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ON SOME SUFFICIENT OPTIMALITY CONDITIONS
IN MULTIOBJECTIVE DIFFERENTIABLE
PROGRAMMING

Vasile Preda

Some results on sufficient optimality conditions in multiobjective differentiable programming
are estabilished under generalized F -convexity assumptions. Various levels of convexity on the
component of the functions involved are imposed, and the equality constraints are not necessarily
linear. In the nonlinear case scalarization of the objective function is used.

1. INTRODUCTION

Optimal solutions of multiobjective programming problems were studied by several
authors (cf., e. g. [4 – 7], [9 – 14]). Following Marusciac [7], Singh [11] established
Frith John type optimality criteria in the differentiable case. Necessary conditions
are based on the idea of convergence of a vector at point with respect to a set (cf.
[5], [7]). Singh [11] invoked a weaker constraint qualification than Marusciac [7] (see
Takayama [14] for a basic treatment of multiobjective programming along the lines
of classical nonlinear programming, and Stadler [13] for a survey of multiobjective
optimization.)

In [7], Marusciac stated two sufficiency criteria (cf. [7], Theorems 3.2, 3.3) for mul-
tiobjective differentiable programming involving inequality and equality constraints
with various levels of convexity on the component of the function involved, and the
linear equality constraints. Singh [11] removed the last restriction and established a
new sufficienty criterion (cf. [11], Theorem 3.4) using a scalarization of the objective
function. In his paper Tucker’s theorem of the alternative (cf. [15]), rather than
Motzkin’s theorem applied in Marusciac [7], was invoked.

In this note we use a type of generalized convexity (cf. [3], [8]) to obtain a gen-
eralization of sufficient optimality conditions for multiobjective differentiable pro-
gramming given by Lin [5], Marusciac [7] and Singh [11].

In Hanson and Mond [3], and in Mond [8] generalized convexity was defined using
sublinear functionals satisfying certain convexity type conditions. It was shown in
[3] and [8] that Wolfe’s duality holds under assumption that a sublinear functional
exists such that the Lagrangian satisfied some generalized convexity conditions.

2. SOME PRELIMINARIES

For convenience, we first recall the following notations. Let x = (x1, . . . , xn) , y =
(y1, . . . , yn) be vectors in the Euclidean space IRn. By x ≤ y, we mean xi ≤ yi for
all i; by x < y, we mean xi ≤ yi for all i and xj < yj for at least one j (1 ≤ j ≤ n);
and by x ¿ y, we mean xi < yi for all i.
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Consider the following vector minimization problem:

minimize f(x) = (f1(x), . . . , fm(x))
subject to

g(x) ≤ 0, h(x) = 0, x ∈ X
. (VP)

where X ⊆ IRn, f : X −→ IRm, g : X −→ IRp, h : X −→ IRq, f = (f1, . . . , fm) , g =
(g1, . . . , gp) and h = (h1, . . . , hq).

We will denote by P the set P = {1, 2, . . . , p} and by X0 the set X0 = {x ∈ X | g(x) ≤ 0 ,
h(x) = 0}.

Definition 2.1. We say that x0 ∈ X0 is a Pareto minimal point of problem (VP)
if and only if there exists no x ∈ X0 such that f(x) < f(x0).

Definition 2.2. We say that x0 ∈ X0 is a weak Pareto minimal point of (VP) if
and only if there exists no x ∈ X0 such that f(x) ¿ f(x0).

Definition 2.3. A functional F : X0 ×X0 × IRn −→ IR is sublinear (in θ) if for
any x, x0 ∈ X0,

F
(
x, x0; θ1 + θ2

) ≤ F
(
x, x0; θ1

)
+ F

(
x, x0; θ2

)
, for all θ1, θ2;

and
F

(
x, x0; α θ

)
= α F

(
x, x0; θ

)
for any α ∈ IR, α À 0, and θ.

Now we give some examples of sublinear functionals. In the first three exam-
ples we consider some sublinear functionals which are independent of the vectorial
problem (VP).

Example 1. F (x, x0; y) = (x−x0)Ty, where the symbol T denotes the transpose.

Example 2. Let η : X0 ×X0 −→ IRn. Define F (x, x0; y) = yTη(x, x0).

Example 3. F (x, x0; y) = ‖x− x0‖ · ‖y‖.

The next sublinear functionals are dependent by (VP).

Example 4. F (x, x0; y) = ‖y‖ · ‖f(x)− f(x0)‖.

Example 5. F (x, x0; y) =
n∑

i=1

|yi| ·
∣∣∣∣∣

m∑
i=1

(
fi(x)− fi(x0)

)
+

p∑
j=1

gj(x)

∣∣∣∣∣.

For some discussion about sublinear functionals see Hanson and Mond [3] and Mond
[8].

Let us consider a sublinear functional F and the function ϕ : X0 −→ IR. We
suppose that ϕ is a differentiable function at x0, an interior point of X.

Definition 2.4. The function ϕ is said to be F -convex in x0 if for all x ∈ X0 we
have:

ϕ(x) ≥ ϕ(x0) + F
(
x, x0; ∇ϕ(x0)

)
.

Definition 2.5. The function ϕ is F -quasiconvex in x0 if for all x ∈ X0 such that
ϕ(x) ≤ ϕ(x0) we have: F

(
x, x0; ∇ϕ(x0)

) ≤ 0.
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Definition 2.6. The function ϕ is F -pseudoconvex in x0 if for all x ∈ X0 such
that F

(
x, x0; ∇ϕ(x0)

) ≥ 0 it results ϕ(x) ≥ ϕ(x0).

From the above definitions it is clear that an F -convex function is both F -
quasiconvex and F -pseudoconvex.

Remark 1. In the case of Example 1, Definition 2.4 – 2.6 boil down definition of
convexity, quasiconvexity and pseudoconvexity, respectively.

Remark 2. In the case of Example 2, Definitions 2.4– 2.6 reduce to definitions
of invexity, quasiinvexity and pseudoinvexity (Hanson [2], Ben-Israel and Mond [1])
respectively.

3. SUFFICIENCY CONDITIONS

Let F be a sublinear functional as in Definition 2.3 and x0 ∈ X0 an interior point
of X, J0 =

{
j | gj(x0) = 0

}
, g0 = (gj)j∈J0 , s = card J0. We have:

Theorem 3.1. Suppose that

(i) f, g0, h are differentiable at x0;

(ii) fi, 1 ≤ i ≤ m, gj , j ∈ J0, hk, 1 ≤ k ≤ q, are F -convex at x0;

(iii) there exists u0 À 0, u0 ∈ IRm, v0 ∈ IRs
+, w0 ∈ IRq

+ such that for any x ∈ X0,

F


x, x0;

m∑

i=1

u0
i ∇ fi(x0) +

∑

j∈J0

v0
j ∇ gj(x0) +

q∑

k=1

w0
k∇hk(x0)


 ≥ 0.

Then, x0 is a (weak) Pareto minimal point of Problem (VP).

P r o o f . Suppose that x0 is not a (weak) Pareto minimal of Problem (VP). Then,
there exists an x̄ ∈ X0 such that

f(x̄)− f(x0) < 0 (1)
g(x̄) ≤ 0 (2)
h(x̄) = 0. (3)

Then, in view of (1) – (3) and x0 ∈ X0, we have

gj(x̄)− gj(x0) ≤ 0, j ∈ J0; (4)
h(x̄)− h(x0) = 0. (5)

Now, by hypothesis (ii) and (1), (4), (5), we have

F
(
x̄, x0; ∇ fi(x0)

) ≤ 0, for any i, (6)

and there exists at least one index i such that we have a strict inequality;

F
(
x̄, x0; ∇ gj(x0)

) ≤ 0, for any j ∈ J0, (7)

F
(
x̄, x0; ∇hk(x0)

) ≤ 0, for any k. (8)

Then, for any u À 0, u ∈ IRm, v ≥ 0, v ∈ IRs, w ≥ 0, w ∈ IRq, from (6) – (8) and
the sublinearity of F , we obtain

F


x̄, x0;

m∑

i=1

ui∇ fi(x0) +
∑

j∈J0

vj ∇ gj(x0) +
q∑

k=1

wk∇hk(x0)


 ¿ 0

that contradicts (iii). Hence, x0 is a Pareto (weak) minimal point of Problem (VP),
and the proof is complete. 2
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Theorem 3.2. Assume that

(i) f, g0, h are differentiable at x0,

(ii) there exist u0 À 0, u0 ∈ IRm, v0 ∈ IRs
+, w0 ∈ IRq such that

a) ω(x) :=
m∑

i=1

u0
i fi(x) +

∑
j∈J0

v0
j gj(x) +

q∑
k=1

w0
k hk(x) is F -pseudoconvex at

x0;

b) F

(
x, x0;

m∑
i=1

u0
i ∇ fi(x0) +

∑
j∈J0

v0
j ∇ gj(x0) +

q∑
k=1

w0
k∇hk(x0)

)
≥ 0

for any x ∈ X0.

Then, x0 is a Pareto (weak) minimal point of Problem (VP).

P r o o f . Assume that x0 is not a Pareto (weak) minimal point of Problem (VP).
Then, there exists x̄ ∈ X0 such that

f(x̄)− f(x0) < 0. (9)

But, x0, x̄ ∈ X0, and then

g0(x̄)− g0(x0) ≤ 0, (10)
h(x̄)− h(x0) = 0. (11)

Because u0 À 0, v0 ≥ 0, from (9) – (11) we obtain: ω(x̄) ¿ ω(x0) where ω is defined
by (ii-a). Since ω is F -pseudoconvex at x0, we have

F


x̄, x0;

m∑

i=1

u0
i ∇ fi(x0) +

∑

j∈J0

v0
j ∇ gj(x0) +

q∑

k=1

w0
k∇hk(x0)


 ¿ 0. (12)

But condition (12) violates hypothesis (ii-b). Thus, this contradiction leads to the
conclusion that x0 is a Pareto minimal point for Problem (VP). 2

Theorem 3.3. We assume that

(i) f, g, h are differentiable at x0,

(ii) there exist u0 À 0, u0 ∈ IRm, v0 ∈ IRp
+, w0 ∈ IRq, such that

a)
m∑

i=1

u0
i fi is F -pseudoconvex at x0;

b)
∑

j∈J:0

v0
j gj is F -quasiconvex at x0;

c)
q∑

k=1

w0
k hk is F -quasiconvex at x0;

d) F

(
x, x0;

m∑
i=1

u0
i ∇ fi(x0) +

∑
j∈J0

v0
j ∇ gj(x0) +

q∑
k=1

w0
k∇hk(x0)

)
≥ 0

for all x ∈ X0;

e)
p∑

j=1

v0
j gj(x0) = 0.
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Then, x0 is a Pareto minimal point of problem (VP).

P r o o f . Because,
p∑

j=1

v0
j gj(x0) = 0, g(x0) ≤ 0, v0 ≥ 0,

it follows that: v0
j gj(x0) = 0, for all j. Hence,

∑
j∈J0

v0
j gj(x0) = 0. Also, for any

x ∈ X0,
∑

j∈J0

v0
j gj(x) ≤ 0. Therefore

∑

j∈J0

v0
j gj(x) ≤ 0 =

∑

j∈J0

v0
j gj(x0). (13)

By (13) and hypothesis (ii-b), we have

F


x, x0;

∑

j∈J0

v0
j ∇ gj(x0)


 ≤ 0, for any x ∈ X0. (14)

From v0
j gj(x0) = 0, for all j ∈ J0, it results that v0

j = 0 for all j ∈ P \ J0. Hence,
∑

j /∈J0

v0
j ∇ gj(x0) = 0. (15)

From (15) and the fact F (x, x0; 0) = 0 for all x ∈ X0,

F


x, x0;

∑

j /∈J0

v0
j ∇ gj(x0)


 = 0. (16)

Combining (14) and (16) with sublinearity of F we obtain

F


x, x0;

p∑

j=1

v0
j ∇ gj(x0)


 ≤ 0, for all x ∈ X0. (17)

Similarly, since

w0
k hk(x0) = 0 = w0

k hk(x), x ∈ X0, 1 ≤ k ≤ q,

it follows
q∑

k=1

w0
k hk(x0) =

q∑

k=1

w0
k hk(x), x ∈ X0. (18)

By (18) and hypothesis (ii-c), we have

F

(
x, x0;

q∑

k=1

w0
k∇hk(x0)

)
≤ 0, for any x ∈ X0. (19)

Because F is a sublinear functional, from (17) and (19) we have

F


x, x0;

p∑

j=1

v0
j ∇ gj(x0) +

q∑

k=1

w0
k∇hk(x0)


 ≤ 0, x ∈ X0. (20)

By using (20), (ii-d) and sublinearity of F we obtain

F

(
x, x0;

m∑

i=1

u0
i ∇ fi(x0)

)
≥ 0, x ∈ X0.
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Therefore, by hypothesis (ii-a), it follows

m∑

i=1

u0
i fi(x) ≥

m∑

i=1

u0
i fi(x0), for all x ∈ X0. (21)

Hence, by (21) and Theorem 6.1 in [2], x0 is a Pareto minimal point of Problem
(VP). The proof is now complete. 2

Now we consider some remarks.

Remark 3. If F
(
x, x0; y

)
= (x − x0)Ty, then we obtain Theorems 3.3, 3.4 from

Singh [11]. Assumption (ii-b) by Theorem 3.2 reduces to assumption (ii) (a) from
Singh [11, Thm. 3.3 ] and assumption (ii-d) by Theorem 3.3 reduces to (ii) (d) from
Singh [11, Thm. 3.4 ]. When assumption (2.6) (a Kuhn–Tucker condition) from
Marusiac [7, Thms 3.1, 3.2 ] holds, then these assumptions are valid. Also, in this
case our generalized F -convexity conditions become the convexity, quasiconvexity
or pseudoconvexity conditions.

Remark 4. Generally, scalarization means the replacement of a vector optimiza-
tion problem by a suitable scalar optimization problem which is an optimization
problem with a real valued objective functional. Since the scalar optimization the-
ory is widely developed, scalarization turns out to be of great importance for the
vector optimization theory. Solutions of multiobjective optimization problems can
be characterized and computed as solutions of appropriate scalar optimization prob-
lems. For scalarization in multiobjective programming see, for example Jahn [4],
Luc [6], Singh [10] and Pascoletti and Serafini [9]. Our scalarization given in the last
two theorems is on the lines of Singh [11] and Lin [5].
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