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Meromorphic Observer-Based Pole Assignment in Time De-
lay Systems
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Abstract: The paper deals with a novel method of control system design which
applies meromorphic transfer functions as models for retarded linear time delay
systems. After introducing an auxiliary state model a finite-spectrum observer
is designed to close a stabilizing state feedback. The observer finite spectrum
is the key to implement a state feedback stabilization scheme and to apply
the affine parametrization in controller design. On the basis of the so-called
RQ-meromorphic functions an algebraic solution to the problem of time-delay
system stabilization and control is presented that practically provides a finite
spectrum assignment of the control loop.
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