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COMBINED TRUST REGION METHODS
FOR NONLINEAR LEAST SQUARES1

Ladislav Lukšan

Trust region realizations of the Gauss–Newton method are commonly used for obtaining
solution of nonlinear least squares problems. We propose three efficient algorithms which
improve standard trust region techniques: multiple dog-leg strategy for dense problems
and two combined conjugate gradient Lanczos strategies for sparse problems. Efficiency of
these methods is demonstrated by extensive numerical experiments.

1. INTRODUCTION

Let fi : IRn → IR, 1 ≤ i ≤ r, be real-valued functions with continuous second order
derivatives on the open set X ⊂ IRn. Let us denote

F (x) =
1
2

r∑

i=1

f2
i (x). (1.1)

We are concerned with the finding a local minimum x∗ ∈ IRn of the function F :
IRn → IR given by (1.1) on an open set X ⊂ IRn, i. e. a point x∗ ∈ IRn that satisfies
the inequality F (x∗) ≤ F (x) ∀x ∈ B(x∗, ε) for some ε > 0 , where B(x∗, ε) = {x ∈
IRn : ‖x− x∗‖ < ε} ⊂ X is an open ball contained in X ⊂ IRn.

If we denote gi(x) and Gi(x) the gradients and the Hessian matrices of the func-
tions fi : IRn → IR, 1 ≤ i ≤ r, respectively, and g(x) and G(x) the gradient and
the Hessian matrix of the function F : IRn → IR respectively then, using (1.1), we
obtain

g(x) =
r∑

i=1

fi(x) gi(x) (1.2)

and

G(x) =
r∑

i=1

gi(x) gT
i (x) +

r∑

i=1

fi(x) Gi(x) (1.3)

1This work was supported under the grant No. 23012 given by the Grant Agency of the Academy
of Sciences of the Czech Republic.
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Numerical methods for local minimization of the objective function F : IRn → IR
are usually derived from the Newton method. These methods are iterative and their
iteration step has the form

x+ = x + αd,

where x and x+ are old and new vectors of variables respectively, α is a stepsize
parameter and d is a direction vector which approximately minimizes the quadratic
function

Q(d) =
1
2
dT Bd + gT d (1.4)

over some subset of Rn. Here B = B(x) is an approximation of the Hessian matrix
G(x) and g = g(x) is the gradient given by (1.2). There are two basic possibilities
concerning how the matrix B in (1.4) can be constructed. The first possibility
leads to the so-called variable metric methods which use an arbitrary positive defi-
nite matrix in the first iteration and which generate subsequent matrices by simple
variable metric updates [8]. The main advantage of this approach is its general
applicability (the objective function F : IRn → IR need not have the special form
(1.1)) and the possibility to update matrix factorization which requires only O(n2)
operations in every iteration. Therefore, these methods are very efficient for dense,
medium-size, and well conditioned problems.

The second possibility is based on the special form (1.1) of the objective function
F : IRn → IR and it consists in the substitution

B(x) =
r∑

i=1

gi(x) gT
i (x). (1.5)

One reason for this choice is the fact that often F (x∗) = 0 so that the second term
of (1.3) is negligible in B(x∗, ε). Another reason follows from the linearization of
(1.1). In this case

F (x + d) ≈ 1
2

r∑

i=1

(fi(x) + gT
i (x) d)2

=
1
2

r∑

i=1

(f2
i (x) + 2fi(x) gT

i (x) d + dT gi(x) gT
i (x) d)

= F (x) + gT (x) d +
1
2
dT Bd = F (x) + Q(d)

with B given by (1.5). The methods which use the matrix (1.5) instead of the Hessian
matrix G(x) are called Gauss–Newton (or modified Gauss–Newton) methods [6].
The main advantage of the Gauss–Newton methods is their quadratic convergence
for zero-residual problems. Convergence of the Guass-Newton methods is usually
faster then convergence of the variable metric methods. On the other hand the
matrix (1.5) has to be factorized which consume O(n3) operations in every iteration.
Therefore these methods are very efficient for dense, small-size, and zero-residual or
ill-conditioned problems. The Gauss–Newton methods are also very efficient for
sparse problems since factorizations of sparse matrices are relatively inexpensive
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and, moreover, the variable metric methods cannot be efficiently generalized to use
sparse matrix factorization.

Besides the above two possibilities there exist their various combinations (see
[3], [5] or [1], [9] as an example). We do not concern these hybrid methods here, the
detailed investigation of them is given in [15].

All the above methods can be realized in two different forms using either the
line search strategy or the trust region strategy. A typical iteration step of the line
search strategy has the following form.

(L1) Direction determination:
Choose d ∈ IRn so that ‖Bd + g‖ ≤ ω‖g‖ (1.6)

and −gT d ≥ ε̄0‖g‖ ‖d‖, (1.7)

where 0 ≤ ω ≤ ω̄ < 1, ε̄0 > 0 (ω̄ and ε̄0 do not depend on the iteration step),
g = g(x) and B = B(x).

(L2) Stepsize selection:
Choose α > 0 so that

F (x + αd)− F ≤ ε̄1αgT d (1.8a)

and
gT (x + αd) d ≥ ε̄2g

T d, (1.8b)

where 0 ≤ ε̄1 < 1/2, ε̄1 < ε̄2 < 1 (ε̄1 and ε̄2 do not depend on the iteration
step) F = F (x) and g = g(x). Finally set

x+ = x + αs. (1.9)

If the conditions (1.6) and (1.7) cannot be satisfied simultaneously, we must change
the matrix B (restart).

The line search startegy is very convenient for the variable metric methods that
generate matrices which are usually well-conditioned. Another situation appears
for the Gauss–Newton methods since the matrix given by (1.5) is very often ill-
conditioned even singular. In this case, the direction vector d ∈ IRn can have rather
large euclidean norm and, moreover, it can be almost orthogonal to the gradient g.
Therefore, too many line search steps can appear for satisfying (1.8) and, moreover,
frequent restarts can occur due to violation of (1.7).

A typical iteration step of the trust region strategy has the following form.

(T1) Direction determination:
Choose d ∈ IRn so that ‖d‖ ≤ ∆ (1.10a)

‖d‖ < ∆ =⇒ ‖Bd + g‖ ≤ ω‖g‖ (1.10b)

and −Q(d) ≥ ε̄0‖g‖ min(‖d‖, ‖g‖/‖B‖), (1.11)

where 0 < ∆ ≤ ∆̄, 0 ≤ ω ≤ ω̄ < 1, ε̄0 > 0 (barred constants do not depend on
the iteration step), g = g(x) and B = B(x) (Q(d) is given by (1.4)).
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(T2) Stepsize selection:
x+ = x + d if F (x + d) < F (x) (1.12a)

x+ = x if F (x + d) ≥ F (x). (1.12b)

(T3) Trust region update:
Compute

ρ =
F (x + d)− F (x)

Q(d)
. (1.13)

When ρ < ρ̄1, then determine the value

β =
1

2
(
1− F (x+d)−F (x)

gT d

)

(quadratic interpolation) and set

∆+ = β̄1‖d‖ if β < β̄1 (1.14a)

∆+ = β‖d‖ if β̄1 ≤ β ≤ β̄2 (1.14b)

∆+ = β̄2‖d‖ if β̄2 < β. (1.14c)

When ρ̄1 ≤ ρ ≤ ρ̄2 then set

∆+ = min (∆, γ̄2‖d‖). (1.15)

When ρ̄2 < ρ then set

∆+ = min (max(∆, γ̄1‖d‖), γ̄2‖d‖, ∆̄). (1.16)

Here 0 < β̄1 ≤ β̄2 < 1 < γ̄1 < γ̄2, 0 < ρ̄1 < ρ̄2 < 1 and ∆̄ > 0 (barred constants do
not depend on the iteration step).

The trust region strategy with the iteration step (T1) – (T3) has strong global
convergence properties (see [20], [21]). Even if it also works well for indefinite ma-
trices B(x), we confine our attention to the positive semidifinite case which appears
in connection with the Gauss–Newton methods. In this case the following theorem
holds (see [14]).

Theorem 1.1. Let the functions fi : IRn → IR, 1 ≤ i ≤ r, have continuous second
order derivatives and there exist constants C1 > 0, C2 > 0, C3 > 0 such that
|fi(x)| ≤ C1, ‖gi(x)‖ ≤ C2, ‖Gi(x)‖ ≤ C3, 1 ≤ i ≤ r, for all x ∈ X ⊂ IRn. Let
xk ∈ X ⊂ IRn, k ∈ N , be the sequence generated by the Gauss–Newton method
with the trust region strategy (T1) – (T3). Then

lim inf
k→∞

‖g(xk)‖ = 0 (1.17)

The trust region strategy is very advantageous in connection with the Gauss–
Newton method. The matrix (1.5) can be ill-conditioned, even singular, but ‖d‖ is
always bounded from above according to (1.10). Moreover (1.17) holds without any
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restart. Strategies like the trust region strategy (T1) – (T3) were proposed already
in [13], [16]. The current realizations were developed in [4], [18], [19], [22].

The most complicated part of the trust region strategy is computation of the
vector d ∈ IRn satisfying the conditions (1.10)- (1.11). There exists three basic
possibilities for a positive semidefinite case. First, the vector d ∈ IRn can be obtained
as a solution of the subproblem

d = arg min
‖d(λ)‖≤∆

Q(d(λ)) (1.18)

which leads to the repeated solution of the equation (B+λI)d(λ)+g = 0 for selected
values of λ [18]. This way gives well-convergent algorithms but for a large number of
variables it is time consuming since it uses, on average, 2 – 3 Choleski decompositions
in every iteration. Moreover, an additional matrix has to be used.

The second possibility consists in replacing the complicated subproblem (1.18)
by the two-dimensional subproblem

d = argmin
‖d(α,β)‖≤∆

Q(d(α, β)), (1.19)

where d(α, β) = αg + βB−1g [2]. Usually the subproblem (1.19) is solved only
approximately, getting (1.10) – (1.11), by the so-called dog-leg methods [4], [19]. In
this case we compute the vectors d1 ∈ IRn and dn ∈ IRn such that gT Bgd1+‖g‖2g =
0 and Bdn +g = 0. The resulting vector d ∈ IRn is obtained as d = λd1 if ‖d1‖ ≥ ∆,
d = d1 + λ(dn − d1) if ‖d1‖ < ∆ ≤ ‖dn‖, and d = dn if ‖dn‖ < ∆, where the scaling
factor λ > 0 is chosen so that ‖d‖ = ∆. This way is more economical since the
equation Bdn + g = 0 is solved, at most, once in every iteration and no additional
matrix is used.

The third possibility is very natural. The equation Bd + g = 0 is solved by the
conjugate gradient method which generates the vectors di ∈ IRn, i ∈ N , having the
following properties (see [22]):

(A) There exists an index k ≤ n, such that ‖Bdk+g‖ ≤ ω‖g‖ for a given 0 < ω < 1.

(B) The sequence Q(di), 1 ≤ i ≤ k, is decreasing, i. e. Q(di+1) < Q(di) for
1 ≤ i < k.

(C) The sequence ‖di‖, 1 ≤ i ≤ k, is increasing, i. e. ‖di+1‖ > ‖di‖ for 1 ≤ i < k.

(D) It holds that 2Q(λd1) ≤ −‖g‖ ‖λd1‖ for 0 ≤ λ ≤ 1, and 2Q(di) ≤ −‖g‖2/‖B‖
for 1 ≤ i ≤ k.

The resulting vector d ∈ IRn is then obtained as d = λd1 if ‖d1‖ ≥ ∆, d = di +
λ(di+1 − di) if ‖di‖ < ∆ ≤ ‖di+1‖ for some 1 ≤ i < k, and d = dk if ‖dk‖ < ∆,
where the scaling factor λ > 0 is chosen so that ‖d‖ = ∆. Note that (A) – (D)
imply (1.10) – (1.11). Note also that no matrix factorization is used in the conjugate
gradient method but, for small ω, the index k in (A) can be large. Fortunately the
condition ‖d‖ ≤ ∆ also limits the number of iterations.
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In the subsequent text we confine our attention to the trust region realizations
of the Gauss–Newton method. Our main purpose is to construct new trust region
strategies which outperform all the above described ones in both the number of func-
tion evaluations and the computational time. Section 2 is devoted to the multiple
dog-leg strategies for dense problems. In Section 3 we propose combined conju-
gate gradient Lanczos methods for sparse problems. Efficiency of these methods is
demostrated by extensive numerical experiments.

2. MULTIPLE DOG–LEG STRATEGIES FOR DENSE PROBLEMS

Consider the conjugate gradient method applied to the quadratic function (1.4).
This method is represented by the following iterative process

d0 = 0, g0 = g (2.1a)

p0 = 0, δ0 = 0 (2.1b)

and
pi = −gi−1 + δi−1pi−1 (2.1c)

qi = Bpi (2.1d)

γi = ‖gi−1‖2/pT
i qi (2.1e)

di = di−1 + γipi (2.1f)

gi = gi−1 + γiqi (2.1g)

δi = ‖gi‖2/‖gi−1‖ (2.1h)

for i ∈ N . Note that gi = Bdi + g for i ∈ N .
The matrix B given by (1.5) is always positive semidefinite. First, suppose that

it is positive definite. Then the following well-known lemma holds (see [12], [22]).

Lemma 2.1. Consider the conjugate gradient process (2.1) with a symmetric posi-
tive definite matrix B. Then there exists an integer l ≤ n such that dl ∈ IRn is a
minimizer of the quadratic function (1.4) and

pT
i Bpj = dT

i Bpj = 0 (2.2a)

pT
i gj = dT

i gj = 0 (2.2b)

gT
i pj = −gT

j−1gj−1 (2.2c)

gT
i gj = 0 (2.2d)

Q(di) > Q(dj) (2.2e)

‖di‖ < ‖dj‖ (2.2f)

hold for 0 ≤ i < j ≤ l. Moreover, if k ≤ l then the vectors gi, 0 ≤ i ≤ k − 1 form
an orthogonal basis in the Krylov subspace

Kk(B, g0) = span{Big0, 0 ≤ i ≤ k − 1}
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and
di = argmin

d∈Ki(B,g0)
Q(d)

for 0 ≤ i ≤ k − 1.
If B is only positive semidefinite then the situation when pT

k qk = 0 can appear
for some index k < n so that γk in (2.1e) may not be defined (breakdown).

A direction vector satisfying (1.10) – (1.11) can be found using the iterative pro-
cess (2.1) by the following rules.

(CG1) If ‖dk−1‖ < ∆ and pT
k qk = 0 for some k < m (breakdown) then set d =

dk−1 + γpk where γ is chosen so that ‖d‖ = ∆.

(CG2) If ‖dk−1‖ < ∆ and ‖dk‖ ≥ ∆ for some k < m then set d = dk−1 + γpk

where γ is chosen so that ‖d‖ = ∆.

(CG3) If either ‖gk‖ ≤ ω‖g‖ for some k < m or k = m then set d = dk.

Usually m = n + 3 since dn ∈ IRn may not be a minimum of the quadratic function
(1.4) because of roundoff errors.

The algorithm defined by the iterative process (2.1) and by the rules (CG1) –
(CG3) was introduced in [22] and we call it the conjugate gradient trust region
(CGTR) method. This algorithm is very natural and simple but it has one disad-
vantage. Usually ω → 0 and ‖d‖ → 0 < ∆ for x → x∗ (to guarantee superlinear con-
vergence of the Gauss–Newton method) so that the rules (CG1) – (CG3) can require
too many CG steps. For dense problems the matrix multiplication (2.1c) consumes
∼ n2 operations and if k ∼ n then direction determination consume ∼ kn2 ∼ n3

operations. On the other hand the Choleski decomposition followed by the solution
of the decomposed system consume ∼ (1/3)n3 operations which can be considerably
less than we had in the previous case. Moreover an exact solution of the equa-
tion Bd + g = 0 can improve the convergence of the Gauss–Newton method. The
simplest method which uses an exact solution of the equation Bd + g = 0 is the
dog-leg strategy discused in the previous section. But this method can fail applied
to ill-conditioned problems. Therefore we recommend a more complicated multiple
dog-leg trust region (MDTR) method which uses the iterative process (2.1) together
with the following rules.

(MD1) If ‖dk−1‖ < ∆ and pT
k qk = 0 for some k < m (breakdown) then set d =

dk−1 + γpk where γ is chosen so, that ‖d‖ = ∆.

(MD2) If ‖dk−1‖ < ∆ and ‖dk‖ ≥ ∆ for some k < m then set d = dk−1 + γpk

where γ is chosen so that ‖d‖ = ∆.

(MD3) If either ‖gk‖ ≤ ω‖g‖ for some k < m or k = m then determine the Gill–
Murray decomposition B + E = LDLT and compute the direction vector
dn such that LDLT dn +g = 0. If ‖dn‖ ≤ ∆ then set d = dn. Otherwise set
d = dk + γ(τdn − dk) where 0 < dT

k g/dT
ng ≤ τ ≤ 1 and where γ is chosen

so that ‖d‖ = ∆.
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Here ω is a small number, m ≤ n is a small integer which is usually much less than
n and, therefore, than m in (CG1) – (CG3).

The idea of a multiple dog-leg strategy was mentioned in [22], but no proof of
efficiency and no implementation details were given there. The multiple dog-leg
strategy is based on the following theorem.

Theorem 2.1. Consider the conjugate gradient method applied to the quadratic
function (1.4) with the symmetric positive definite matrix B. Let ‖di‖ < ∆ < ‖dk‖
for some 0 ≤ i < k ≤ l where l is the integer from Lemma 2.1. Let 0 ≤ dT

i g/dT
k g ≤

τ ≤ 1. Then the function

ϕ(γ) = Q(di + γ(τdk − di)) (2.3)

is monotonically nonincreasing for 0 ≤ γ ≤ 1.

P r o o f . Differentiating (2.3) we obtain

ϕ′(γ) = (τdk − di)T [B(di + γ(τdk − di)) + g].

Let l ≤ n be the integer from Lemma 2.1. Then Bdl + g = 0 holds and we can write

g = −Bdl = −Bdk −
l∑

j=k+1

Bpj

so that

ϕ′(γ)= (τdk − di)T


Bdi + γB(τdk − di)−Bdk −

l∑

j=k+1

Bpj




=−(1− γ)(τdk − di)T B(τdk − di)− (1− τ)(τdk − di)T Bdk

≤ (1− τ)(τdk − di)T


g +

l∑

j=k+1

Bpj




=(1− τ)(τdk − di)T g (2.4)

since dT
i Bpj = dT

k Bpj = 0 for i < k < j ≤ l by (2.2a). But

(dk − di)T g =
k∑

j=i+1

γjp
T
j g0 = −

k∑

j=i+1

γjg
T
j−1gj−1 < 0

by (2.2c) since γj > 0 for i < j ≤ k by (2.1e). Therefore dT
k g < dT

i g ≤ dT
0 g = 0 so

that 0 ≤ dT
i g/dT

k g ≤ 1 and (2.4) imply that ϕ′(γ) ≤ 0 for 0 ≤ dT
i g/dT

k g ≤ τ ≤ 1.
2

Now we are in the position to give a detailed description of the multiple dog-leg
trust region method for nonlinear least squares.
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Algorithm 2.1

Data: 0 < β1 < β2 < 1 < γ1 < γ2, 0 < ρ1 < ρ2 < 1, 0 < ω1 < ω2 < 1,
0 < ∆, 0 < ε1 < ε2, k ∈ N , l ∈ N , m ∈ N .

Step 1: Choose an initial point x ∈ IRn. Compute the values fi := fi(x) of the
functions fi : Rn → IR, 1 ≤ i ≤ r, at the point x ∈ IRn. Compute the
value F := F (x) of the objective function F : IRn → IR by (1.1). Set
∆ = 0, m := min(m,n) and k := 1.

Step 2: Compute the gradients gi := gi(x) of the functions fi : IRn → IR,
1 ≤ i ≤ r, at the point x ∈ IRn. Determine the matrix B := B(x)
by (1.5) and compute the gradient g := g(x) of the objective function
f : Rn → IR by (1.2). If either F ≤ ε1 or ‖g‖ ≤ ε2 then stop, otherwise
set l := 1.

Step 3: If ∆ = 0 then set ∆ := min(‖g‖3/gT Bg, 4F/‖g‖, ∆). Compute the
vector d ∈ IRn by the following subalgorithm.

Step 3.1: Set d := 0 g̃ := g and p := −g. Set ρ := ‖g‖ and i := 1.

Step 3.2: Set q := Bp. If pT q ≤ 0 then determine γ > 0 so that ‖d+γp‖ = ∆,
set d := d + γp and go to Step 4. Otherwise compute γ := ρ/pT q.
If ‖d + γp‖ ≥ ∆ then determine γ > 0 so that ‖d + γp‖ = ∆, set
d := d + γp and go to Step 4.

Step 3.3: Set d := d + γp and g := g + γq. If either i = m or ‖g‖ ≤ ω2‖g̃‖
then go to Step 3.4. Otherwise compute δ := ‖g‖/ρ, p := −g + δp,
ρ := ‖g‖, set i := i + 1 and go to Step 3.2.

Step 3.4: If ‖g‖ ≤ ω1‖g̃‖ then go to Step 4. Otherwise compute the Choleski
decomposition B +E = LDLT , where E is a small diagonal matrix
chosen so that B + E is positive definite and set s := (LDLT )−1g̃.
If ‖s‖ ≤ ∆ then set d := s and go to Step 4. Otherwise compute
τ := dT g̃/sT g̃ and set either τ := 1 (basic dog-leg strategy) or
τ := max(τ, ∆/‖s‖) (modified dog-leg strategy). Set p := τs − d
and determine γ > 0 so that ‖d + γp‖ = ∆. Set d := d + γp and go
to Step 4.

Step 4: Set x+ := x + d. Compute the values f+
i := fi(x+) of the functions

fi : IRn → IR, 1 ≤ i ≤ r, at the point x+ ∈ IRn. Compute the
value F+ := F (x+) of the objective function F : IRn → IR by (1.1).
Compute the value Q(d) by (1.4) and set ρ := (F+ − F )/Q(d). When
ρ < ρ1 then compute α := (F+ − F )/dT g̃, β := 1/(2(1 − α)) and set
∆ := β1‖d‖ if β < β1, ∆ := β‖d‖ if β1 ≤ β ≤ β2, ∆ := β2‖d‖ if β2 <
β. When ρ1 ≤ ρ ≤ ρ2 then set ∆ := min(∆, γ2‖d‖). When ρ2 < ρ
then compute ∆ := max(∆, γ1‖d‖) and set ∆ := min(∆, γ2‖d‖,∆).

Step 5: If ρ ≤ 0 and l ≥ l then stop (too many reductions). If ρ ≤ 0 and l < l
then set l := l + 1 and go to Step 3. If ρ > 0 and k ≥ k then stop
(too many iterations). If ρ > 0 and k < k then set x := x+, fi := f+

i ,
1 ≤ i ≤ r, F := F+, set k := k + 1 and go to Step 2.
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The maximum number of iterations k ∈ N serves as an alternative termination
criterion in the case when the convergence is too slow. The maximum number of
reductions l ∈ N serves as a safeguard against a possible infinite cycle. The matrix
B +E is used in Step 3.4 to remove the situation when B is singular. The technique
for its construction is described in [10]. The matrix E is chosen to keep the diagonal
elements of the matrix D no less than ω1.

The global convergence of Algorithm 2.1 is an immediate consequence of Theorem
2.1. Since the CG steps satisfy the conditions (A) – (D) from Section 1 and since
Q(di + γ(τdn − di)) ≤ Q(di) for 0 < γ < 1, we have fulfilled the conditions (1.10) –
(1.11). The conditions (1.12) – (1.16) are automatically satisfied for all our algor-
ithms (see Step 4 and Step 5) so that Theorem 1.1 holds.

Now we can present the results of a comparative study of three trust region
methods for dense nonlinear least squares problems. The first method, which we
call the optimum step trust region (OSTR) method uses the subproblem (1.18)
to determine the direction vector d ∈ IRn by the procedure given in [18]. The
second method is the CGTR method defined by the iterative process (2.1) and by
the rules (CG1)-(CG3). More details are given in the next section (see note after
Algorithm 3.1). The third method is the MDTR method which is represented by
Algorithm 2.1. This algoritm contains several parameters. We have used the values
β1 = 0.05, β2 = 0.75, γ1 = 2, γ2 = 106, ρ1 = 0.1, ρ2 = 0.9, ω1 = 10−18, ω2 = 10−16,
∆ = 103, ε1 = 10−16, ε2 = 10−8, k = 500, l = 20, m = 3.

All test results were obtained by means of the 30 problems given in [17]. Prob-
lems 1 – 19 had the same dimension as in [17] while problems 20 – 30 were considered
with 12 variables.

Table 1 contains a comparative study of various realizations of the MDTR method.
The basic realization uses the value τ = 1 in Step 3.4 of Algorithm 2.1 while the
modified realization has the value τ = max(dT g̃/sT g̃, ∆/‖s‖). The standard dog-
leg strategy corresponds to the choice m̄ = 1. Rows of Table 1 correspond to the
numbers of CG Steps. The results are presented in the form IT-IF-IG and TIME,
where IT is a total number of iterations, IF is a total number of objective values
evaluations, IG is a total number of objective gradients evaluations and TIME is
a total computational time (over 30 test problems). The asterisk means that 500
iterations did not suffice for problem 18.

Table 1.

m basic strategy modified strategy

1 1274-1598-1304 1302-1526-1332
0:13.29 (*) 0:13.79 (*)

2 1073-1311-1103 1075-1327-1105
0:10.82 (*) 0:10.99 (*)

3 596-773-626 576-757-606
0:06.26 0:06.04

4 622-810-652 619-815-649
0:06.65 0:06.64

5 649-840-679 650-850-680
0:06.81 0:06.92
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Table 2 contains results for three trust region algorithms (OSTR, CGTR, MDTR).
The MDTR algorithm was realized with m = 3 and with the modified strategy. Rows
of Table 2 correspond to individual problems. The results are presented in the form
IT-IF-IG where IT is the number of iterations, IF is the number of objective values
evaluations and IG is the number of objective gradients evaluations. Also, summary
results including total computational time are presented.

Table 2.

Prob. OSTR CGTR MDTR

1 12-15-13 15-20-16 15-20-16
2 30-46-31 36-51-37 36-51-37
3 33-34-34 77-88-78 28-29-29
4 13-16-14 4-5-5 5-7-6
5 6-7-7 7-8-8 7-8-8
6 11-21-12 19-52-20 19-54-20
7 11-14-12 9-11-10 10-12-11
8 5-6-6 6-7-7 4-5-5
9 1-2-2 2-3-3 2-3-3

10 125-141-126 131-138-132 130-153-131
11 39-46-40 36-46-37 31-36-32
12 12-14-13 16-19-17 16-19-17
13 10-11-11 10-11-11 10-11-11
14 69-75-70 56-64-57 38-45-39
15 17-20-18 15-18-16 15-18-16
16 29-66-30 37-73-38 37-73-38
17 21-23-22 24-27-25 18-19-19
18 32-40-33 19-20-20 25-31-26
19 13-15-14 17-20-18 12-14-13
20 7-8-8 8-9-9 10-11-11
21 12-15-13 17-21-18 15-20-16
22 10-11-11 12-14-13 10-11-11
23 20-25-21 26-30-27 21-26-22
24 28-36-29 25-29-26 25-35-26
25 10-11-11 10-11-11 10-11-11
26 9-13-10 16-26-17 8-12-9
27 6-7-7 6-7-7 4-5-5
28 7-8-8 8-9-9 7-8-8
29 2-3-3 4-5-5 3-4-4
30 5-6-6 7-8-8 5-6-6P

605-755-635 675-852-705 576-757-606

time 0:06.98 0:06.54 0:06.04

Finally, Table 3 contains similar results for problems 21 – 30 which were considered
with 40 variables. The MDTR algorithm was realized with m = 4 (it was the best
choice for 40 variables) and with the modified strategy.
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Table 3.

Prob. OSTR CGTR MDTR

21 12-15-13 24-27-25 15-20-16
22 10-11-11 15-17-16 10-11-11
23 16-22-17 28-32-29 18-27-19
24 153-162-154 138-148-139 132-141-133
25 13-14-14 13-14-14 13-14-14
26 12-18-13 17-27-18 23-34-24
27 4-5-5 6-7-7 4-5-5
28 10-11-11 34-35-35 11-12-12
29 2-3-3 4-5-5 3-4-4
30 4-5-5 9-10-10 5-6-6P

236-266-246 288-322-298 234-274-244
time 1:22.61 1:00.20 0:50.42

3. COMBINED CONJUGATE GRADIENT LANCZOS METHODS FOR SPARSE
PROBLEMS

Consider the Lanczos method applied to the quadratic function (1.4). This method
is represented by the following process

g0 = g, β0 = ‖g0‖, q0 = 0 (3.1a)

and
qi = gi−1/βi−1 (3.1b)

αi = qT
i Bqi (3.1c)

gi = Bqi − αiqi − βi−1qi−1 (3.1d)

βi = ‖gi‖ (3.1e)

for i ∈ N . If we suppose the matrix B is positive definite then the following well
known lemma holds (see [11]).

Lemma 3.1. Consider the Lanczos process (3.1) with a symmetric positive definite
matrix B. Let βk 6= 0 for some 1 ≤ k ≤ n. Then the vectors qi, 1 ≤ i ≤ k, form an
orthonormal basis in the Krylov subspace Kk(B, g0) = span{Bi−1g0, 1 ≤ i ≤ k}. If
we denote Qk = [q1, . . . , qk], then

QT
k BQk = Tk, (3.2)

where

Tk =




α1, β1, . . . , 0, 0
β1, α2, . . . , 0, 0
− − − − −
0, 0, . . . , βk−1 αk


 (3.3)

is a symmetric tridiagonal matrix.
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Consider now a simplification of the subproblem (1.18), namely

d = arg min
‖d̃(λ)‖≤∆

Q(d̃(λ)) (3.4)

where d̃(λ) ∈ Km(B, g0) for some m ≤ n. Since qi, 1 ≤ i ≤ m form an orthonormal
basis in Km(B, g0), we can write d̃(λ) = Qmy(λ) for some y(λ) ∈ IRm, so that

Q(d̃(λ)) =
1
2
yT (λ) QT

mBQmy(λ) + gT Qmy(λ)

=
1
2
yT (λ) Tmy(λ) + β0e

T
1 y(λ)

∆= Q̃(y(λ))

holds by (3.1a) and (3.2) (e1 is the first column of the unit matrix). Moreover
‖d̃(λ)‖ = ‖Qmy(λ)‖ = ‖y(λ)‖ since the matrix Qm is orthogonal. Therefore (3.4)
can be rewritten in the form d = Qmy where

y = arg min
‖y(λ)‖≤∆

Q̃(y(λ)) (3.5)

This subproblem can be solved by the standard Newton method which is represented
by the following process

λ1 = 0 (3.6a)

and
Tm + λiI = LiDiL

T
i (3.6b)

LiDiL
T
i yi + β0e1 = 0 (3.6c)

Lizi = yi (3.6d)

λi+1 = λi +
‖yi‖2

zT
i D−1

i zi

(
‖yi‖ − δ̃∆

δ̃∆

)
(3.6e)

for i ∈ N . This iterative process is finished if ‖yi‖ ≤ ∆ for some i ∈ N . Then we
set y = yi. The parameter 0 < δ̃ < 1 is usually close to 1.

The main advantage of the subproblem (3.5) is the fact that the matrix Tm is
symmetric and tridiagonal, so both the Choleski decomposition (3.6b) and solution
of the decomposed system (3.6c) consume O(m) operations only.

The simplest method which uses the subproblem (3.5) is the Lanczos conjugate
gradient trust region (LCTR) method. This method consists in choosing a fixed
(usually small) number m of Lancozs steps. After m steps of the form (3.1) we solve
the subproblem (3.5) by the Newton method (3.6) to obtain the parameter λ ≥ 0.
Finally we approximately solve the equation (B + λI) d + g = 0 by the inexact
CG method. More details are given in the following algorithm.



134 L. LUKŠAN

Algorithm 3.1 (LCTR)

Data: 0 < β1 < β2 < 1 < γ1 < γ2, 0 < ρ1 < ρ2 < 1, 0 < ω < 1, 0 < δ < 1,
0 < ∆, 0 < λ, 0 < ε1 < ε2, k ∈ N , l ∈ N , m ∈ N .

Step 1: The same as Step 1 of Algorithm 2.1.

Step 2: The same as Step 2 of Algorithm 2.1.

Step 3: If ∆ = 0 then set ∆ := min(‖g‖3/gT Bg, 4F/‖g‖, ∆). Set ω :=
min

(√
‖g‖, 1/k, ω

)
and compute the vector d ∈ IRn by the following

subalgorithm.
Step 3.1: Compute a symmetric tridiagonal matrix T of the order m using

the m steps of the Lanczos process (3.1). Set λ := 0 and i := 1.

Step 3.2: If λ ≥ λ then set λ := λ and go to Step 3.4. Otherwise compute
the Choleski decomposition T +λI = LDLT and solve the equation
LDLT y + β0e1 = 0. If either ‖y‖ ≤ ∆ or i ≥ 5 then go to Step 3.4.
Otherwise go to Step 3.3.

Step 3.3: Solve the equation Lz =y set λ :=λ+(‖y‖/zT D−1z)(‖y‖/(δ∆)−1),
set i := i+1 and go to Step 3.2.

Step 3.4: Set d := 0, p := −g, ρ := ‖g‖2, ρ0 := ρ and i = 1.

Step 3.5: Compute q := (B + λI) p. If pT q ≤ 0 then determine γ > 0 so
that ‖d + γp‖ = ∆, set d := d + γp and go to Step 4. Otherwise
compute γ := ρ/pT q. If ‖d + γp‖ ≥ ∆ then determine γ > 0 so
that ‖d + γp‖ = ∆ set d := d + γp and go to Step 4.

Step 3.6: Set d := d + γp and g := g + γq. If either i = n + 3 or ‖g‖2 ≤ ω2ρ0

then go to Step 4. Otherwise compute δ := ‖g‖/ρ, p := −g + δp,
ρ := ‖g‖2, set i := i + 1 and go to Step 3.5.

Step 4: The same as Step 4 in Algorithm 2.1

Step 5: The same as Step 5 in Algorithm 2.1

Note that if we omit Steps 3.1 – 3.3 and set λ := 0 in Step 3.5 of Algorithm 3.1 we
obtain exacly the CGTR method proposed in [22] and tested in the previous section.

Global convergence of Algorithm 3.1 follows from the fact that the direction vector
d is an inexact CG solution of the equation (B+λI) d+g = 0. Since λ ≤ λ (see Step
3.2), the matrix B + λI is bounded from above whenever assumptions of Theorem
1.1 hold. Using the matrix B + λI instead of B in the theory proposed in [20] we
get the required result.

The main advantage of the LCTR method is the fact that it does not use aditional
vectors. On the other hand, it uses additional matrix-vector multiplications in the
Lanczos part of the algorithm. This disadvantage can be removed using the relation
between the conjugate gradient and the Lanczos method. This relation is based on
the fact that both the set {gi−1, 1 ≤ i ≤ k} given by (2.1) and the set {qi, 1 ≤ i ≤ k}
given by (3.1) form ortogonal bases in the Krylov subspace Kk(B, g0). Therefore the
vectors gi−1, 1 ≤ i ≤ k, have to be collinear with the vectors qi, 1 ≤ i ≤ k. A more
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detailed analysis, which is proposed for instance in [11], gives the formulas

αi =
1
γi

+
δi−1

γi−1
(3.7a)

βi =
√

δi

γi
(3.7b)

for 1 ≤ i ≤ l, where l is the index from Lemma 2.1. Moreover

qi = (−1)i−1gi−1/‖gi−1‖ (3.8)

for 1 ≤ i ≤ l.
The formulas (3.7) and (3.8) allow us to construct another combined method

which we call the conjugate gradient Lanczos trust region (CLTR) method. This
method consists in choosing a fixed (usually small) number m of CG-steps. After m
steps of the form (2.1), which are followed by the construction of the matrix T and
by the computation of the vectors qi, 1 ≤ i ≤ m using (3.7) – (3.8), we proceed as
follows. If dm < ∆ then we continue in CG steps to fullfill the condition ‖gk‖ ≤ ω‖g‖.
If dm ≥ ∆ then we solve the subproblem (3.5) and set d = Qy. More details are
given in the following algorithm.

Algorithm 3.2 (CLTR)

Data: 0 < β1 < β2 < 1 < γ1 < γ2, 0 < ρ1 < ρ2 < 1, 0 < ω < 1, 0 < δ < 1,
0 < ∆, 0 < ε1 < ε2, k ∈ N , l ∈ N , m ∈ N .

Step 1: The same as Step 1 of Algorithm 2.1.
Step 2: The same as Step 1 of Algorithm 2.1.
Step 3: If ∆ = 0 then set ∆ := min

(‖g‖3/gT Bg, 4F/‖g‖, ∆
)
. Set ω :=

min
(√

‖g‖, 1/k, ω
)

and compute the vector d ∈ IRn by the following
subalgorithm.

Step 3.1: Set d := 0, p := −g, ρ := ‖g‖2, ρ0 := ρ and i = 1. Compute the
first Lanczos vector by (3.8).

Step 3.2: Compute q := Bp. If pT q ≤ 0 then determine γ > 0 so that
‖d+γp‖ = ∆, set d := d+γp and go to Step 4. Otherwise compute
γ := ρ/pT q. If ‖d + γp‖ ≥ ∆ and i > m then determine γ > 0 so
that ‖d + γp‖ = ∆, set d := d + γp and go to Step 4.

Step 3.3: Set d := d+γp and g := g+γq. If ‖d+γp‖ ≥ ∆ and either i = m or
‖g‖2 ≤ ω2ρ0 then compute the corresponding column of the matrix
T by (3.7) and go to Step 3.5. If ‖d+γp‖ < ∆ and either i = n+3
or ‖g‖ ≤ ω2ρ0 then go to Step 4.

Step 3.4: Set δ := ‖g‖/ρ. If i < m then compute the corresponding column
of the matrix T by (3.7) and the corresponding Lanczos vector by
(3.8). Set p := −g+δp, ρ := ‖g‖2. Set i := i+1 and go to Step 3.2.

Step 3.5: Set λ := 0 and i := 1.



136 L. LUKŠAN

Step 3.6: Compute the Choleski decomposition T + λI = LDLT and solve
the equation LDLT y + β0e1 = 0. If either ‖y‖ ≤ ∆ or i = 5 then
go to Step 3.8. Otherwise go to Step 3.7.

Step 3.7: Solve the equation Lz =y, set λ :=λ+(‖y‖/zT D−1z)(‖y‖/(δ∆)−1),
set i := i+1 and go to Step 3.6.

Step 3.8: Set d := Qy where Q is the matrix whose columns are the Lancozs
vectors.

Step 4: The same as Step 4 in Algorithm 2.1.

Step 5: The same as Step 5 in Algorithm 2.1.

Global convergence of Algorithm 3.2 follows from properties of the CG steps
(conditions (A) – (D) from Section 1) and from properties of the subproblem (3.4).
If we terminate computations before the subproblem (3.4) is solved, then we use
the same direction vector as in the CGTR method which satisfies all necessary
conditions. In the opposite case, if the subproblem (3.4) is solved, then (1.11) holds
since Q(d) cannot be greater than the value obtained in the first CG step.

The main advantage of the CLTR method is the fact that it does not use ad-
ditional matrix-vector products. On the other hand, it uses additional n-dimensional
(Lanczos) vectors.

Now we can present the results of a comparative study of three trust region
methods for sparse nonlinear least squares problems. The first method is the CGTR
method (Algorithm 3.1 without Steps 3.1 – 3.3 and with λ = 0 in Step 3.5) the LCTR
method (Algorithm 3.1) and the CLTR method (Algorithm 3.2). We have used the
values β1 = 0.05, β2 = 0.75, γ1 = 2, γ2 = 106, ρ1 = 0.1, ρ2 = 0.9, ω = 0.4, δ = 0.9,
∆ = 103, λ = 106, ε1 = 10−16, ε2 = 10−8, k = 500, l = 20, m = 5, in all algorithms.
All test problems were obtained by means of the 10 problems given in [14] which
had 100 variables.

1. Chained Rosenbrock function.
2. Chained Wood function.
3. Chained Powell singular function.
4. Chained Cragg and Levy function.
5. Generalized Broyden tridiagonal function.
6. Generalized Broyden banded function.
7. Extended Freudenstein and Roth function.
8. Wright and Holt zero residual problem.
9. Toint quadratic merging problem.

10. Chained exponential system.

Table 4 contains results for three trust region algorithms (CGTR, LCTR, CLTR)
in the case where the gradients are given analytically. Rows of Table 4 correspond
to individual problems. The results are presented in the same form as in Table 2.
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Table 4.

Prob. CGTR LCTR CLTR
1 122-125-123 125-131-126 124-130-125
2 145-175-146 70-78-71 142-170-143
3 19-20-20 19-20-20 19-20-20
4 151-172-152 71-100-72 79-101-80
5 11-12-12 10-11-11 11-12-12
6 11-12-12 11-12-12 11-12-12
7 42-80-43 44-81-45 40-73-41
8 17-18-18 19-20-20 17-18-18
9 56-82-57 56-82-57 56-82-57
10 29-69-30 30-61-31 29-64-30∑

603-765-613 455-596-465 528-682-538
Time 1:05.20 1:03.80 1:00.80

Table 5 contains similar results, but now for the case where the gradients are
computed numerically (numbers of objective gradients evaluations are zero). This
case is more favourable for matrix vector products so that the efficiency of the LCTR
and the CLTR methods are more clear.

Table 5.

Prob. CGTR LCTR CLTR
1 122-309 125-320 155-418
2 148-427 71-199 141-408
3 19-60 19-60 19-60
4 204-561 66-204 61-195
5 11-47 10-43 11-47
6 11-94 11-94 11-94
7 42-169 39-155 38-149
8 18-57 19-60 18-57
9 57-310 53-290 53-290
10 26-125 29-133 27-129∑

658-2159 442-1558 534-1846
Time 1:40.95 1:22.82 1:28.32

(Received January 31, 1995.)
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