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ALTERNATIVE POLYNOMIAL EQUATION APPROACH
TO LQ DISCRETE–TIME FEEDBACK CONTROL

Václav Soukup

The usual solution of the single-input, single-output, LQ discrete-time feedback control
through the polynomial equations is modified. The way starts with a general solution of
the “implied” closed-loop equation the free polynomial of which is then optimized.

At the same time the conditions are derived under which the implied equation minimum
solution represents the LQ optimal one.The conclusions are obtained to be more general if
compared with the former results.

1. INTRODUCTION

The polynomial and polynomial matrix equation approach to LQ and LQG con-
trol problems is well-known. Fundamental results for general, multi-input, multi-
output, discrete-time systems can be found in [4]. Many other contributions have
been written in recent years to extend the problem solution for various types of the
control structures and acting signals or reduce it under special assumptions, e. g.,
[1, 2, 3, 5, 6, 7].

Although validity of the results presented below can be generalized, the simplest
feedback structure of a single-input, single-output, deterministic control is considered
according to Figure 1.
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Fig. 1.

The output Y of a controlled process P should track a referenceWr, being affected
simultaneously by a possible load disturbance V (referred to the output) and current
nonzero conditions Y0 at the control start. C, E and U denote a controller, error and
control signal, respectively. All the signals are assumed here to be described in the
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discrete-time fashions and P denotes the discrete-time model of a continuous-time
process including the zero-order hold.

The relations
E = W − PU and U = CE (1)

are obvious, where
W = Wr − V − Y0 (2)

is a (generalized) reference as the single input.

Hereafter, polynomials and sequences in d (one step delay in the time domain or
the inverse Z-transform complex variable in the complex frequency domain) as well
as the usual symbols are used. Namely, deg a, a+, a−, a∗ = a(d−1), a∼ = ddegaa∗
concerning a polynomial a, (a, b), b|a and b ∼ a for two polynomials, F∗(d) = F (d−1)
and 〈F 〉 = φ0 for a sequence F = · · ·+φ−1d

−1+φ0+φ1d+ · · · . Moreover the only ac

to emphasize a causal polynomial and the factorization a = a+a0a= are introduced,
where all zeros di of a+(d), a0(d) and a=(d) have the property |di| > 1, |di| = 1 and
|di| < 1, respectively.

The paper is organized into several parts. The standard way to solve the LQ
discrete-time feedback control generally via the coupled polynomial equations is
described briefly in Section 2. Then Section 3 deals with the other, alternative
approach of the solution which starts with the “implied” equation. The second,
related problem is treated in Section 4. The conditions are found under which the
optimal LQ solution coincides with the minimum solution of the implied equation.
The derived conclusions are more general if compared with the results reached by
the other authors in [1] and [2].

2. USUAL SOLUTION OF LQ DISCRETE–TIME FEEDBACK CONTROL

Let us consider the control structure shown in Figure 1, where

P =
b

a
; a, b coprime, a = ac, b = dβbc, β > 0, (3)

W = Wr − V − Y0 =
f

h
; h, f coprime, h = hc, (4)

and the optimal controller C described by

C =
m

n
; n−, m− coprime, (5)

is sought such that the performance index

ϑ = ψ〈EE∗〉+ φ〈UU∗〉 (6)

reaches its minimum; ψ > 0 and φ > 0 are the chosen weighting constants.
Using the description (3) and (4) a controlled process P as well as an input gener-

ator W are supposed to be minimal realizations of their input-output behaviour. In
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this case the LQ control problem is generally solved by the minimum deg z solution
m, n, z, deg z < ρ, of the coupled equations

dρs∗m+ ahaz = dρb∗ψp (7)

and
dρs∗n− bhaz = dρa∗φp (8)

where

ρ = max (deg a, deg b), ha =
h

(a, h)
and ah =

a

(a, h)
, (9)

s = s+ follows from ss∗ = ψbb∗ + φaa∗, (10)

and

p = p+p0 from pp∗ = ahah∗ff∗. (11)

The problem becomes solvable if and only if ha = h+
a and p = p+ (p0 = a0

h f
0 ∼ 1)

and the optimal controller (5) is unique. The resulting error and corresponding
control sequences are

E =
ahfn

hasp
and U =

ahfm

hasp
. (12)

The polynomial c determining the closed-loop finite poles follows from the simple
arrangement of equations (7) and (8) into so-called “implied” equation

c = an + bm = sp. (13)

Usually the single equation (7) instead of the couple (7) with (8) may be solved for
minimum deg z, deg z < ρ, to obtain the optimal m, [3]. Such a simplified solution
holds whenever deg (dρs∗, aha) = deg (dρs∗, a−) = 0. The remaining polynomial n
follows from (13).

Notice that other current descriptions ([1, 2, 3, 4]) uses

P =
B

A
and W =

F

A
(14)

where the couples A, B and A, F are not necessarily coprime but (A,B, F ) ∼ 1.
(Capital letters stand for polynomials.)

Comparing (14) with (3) and (4) yields

A = aha = hah, B = bha and F = fah. (15)



202 V. SOUKUP

3. ALTERNATIVE SOLUTION OF LQ DISCRETE–TIME FEEDBACK CON-
TROL

The other possible way to solve the LQ discrete-time, feedback control problem is
presented in the following claim.

Claim 1. LQ discrete-time feedback control problem given by the relations (3)
to (6) and (9) to (11) is solved by

m = mp + at and n = np − bt (16)

where mp, np is any particular solution of the implied equation (13) and t belongs
to the minimum deg z solution z, t, deg z < ρ, of the polynomial equation

dρs∗t+ haz = r, (17)
where introducing

q = ψbnp∗ − φamp∗ (18)

yields r = dρq∗/s being always a polynomial.
The problem is solvable if and only if ha = h+

a and p = p+ and the solution is
unique.

P r o o f . Suppose that polynomials m, n standing in (16) form just the optimal
controller (5), i. e., they solve equations (7) and (8) with minimum deg z, deg z < ρ.

Substituting (16) into (7) and (8) we obtain

dρs∗mp + a(dρs∗t+ haz) = dρb∗ψp (19)

and
dρs∗np − b(dρs∗t+ haz) = dρa∗φp. (20)

If (19) multiplied by np and (20) by mp are mutually subtracted we have

(anp + bmp)(dρs∗t+ haz) = pdρ(ψb∗np − φa∗mp) or sr = dρq∗ (21)

when (17), (18) and the relation anp + bmp = sp have been used. Hence (17) has
to be solved for minimum deg z, deg z < ρ. Seeing (12) ha = h+

a and p = p+ are
found to be necessary as well as sufficient conditions of the problem solvability. In
this case (17) is always solvable and the solution in unique. 2

4. OPTIMAL LQ FEEDBACK CONTROL SOLUTION VIA THE IMPLIED
EQUATION ONLY

Using and analyzing the previous relations the sufficient conditions can be found
under which the special particular solution of the single implied equation (13) is just
the LQ optimal one. The following claim gives the resulting conclusions.

Claim 2. LQ discrete-time feedback control problem defined by relations (3) to
(6) and (9) to (11) is solved uniquely by the minimum degm solution m, n, degm <
deg a, of the equation (13), if simultaneously

degha = 0 (22)
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and
deg a+ β > deg p . (23)

P r o o f . Let us assume that mp, np in (16) is the minimum degm solution of
(13) which should coincide with the optimal LQ solution m, n. Then t = 0 in (16)
as well as (17) such that haz = r. Generally (but not necessarily always) ha does
not divide r and therefore condition (22) or ha = 1 must be supposed to ensure the
polynomial fashion of z; then z = r.

Since optimal polynomial z with deg z < ρ is unique, the desired identity z = r
follows simply from the degree relation

deg z = deg r < ρ . (24)

Thus the conditions have to be found under which (24) is true.

Several preliminary relations are emphasized at first.

1. deg (dρs∗) = deg (dρa∗) = ρ and deg (dρb∗) = ρ− β. (25)

2. The following cases of the process model properties may be distinguished:

i) deg a > deg bc; then deg s = deg a (26)

ii) deg a = deg bc; then either deg s = deg a (27)
or deg s < deg a (28)

iii) deg a < deg bc; then deg s = deg bc. (29)

3. The degrees of minimum degm solution mp, np of (13) are as follows:

degmp < deg a (30)

and either
degnp < deg b (31)

if
deg a+ deg b > deg s+ deg p (32)

or
degnp < deg s+ deg p− deg a+ 1 (33)

if
deg a+ deg b ≤ deg s+ deg p . (34)

Usual (generic) degrees are the upper limits in (30) and (31) or (33), i. e., degmp =
deg a− 1 and degnp = deg b− 1 or degnp = deg s+deg p−deg a.

Seeing (18) and (21) and applying (25) we can write

deg r = deg (dρq∗)− deg s ≤ max (ρ− β + degnp, ρ+ degmp)
−deg s = ρ− deg s+ max (degnp − β, degmp). (35)

Provided (32) is valid the relation (35) obtains the form

deg r < ρ− deg s+ max (deg bc, deg a).
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Hence obviously (24) is fulfilled if (26) or (27) or (29) is true. In the case (28) we
express

abdρq∗ = dρb∗ψbanp − dρa∗φabmp

= dρb∗ψbanp − dρs∗sbmp + dρb∗ψbbmp

= dρb∗ψbsp− dρs∗sbmp = sb(dρb∗ψp− dρs∗mp).

Then
adρq∗ = s(dρb∗ψp− dρs∗mp)

and

deg r = deg (dρb∗ψp− dρs∗mp)− deg a
≤ max (ρ− β + deg p, ρ+ deg a− 1)− deg a
= ρ+ deg p− β − deg a,−1).

Hence the condition (23) must be valid to ensure (24). Since this condition is
always satisfied in the previous cases too, it is sufficient for the whole case (32).

If (34) is true then (35) has the form

deg r < ρ− deg s+ max (deg s+ deg p− deg a + 1− β, deg a)
= ρ+ max (deg p− deg a+ 1− β, deg a− deg s) .

Hence deg r < ρ if (26) or (27) is valid and (23) is satisfied at the same time.
Investigating the remaining cases (28) and (29) we find that (23) would be true

again. But the contradictory relation deg a+ β ≤ deg p follows from (34). Moreover
deg a− deg s > 0 breaks (23) too in the case (28). Therefore (23) can never be
reached provided (28) or (29) along with (34) are valid.

Thus conditions (22) and (23) are verified to be the sufficient conditions for LQ
optimality of the minimum degm solution of the implied equation (13). 2

The condition (23)

– is always true if (26) or (27) or (29) along with (32) hold

– can be true if either (28) with (32) or (26) or (27) with (34) hold

– is never true if either (28) or (29) along with (34) are valid.

5. CONCLUSIONS

The derived sufficient conditions (22) and (23) may be compared with the former
results presented by the other authors.

The first investigation of LQ optimality of the implied equation minimum solution
was given for matrix equations of multivariable systems in [1]. Based on this work
the SISO case results have been formulated in [2] or [3]. The respective conditions,
although considered there in the stochastic framework,may be expressed for the
deterministic approach in the form using starting description (14) as
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i) A and B coprime; (36)

ii) F stable;

iii) W = F/A proper (with respect to d). (37)

If our assumptions and denotations are used these conditions obtain the form

i) degha = 0; (38)

ii) stability of F = ahf is always secured since F is replaced by p according to
(11);

iii) deg a ≥ deg p or deg a+ 1 > deg p. (39)

Comparing these relations with the results of Claim 2 one can see the difference
in condition (37) or (39) and (23). They only coincide if β = 1, i. e., for processes
and systems without deadtime longer than the sampling time. For β > 1, when a
process having deadtime longer than a sampling time is controlled, properness of W
is not necessary but (23). Therefore (23) represents the more general condition if
compared with (37).

6. EXAMPLE

Let us solve the LQ control problem for ψ = 1 and φ = 0.75, if

P =
b

a
=
d2(1− 0.5d)

1− 2d
, W =

f

h
=

1− 0.1d− 0.2d2

1− 2d
.

At first we determine ha = 1, ah = 0, p = f+ = f = 1− 0.1d− 0.2d2,
s = −2 + d, ρ = 3, deg a = 1, degha = 0, deg s = 1, deg p = 2 and β = 2.

AlthoughW is not proper the conditions of Claim 2 are satisfied and the minimum
degm solution of the implied equation

(1− 2d)n+ d2(1− 0.5d)m = (−2 + d) (1− 0.1d− 0.2d2)

is
m = −7.2 and n = −2− 2.8d+ 1.9d2

which is just the optimal one.
Writing a general solution

m = −7.2 + (1− 2d) t and n = −2− 2.8d+ 1.9d2 − d2(1− 0.5d) t

we can determine

q = 7.3− 14.55d− 0.6d2 + d3 and r = −0.5 + 0.05d+ 7.3d2.

The equation (17)

d2(1− 2d) t+ z = −0.5 + 0.05d+ 7.3d2
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is solved for minimum deg z by t = 0, z = r, deg z = deg r < ρ.
Solving the problem by the usual couple (7) and (8)

d2(1− 2d)m+ (1− 2d) z = (−0.5 + d) (1− 0.1d− 0.2d2)

and
d2(1− 2d)n− d2(1− 0.5d) z = 0.75d2(−2 + d) (1− 0.1d− 0.2d2)

yields the same results.

(Received December 5, 1994.)

REFE REN CES
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