ

s Lγ(x) ds + T γ
h V π

jh+h(x), j < `.



 (51)

According to (7.3.1), (7.3.2) and (7.3.7), the function V π
jh can be interpreted as

the expected total costs from jh up to Z, associated with a controlled stochastic
differential equation under a control π which prescribes its control value to change
at jh according to the decision rule δj and the current state x and to remain constant
during [jh, jh + h) regardless of the state evolution. (A precise formulation would
require the notion of history dependent controls, which we prefer not to include.)
Since at any time t the control value of such a control depends on the actual state at
bth−1ch, where h may be thought of as being small, we will refer to such a control
as an h-almost Markov control π.

As will be shown in Section 7.5 or can be found in Section 8.2.4, Chapter II of
Van Dijk [20], for any given ε > 0 and under the assumption of a sufficiently smooth
solution of the Bellman equation, an ε-optimal control can be found among the class
of all h-almost Markov controls by taking the minimum over J in the right hand
sides of (7.3.7).

From a computational point of view, however, such an construction may still be
unsatisfactory since the computation (or approximation) of the expressions in (7.3.7)
still involves the computation (or approximation) of the Wiener increment Wh. It
is therefore that in the next two sections we will also investigate the approximation
of the optimal cost function and the construction of ε-optimal controls by means
of the computational more direct discrete-time structure induced by (7.2.6). In the
remainder of this section we will first show that for a given h-almost Markov control
the cost functions defined by (7.3.7) can be approximated by their discrete-time
analogues associated with (7.2.6).

Consider V π
jh defined by (7.3.7) and V h

j defined by (3.2.6) with one-step transi-
tion probabilities P δ

h given by (7.2.6) and π = (δ0, δ1, . . . , δ`). An essential problem
which arises in applying the approximation results for comparing the functions V h

j

and V π
jh, is that the function V π

jh is not necessarily sufficiently smooth, as a result
from the fact that decision rules δj may be non-Lipschitz. We will therefore first
present an approximation result under the assumption that either the function V h

n

or V π
nh is sufficiently smooth. Since such an assumption will be difficult to verify

or may fail, we will thereafter extend this result to a more natural form allowing
sufficiently smooth approximations of V h

n.

Notation 7.3.2. Let C3;p {n ≤ `} denote the set of families q = {qn|n ≤ `} such
that for some constant, denoted by Kq and all n ≤ `:

qn ∈ C3;p and Kqn ≤ Kq.
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Theorem 7.3.3. Suppose that either {V h
n|n ≤ `} or {V π

nh|n ≤ `} is contained in
C3;p {n ≤ `}. Then for some constant C and all n ≤ `:

‖V h
n − V π

nh‖µp
≤
√

hC. (52)

P r o o f . Since V π
nh is not defined according to (2.2.6), the setting of Theorem 5.2.1

does not apply directly. Moreover, if V π
nh /∈ C3;p then Assumption 2.2.3 fails. We

will therefore proceed similarly to the proof of the approximation Lemma 4.1. To
avoid ambiguity for the notation T γ

h, the operator T δ
h defined by (3.1.1) will only

be denoted in its equivalent form: (I + h Aδ
h). Then, from (7.3.7) and (3.2.7):

V π
jh(x) =

[
h Lγ + T γ

h V π
jh+h

]
(x) +

[∫ h

0
T γ

s Lγ ds− h Lγ
]
(x)

V h
j (x) =

[
h Lγ + (I + h Aγ

h)V h
j+1

]
(x), γ = δj(x).





(53)

Suppose that {V h
n|n ≤ `} ∈ C3;p. Define δj = V π

jh − V h
j . Then from (7.3.2):

‖δj‖µp ≤ sup
γ∈O

‖T γ
h δj+1‖µp + sup

γ∈O

∥∥∥∥∥
∫ h

0

T γ
s Lγ ds− h Lγ

∥∥∥∥∥
µp

(54)

+ sup
γ∈O

∥∥∥(T γ
h − [I + h Aγ ]) V h

j+1

∥∥∥
µp

+ sup
γ∈O

∥∥∥h(Aγ
h −Aγ) V h

j+1

∥∥∥
µp

.

Next, recall relation (7.1.2) for L and the fact that {V h
n|n ≤ `} ∈ C3;p {n ≤ `}.

Then from (7.3.10) together with (7.3.4), (7.3.5), (7.3.6) and (7.2.7):

‖δj‖µp ≤ (1 + hC) ‖δj+1‖µp + h
√

hC, j ≤ `. (55)

Furthermore, from (7.3.7) and (7.3.4):

‖δ`‖µp = ‖V π
`h‖µp ≤ hC. (56)

Iterating (7.3.11) for j = n, n + 1, . . . , `− 1 and using (7.3.12) completes the proof
for the case that {V h

n|n ≤ `} ∈ C3;p {n ≤ `}. For the case that {V π
nh|n ≤ `} ∈

C3;p {n ≤ `} the proof can be given similarly by taking δj = V h
j − V π

jh and using
(7.2.8) instead of (7.3.4). 2

Theorem 7.3.4. Suppose that for some family {qh
n|n ≤ `} ∈ C3;p {n ≤ `} and

ε > 0:
‖qh

n − V h
n‖µp ≤ h ε, n ≤ `. (57)

Then ‖V h
n − V π

nh‖µp ≤
(√

h + ε
)

, n ≤ `.

P r o o f . By virtue of

‖(I + h Aγ
h) f‖

µp
≤ (1 + hC) ‖f‖µp , (58)
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together with (7.3.13), the second relation in (7.3.9) can be replaced by

qh
j (x) = [h Lγ + (I + hAγ

h) qh
j+1] (x) + rj(x),

where ‖rj‖µp ≤ h(εC) uniformly in j ≤ `.

}
(59)

By reconsidering the proof of Theorem 7.3.3 with δj = V π
jh − qh

j and using (7.3.15)
the proof follows similarly. 2

Remark 7.3.5. As in Van Dijk [20], Section 8, Chapter II it follows that {V π
nh|n ≤

`} ∈ C3;p {n ≤ `} if we consider an h-almost Markov controls π such that for any
δ = π(nh): δ is Lipschitz, i. e., |δ(y) − δ(x)| ≤ K|y − x|. As a particular case this
applies to δ = γ for some γ ∈ O.

7.4. Finite horizon optimal cost function: Approximation

Before we can present the main approximation result on the discrete-time approx-
imation of the continuous-time optimal function Φt, we first need to justify the
existence and sufficient smoothness of Φt.

Lemma 7.4.1. There exists a unique family {Φt|t ≤ Z} satisfying:
(i) The continuous-time optimality equation (2.3.2).
(ii) Φt ∈ C3;p with (see (7.2.1)) KΘt ≤ KΘ for all t ≤ Z and some KΘ.
(iii) For any λ ∈ (0, 1), some Cλ and all s, s + ∆s ≤ Z:

∥∥∥∥
d
dx

Φs+∆s − d
dx

Φs

∥∥∥∥
µp

+
∥∥∥∥

d2

dx2
Φs+∆s − d2

dx2
Φs

∥∥∥∥
µp

≤ (∆s)λ/2 Cλ. (60)

P r o o f . This can be argued based on results of Krylov [12] and the differentia-
bility condition on L as by (7.1.2). (For more details see Section 8.6, in Van Dijk
and Hordijk [23].) 2

Theorem 7.4.2. For any λ ∈ (0, 1), some Cλ and all n ≤ `:

‖Φh
n −Φnh‖µp ≤ hλ/2 Cλ. (61)

P r o o f . We will apply Theorem 5.3.1. First of all, we need to verify Assumptions
2.3.1 and 2.3.2 for the continuous-time model and Assumption 3.3.1 for the discrete-
time model. Assumption 2.3.1 is immediate. According to (ii) of Lemma 7.4.1 and
(7.2.1):

‖J(Φt)‖µp ≤ C, (62)

which together with Lemma 7.4.1 guarantees Assumption 2.3.2. Finally (7.2.1) to-
gether with (7.2.9) implies Assumption 3.3.1 with F = Bµp . Next from (7.4.1):

‖J(Φs+∆s)− J(Φs)‖µp ≤ sup
γ∈O

‖Aγ(Φs+∆s −Φs)‖µp
≤ (∆s)λ/2 Cλ. (63)
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Expression (2.3.3) for Rnh(Φ, h) and (7.4.4) yield:

‖Rnh(Φ, h)‖µp
h−1 ≤ h C. (64)

Finally, the proof is completed by applying Theorem 5.3.1, (ii) of Lemma 7.4.1,
(7.2.8) and (7.4.5). 2

7.5. ε-optimal piecewise constant controls

Based on the existence of a sufficiently smooth solution of the continuous-time op-
timality equation, we can present two ways of constructing ε-optimal controls. The
first one results from directly minimizing the cost functions defined by (7.3.7). This
still requires the calculation (approximation) of the distributions. The second one in
contrast results from using the computationally more direct discrete-time structure
(7.2.6). This in turn requires a sufficiently smooth (approximation of the) corre-
sponding cost-function.

Theorem 7.5.1. Let {V 0
n|n ≤ `} ∈ Bµp defined by:

V 0
`(x) = min

γ∈O

[∫ Z−`h

0
T γ

s Lγ(x) ds
]

V 0
j (x) = min

γ∈O

[∫ h

0
T γ

s Lγ(x) ds + T γ
h V 0

j+1(x), j < `
]
.





(65)

Let π = (δ0, δ1, . . . , δ`) with δn ∈ ∆ for all n ≤ ` be such that for some ε > 0, and
all n ≤ `:

‖V π
nh − V 0

n‖µp ≤ ε. (66)

Then, for any λ ∈ (0, 1), some constant Cλ and all n ≤ `:

‖V π
nh −Φnh‖µp ≤

(
hλ/2 + ε

)
Cλ. (67)

P r o o f . Since ‖V π
nh−Φnh‖µp ≤ ‖V π

nh−V 0
n‖+ ‖V 0

n−Φnh‖µp this follows from
(7.5.2) and a proof similar to that of Theorem 8.2.16, Chapter II of Van Dijk [20]
but with hλ/2 instead of

√
h. 2

Remark 7.5.2. Analogously to Lemmas 8.2.14 and 8.2.15, Chapter II of Van Dijk
[20], it can be shown (by using the finiteness of O) that there exist (δ0, δ1, . . . , δ`) ∈
∆, i. e., with δi piecewise continuous (constant), such that (7.5.2) holds with ε =
0. Further, a characterization of (7.5.2) based upon the (one-step) expectation
operators T γ

h can be given similarly to (6.5.6).

Theorem 7.5.3. Let πh = (δ0, δ1, . . . , δ`) ∈ Πh such that for some ε1 > 0, ε2 > 0
as well as some {qh

n|n ≤ `} ∈ C3;p {n ≤ `}, and all n ≤ `:

‖V h
n −Φh

n‖µp ≤ ε1

‖qh
n − V h

n‖µp ≤ ε2 h.

}
(68)
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Then with π ∈ Π defined by π(t) = δ(n), n = bt h−1c, any λ ∈ (0, 1), some constant
Cλ and all n < `:

‖V π
nh −Φnh‖µp ≤

(
hλ/2 + ε1 + ε2

)
Cλ. (69)

P r o o f . By using an inequality as (6.5.3) this follows directly from combining
Theorem 7.3.3, Theorem 7.4.2 and relation (7.5.4). 2

Remark 7.5.4. A similar lemma as 6.5.3 is valid with T δ
h = (I + h Aδ

h) in order
to characterize the first inequality of (7.5.4). Particularly, as in Remark 7.5.2 one
can show the existence of piecewise constant decision rules such that ε1 = 0. In
this case the function V h

n = Φh
n also appears to be Lipschitz in x and n, so that

standard (polynomial) approximation procedures may yield the second inequality
with reasonably small ε2 in (7.5.4).

Remark 7.5.5. As in Remark 6.5.4, also here the application of Theorems 7.4.2
and 7.5.7 together with the recursive scheme (7.3.7) or (7.5.1) lead to an algorithm
for computing an ε-optimal control, similar to (6.5.8).

Remark 7.5.6. As in Remark 6.5.5, in contrast with results in Bensoussan and
Robin [2], Fleming and Rishel [6], Gihman and Shorohod [7], Hausmann [9], Krylov
[12], Kushner [13], Pliska [16], Puterman [18], note that the results above lead to
the construction of ε-optimal controls with

(i) simple one-step transition probabilities as given in (7.2.6)
(ii) prespecified accuracy-value ε.
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