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TESTS OF SOME HYPOTHESES ON
CHARACTERISTIC ROOTS
OF COVARIANCE MATRICES NOT
REQUIRING NORMALITY ASSUMPTIONS1

Frantǐsek Rubĺık

Test statistics for testing some hypotheses on characteristic roots of covariance matrices
are presented, their asymptotic distribution is derived and a confidence interval for the
proportional sum of the characteristic roots is constructed. The resulting procedures are
robust against violation of the normality assumptions in the sense that they asymptoti-
cally possess chosen significance level provided that the population characteristic roots are
distinct and the covariance matrices of certain quadratic functions of the random vectors
are regular. The null hypotheses considered include hypotheses on proportional sums of
characteristic roots, hypotheses on equality of characteristic roots of covariance matrices
of the underlying populations or on equality of their sums.

1. INTRODUCTION

Asymptotic properties of distributions of the characteristic roots of the sample co-
variance matrices have been used for constructing tests of hypotheses on the eigen-
values of the sampled populations provided that the underlying distributions are
gaussian. However, if the normality assumption does not hold, then the asymptotic
results on distribution of such test statistics derived under the normality assumption
may no longer be valid. This follows from the results of [12] where the asymptotic
distribution of the characteristic roots was obtained without the normality assump-
tion provided that the population characteristic roots are distinct, and from the
results of [1]. This situation, i. e., the case when the underlying population need not
be gaussian, is from a general point of view handled in [11], where assertions on the
asymptotic distribution of the characteristic roots of random matrices converging to
a matrix with multiple characteristic roots are derived. Recent papers dealing with
matters related to principal components and characteristic roots focus their atten-
tion on testing hypotheses concerning the characteristic vectors. Testing hypotheses
on the linear subspace spanned by the eigenvectors corresponding to the d largest

1The research was supported by the grant VEGA 1/7295/20 from the Scientific Grant Agency
of the Slovak Republic.
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characteristic roots of the correlation matrix is in the gaussian setting studied in [10],
testing of the multipopulation hypothesis of the equality of the subspaces spanned
by the first d principal components of several gaussian populations is the topic of [9].
In this paper a similar multipopulation hypothesis of the equality of the d largest
characteristic roots is treated, but without the normality assumption. In a way,
this paper continues in the approach set up in [1], [2] and [12], because the crucial
assumption of the following text is the distinctness of the eigenvalues. However,
while the papers [1], [2] and [12] concentrate their effort on investigating the effect
of departures from normality on asymptotic distribution of statistics involving char-
acteristic roots, the aim of this paper is to propose new confidence intervals for the
ratio (3) and new test statistics for testing some hypotheses on characteristic roots,
which yield rules asymptotically robust against violation of the normality assump-
tions. The main feature of the presented procedures is that they are asymptotically
valid provided that the covariance matrices of certain quadratic functions of the
random vectors are regular and the characteristic roots of the population covariance
matrices are distinct.

Throughout the paper for any symmetric k×k matrix S the symbol λj(S) denotes
its jth characteristic root, i. e.,

λ1(S) ≥ . . . ≥ λk(S) , (1)

and the whole set of the characteristic roots will be denoted by the vector

λ(S) = (λ1(S), . . . , λk(S)) ′ . (2)

The second section contains assertions concerning the asymptotic distribution of
sample characteristic roots and statistical inference on characteristic roots of one
statistical population, the topic of the third section is testing of some hypotheses
involving characteristic roots of several populations, the proofs are given in the
fourth section of the paper.

2. ONE–SAMPLE STATISTICAL INFERENCE ON PROPORTIONAL SUM
OF CHARACTERISTIC ROOTS

Let λ1 ≥ . . . ≥ λk denote the characteristic roots of the covariance matrix of a ran-
dom vector under consideration and 1 ≤ d < k be a chosen integer. In the principal
component analysis the ratio (which is in this paper termed as the proportional sum
of characteristic roots)

Rd(λ) =
λ1 + . . . + λd

λ1 + . . . + λk
(3)

serves as an indicator, whether the first d principal components yield a sufficient
amount of information on the random vector. If this is the case, then the exper-
imenter may simplify the process of evaluation by neglecting the remaining k − d
principal components and considering only the first d ones. In this section asymp-
totically valid procedures on Rd(λ) are proposed. Theorem 2.2 forms a basis for
asymptotically valid tests on the magnitude of the proportional sum, the asymp-
totically valid confidence intervals for this quantity are presented in Theorem 2.3.
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The performance of the confidence intervals is illustrated by the simulation results
in Table 1, the section is concluded with Theorem 2.4 and the Conjecture, concern-
ing the validity of the involved assumptions and the existence of the proposed test
statistics.

Throughout this section Σ denotes a symmetric k × k matrix and its spectral
decomposition

Σ = P diag(λ1, . . . , λk)P ′ ,

where λ1 ≥ . . . ≥ λk and P is an orthogonal matrix with the columns

pj =




p1j

...
pkj


 , j = 1, . . . , k , k > 1 . (4)

In the assertions of this paper the following assumption will be used.

(A I) The characteristic roots of the matrix Σ are distinct, i. e.,

λ1 > . . . > λk .

The asymptotic distribution of sample characteristic roots will be derived by means
of the following assertion.

Theorem 2.1. Let {Sn}∞n=1 be symmetric k × k random matrices such that the
weak convergence of distributions

L
[
n1/2(Sn − Σ)

]
−→ L∗ (5)

holds and the matrix Σ fulfills (A I). If U ⊂ Rk is an open set containing λ(Σ) =
(λ1, . . . , λk) ′ and g : U → Rz is a mapping whose coordinates possess all partial
derivatives of the first order and this derivatives are continuous on U , then

g (λ(Sn))− g (λ(Σ)) = D




p1
′(Sn − Σ)p1

...
pk

′(Sn − Σ)pk


 + oP (n−1/2) , (6)

where

D =




∂g1(λ)
∂λ1

, . . . , ∂g1(λ)
∂λk

...
...

∂gz(λ)
∂λ1

, . . . , ∂gz(λ)
∂λk


 .

Especially,

λ(Sn) =




p1
′Snp1

...
pk

′Snpk


 + oP (n−1/2) . (7)
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Throughout the rest of the section suppose that {Xm}∞m=1 are independent iden-
tically distributed random vectors. The sampled distribution of the random vector
X1 will be subjected to the following conditions.

(A II) X1 has all fourth order moment finite.

(A III) The assumption (A II) holds and the k × k symmetric matrix V with the
elements

Vrt = E
(
(pr

′(X1 − µ))2(pt
′(X1 − µ))2

)− λrλt , r, t = 1, . . . , k (8)

is regular. In this notation µ = E(X1), λ = λ(Σ), Σ is the covariance matrix
of X1 and p1, . . . , pk are the vectors (4).

Finally, let X = 1
n

∑n
m=1 Xm and

Sn =
1
n

n∑
m=1

(Xm −X)(Xm −X) ′ (9)

denote the arithmetic mean and the sample covariance matrix, respectively. In this
setting Theorem 2.1 implies validity of the following assertion.

Corollary 2.1. If X1 fulfills (A II) and its covariance matrix Σ fulfills (A I), then
(cf. (9), (8) )

L
[
n1/2(λ(Sn)− λ(Σ) )

]
−→ Nk(0, V ) (10)

as n →∞.

We remark that another form of the weak convergence result (10) has already
been established in Theorem on p. 640 of [12] and in Theorem 5 on p. 290 of [2].
A result, similar to (10), can also be found in Theorem 3.1 of [8], which is proved
under the assumption that the components of the vector Σ−1/2X are independent.

The formula (6) can be useful in the case when the asymptotic covariance of
g(λ(Sn)) has to be found. In this paper mainly the relations (10) and (8) will be
employed.

In the rest of this section in accordance with (1) and (2) the symbols

λ̂j = λj(Sn) , λ̂ = (λ̂1, . . . , λ̂k) ′ (11)

will denote the characteristic roots of the sample covariance matrix (9).

Lemma 2.1. Let p̂j = p̂j(X1, . . . , Xn) be random vectors such that

Snp̂j = λ̂j p̂j , ‖p̂j‖ = 1 , j = 1, . . . , k .

Further, let V̂ denote the k × k symmetric random matrix with the elements

V̂rt =
1
n

n∑
m=1

(
p̂r
′(Xm −X)

)2 (
p̂t
′(Xm −X)

)2 − λ̂rλ̂t . (12)
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(I) If (A II) holds then
V̂ = V + oP (1) , (13)

where V is the k × k symmetric matrix defined by (8).
(II) If both (A II) and (A III) hold, then V̂ is regular with probability tending to

1 as n →∞.

The consistency (13) will be used in proving the assertions of the following theo-
rems.

Theorem 2.2. Suppose that the random vector X1 and its covariance matrix Σ
fulfill the assumptions (A I), (A II), (A III) and assume that d < k is a positive
integer. Fix a number γ ∈ (0, 1) and consider the test statistic

Tn = Tn(λ̂) =
√

n
a ′λ̂√
a ′V̂ a

, (14)

where a = (1− γ, . . . , 1− γ,− γ, . . . ,− γ) ′ is the vector from Rk, which has on the
first d positions the number 1 − γ, on the remaining k − d positions − γ, and V̂ is
the k × k symmetric matrix defined by (12).

(I) The statistic Tn is well-defined with probability tending to 1 as n →∞.
(II) For the proportional sum (3) and for every real number t

lim
n→∞

P (Tn > t ) =





1 Rd(λ) > γ ,
1− Φ(t) Rd(λ) = γ ,

0 Rd(λ) < γ ,
(15)

and

lim
n→∞

P (Tn < t ) =





0 Rd(λ) > γ ,
Φ(t) Rd(λ) = γ ,

1 Rd(λ) < γ ,
(16)

where Φ denotes the distribution function of the standard normal N(0, 1) distribu-
tion.

The purpose of (15) is to provide a basis for construction of the test of the
hypothesis

H0 : Rd(λ) ≤ γ.

Indeed, if the critical region consists of the sample points for which Tn > u1−α,
where Tn is the statistic (14) and u1−α denotes the (1−α)th quantile of the N(0, 1)
distribution, then in the setting used in the previous theorem owing to (15) this test
is a consistent test of the hypothesis Rd(λ) ≤ γ at the asymptotic significance level
α. Construction of such a test of the hypothesis Rd(λ) ≥ γ by means of (16) can be
obviously carried out in an analogous way.

The confidence intervals constructed in the next theorem will be defined by means
of the statistic

σ̂2 = δ̂ ′V̂ δ̂ , (17)
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where δ̂ = (δ̂1, . . . , δ̂k) ′ is the random vector with the coordinates

δ̂j =





λ̂d+1 + . . . + λ̂k

(λ̂1 + . . . + λ̂k)2
j = 1, . . . , d ,

− (λ̂1 + . . . + λ̂d)

(λ̂1 + . . . + λ̂k)2
j = d + 1, . . . , k ,

(18)

and V̂ is the k × k symmetric matrix defined by (12).

Theorem 2.3. If the random vector X1 and its covariance matrix Σ fulfill the
assumptions (A I), (A II), (A III) and d < k is a positive integer, then (cf. (17), (3)
and (11))

L
[

n1/2 Rd(λ̂)−Rd(λ)
σ̂

]
−→ N(0, 1) (19)

as n →∞. Hence if Φ denotes distribution function of the N(0, 1) distribution and
Φ(uβ) = β, then in this setting

I1 =
〈

Rd(λ̂)− σ̂
u1−α/2√

n
, Rd(λ̂) + σ̂

u1−α/2√
n

〉
, (20)

I2 =
〈

Rd(λ̂)− σ̂
u1−α√

n
, +∞

)
, I3 =

(
−∞ , Rd(λ̂) + σ̂

u1−α√
n

〉
,

are confidence intervals for the proportional sum (3) with asymptotic confidence
coefficient 1− α, i. e., for j = 1 , 2 , 3

lim
n→∞

P (Rd(λ) ∈ Ij ) = 1− α .

The intervals (20) are competitors of the classical confidence intervals for Rd(λ),
which are based on normality assumptions. If the sampling is made from the normal
distribution with distinct eigenvalues, then according to pp. 233 – 234 of [4] the
interval

J1 =
〈

Rd(λ̂)− τ̂
u1−α/2√

n− 1
, Rd(λ̂) + τ̂

u1−α/2√
n− 1

〉
, (21)

where

τ̂2 =
2 tr(S∗ 2

n )
(tr(S∗n))2

(Rd(λ̂)2 − 2Rd(λ̂)â + â) ,

S∗n =
1

n− 1

n∑
m=1

(Xm −X)(Xm −X) ′ , â =
λ̂2

1 + . . . + λ̂2
d

λ̂2
1 + . . . + λ̂2

k

,

is a confidence interval for Rd(λ) with the asymptotic confidence coefficient 1 − α

(here λ̂1 ≥ . . . ≥ λ̂k are the characteristic roots of S∗n).
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The effect of the asymptotics in the case of (20) and (21) is illustrated by the
following table. The presented simulation estimates of the characteristics of the con-
fidence intervals are obtained from N = 5000 trials for each considered distribution
and sample size. The sampled distribution is 8-dimensional with zero mean and the
covariance matrix

Σ = diag( 9, 16, 25, 36, 64, 81, 100, 169 ) , (22)

and in the confidence intervals the values

d = 3, Rd(λ) = 0.7, α = 0.05

are considered. In accordance with (22), in the following table the symbol D1 denotes
the N8(0,Σ) distribution and D2 stands for the distribution with the covariance
matrix (22), where all coordinates are independent and exponentially distributed.
All the simulations considered in this paper were carried out by means of MATLAB,
version 4.2c.1.

Table 1. Limits of the intervals (20) and (21)

and their probabilities of covering Rd(λ).

n 15 30 50 100 150 300 500
average lower limit 0.725 0.688 0.678 0.675 0.675 0.679 0.683

D1 I1 average upper limit 0.896 0.833 0.798 0.764 0.750 0.733 0.725
probability of covering Rd 0.31 0.61 0.76 0.86 0.89 0.92 0.94
average lower limit 0.714 0.683 0.675 0.674 0.675 0.679 0.683

D1 J1 average upper limit 0.907 0.837 0.800 0.765 0.750 0.733 0.725
probability of covering Rd 0.39 0.66 0.79 0.87 0.90 0.93 0.94

n 15 30 50 100 150 300 500
average lower limit 0.728 0.676 0.661 0.653 0.654 0.660 0.667

D2 I1 average upper limit 0.931 0.875 0.839 0.799 0.781 0.757 0.744
probability of covering Rd 0.34 0.65 0.77 0.88 0.91 0.94 0.93
average lower limit 0.740 0.702 0.690 0.681 0.680 0.682 0.685

D2 J1 average upper limit 0.919 0.849 0.810 0.771 0.755 0.735 0.726
probability of covering Rd 0.29 0.49 0.58 0.66 0.68 0.71 0.69

Since the distribution of Rd(λ̂) depends both on the dimensionality, type and on
characteristic roots of the sampled distribution, it is difficult to characterize the pre-
cision of these confidence intervals in general. Nevertheless, the values given in Table
1 suggest that under the normality assumption the probability of covering Rd(λ) is
for the interval (20) similar as for (21), and if the shape of the sampled distribu-
tion is strikingly different from the gaussian case, then (20) may yield probability of
covering Rd(λ) better than the interval (21).

The matrix V̂ , defined by means of (12), may depend on the choice of charac-
teristic vectors and when this choice would be made absolutely arbitrarily, then the
matrix mapping V̂ could be not measurable. For this reason the measurability of
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p̂j is postulated in the previous theorems. Since the set of k-dimensional orthogonal
matrices is compact and the characteristic roots depend on the symmetric k × k
matrix in a continuous way, such a measurable choice of the characteristic vectors
is possible (and can be proved, e. g., by means of the Lemma 2.1, p. 54 of [7]). This
assumption of measurability should not be perceived as some kind of restriction on
practical computation of the matrix V̂ . Indeed, if the characteristic roots of Sn

are distinct, then the characteristic vectors corresponding to the rth characteristic
root form a one-dimensional linear space, the only possible choice of the rth char-
acteristic vector is either p̂r or the −p̂r and the value of (12) remains unchanged
regardless of this choice. Thus under the validity of (A I) – (A III), imposed in the
previous theorems, the values of presented statistics are not influenced by the choice
of the possible values of the characteristic vectors with probability tending to 1 as
the sample size tends to infinity.

The asymptotic assertions of Theorems 2.2 and 2.3 are derived under the assump-
tion that the matrix V is regular. The following theorem shows that this is true in
a wide range of cases.

Theorem 2.4. Suppose that X1 possesses a density with respect to the Lebesgue
measure on (Rk,Bk). If X1 fulfills (A II), then the matrix V with the elements (8)
is well-defined and is regular.

The regularity of the matrix with the elements (12) plays an essential role in the
construction of test statistics, proposed in this paper. The usual property of the
almost sure existence of the concerned test statistics for the sample sizes exceeding
k will hold, if the following statement is true.

Conjecture. Suppose that X1, . . . , Xn are independent identically distributed ran-
dom vectors and X1 possesses a density with respect to the Lebesgue measure on
(Rk,Bk). If n > k, then the matrix V̂ with the elements (12) is positive definite
with probability 1.

Even though simulations support validity of the previous statement, no exact
proof of this assertion is available.

3. MULTISAMPLE TESTS OF SOME HOMOGENEITY HYPOTHESES
ON CHARACTERISTIC ROOTS

The variability of a random vector is usually expressed by its covariance matrix and
equal variability (stochastic stability) of several populations is verified by testing
equality of their covariance matrices. Since one of the goals of the principal compo-
nent analysis is reducing the dimensionality of the examined data, from this point
of view the equal variability of q statistical populations can be perceived also as the
equality of their d largest characteristic roots, or as the equality of their sums, or as
the equality of the proportional sums (3). The test statistics for these hypotheses
are proposed in Theorem 3.1, 3.2 and 3.3, respectively, where also their asymptotic
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distribution is derived and Fj denotes the distribution function of the chi-square
distribution with j degrees of freedom. The asymptotic behaviour of the proposed
test for testing the equality of the d largest characteristic roots is illustrated by the
simulation results, presented in Table 2.

Let q > 1 be a fixed integer and for i = 1, . . . , q

X
(i)
1 , . . . , X(i)

ni

denote random sample of size ni from a distribution with the k×k covariance matrix
Σi. Assume throughout this section that the random samples (X(1)

1 , . . . , X
(1)
n1 ), . . .

. . . , (X(q)
1 , . . . , X

(q)
nq ) are independent, and for every i = 1, . . . , q the random vector

X
(i)
1 and its covariance matrix fulfill the assumptions (A I), (A II) and (A III), defined

in the previous section. Thus for i = 1, . . . , q the covariance matrix Σi has distinct
characteristic roots

λ
(i)
1 > . . . > λ

(i)
k ,

the vector X
(i)
1 has all fourth order moments finite and the k × k matrix V (i) with

the elements

V
(i)
rt = E

(
(p(i)

r
′(X(i)

1 − µi))2(p
(i)
t
′(X(i)

1 − µi))2
)
− λ(i)

r λ
(i)
t (23)

is regular. Here µi = E(X(i)
1 ) and p

(i)
r is the rth column of the orthogonal matrix

Pi, fulfilling the equality Σi = Pi diag(λ(i)
1 , . . . , λ

(i)
k )Pi

′.
The sample characteristics used in this section are those from the previous section,

except for the notation identifying the sampled distribution. The arithmetic mean
Xi and the sample covariance matrix S

(i)
ni of the ith sample are defined by means of

the formulas

Xi =
1
ni

ni∑
m=1

X(i)
m , S(i)

ni
=

1
ni

ni∑
m=1

(X(i)
m −Xi)(X(i)

m −Xi) ′ ,

and the characteristic roots of the matrix S
(i)
ni will be denoted by the symbols

λ̂(i) = (λ̂(i)
1 , . . . , λ̂

(i)
k ) ′ , λ̂

(i)
1 ≥ . . . ≥ λ̂

(i)
k .

To construct test statistics for testing hypotheses mentioned in the introduction
of this section, suppose that p̂

(i)
j = p̂

(i)
j (X(i)

1 , . . . , X
(i)
ni ) are random vectors such that

S(i)
ni

p̂
(i)
j = λ̂

(i)
j p̂

(i)
j , ‖p̂(i)

j ‖ = 1 , i = 1, . . . , q , j = 1, . . . , k ,

d is a fixed integer such that 1 ≤ d ≤ k and V̂
(i)
d is the d × d symmetric matrix

consisting of the elements

V̂
(i)
r t =

1
ni

ni∑
m=1

( p̂(i)
r
′(X(i)

m −Xi) )2( p̂
(i)
t
′(X(i)

m −Xi) )2 − λ̂(i)
r λ̂

(i)
t , r , t = 1, . . . , d .

First we pay attention to the hypothesis

λ
(1)
j = . . . = λ

(q)
j , 1 ≤ j ≤ d , (24)

that the d largest characteristic roots of the sampled populations are equal.
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Theorem 3.1. In the case that the matrices V̂
(1)
d , . . . , V̂

(q)
d are regular, put

W̃ =
q∑

i=1

ni(V̂
(i)
d )−1 , λ̃ = W̃−1

q∑

i=1

ni(V̂
(i)
d )−1λ∗i , λ∗i = (λ̂(i)

1 , . . . , λ̂
(i)
d ) ′

and

Tn1,...,nq
=

q∑

i=1

ni(λ∗i − λ̃) ′(V̂ (i)
d )−1(λ∗i − λ̃) . (25)

The statistics (25) are well-defined with probability tending to 1 as n1 →∞, . . .
. . . , nq →∞, and for every t > 0

lim
n1→∞,...,nq→∞

P ( Tn1,...,nq
> t ) =

{
1− F(q−1)d(t) if (24) holds,

1 otherwise.
(26)

The next theorem is aimed at constructing a test of the hypothesis

d∑

j=1

λ
(1)
j = . . . =

d∑

j=1

λ
(q)
j , (27)

that the sums of the d largest characteristic roots of the sampled populations are
equal.

Theorem 3.2. Put

σ̂2
i =

d∑
r=1

d∑
t=1

V̂
(i)
rt , σ̃2 =

q∑

i=1

ni

σ̂2
i

.

κ̂i =
d∑

j=1

λ̂
(i)
j , κ̃ =

1
σ̃2

q∑

i=1

ni

σ̂2
i

κ̂i

and
Tn1,...,nq =

q∑

i=1

ni
(κ̂i − κ̃)2

σ̂2
i

. (28)

The statistics (28) are well-defined with probability tending to 1 as n1 →∞, . . .
. . . , nq →∞, and for every t > 0

lim
n1→∞,...,nq→∞

P (Tn1,...,nq > t ) =

{
1− Fq−1(t) if (27) holds,

otherwise.
(29)

In accordance with (3) the proportional sum of characteristic roots of the ith
population is defined by the formula

R
(i)
d =

∑d
z=1 λ

(i)
z∑k

w=1 λ
(i)
w

. (30)
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Thus the equality
R

(1)
d = . . . = R

(q)
d (31)

means that the proportional sums of the characteristic roots of the sampled popula-
tions are equal; the last theorem of this section is aimed at testing this hypothesis.
Here the sample counterparts

R̂
(i)
d =

∑d
z=1 λ̂

(i)
z∑k

w=1 λ̂
(i)
w

(32)

of (30) will be used. The estimator of the asymptotic variance appearing in the
weak-convergence result (19), when the sampling is made from the ith population,
is now

σ̂2
i = δ̂i

′ V̂ (i)
k δ̂i , (33)

where δ̂i = ( δ̂i(1), . . . , δ̂i(k) ) ′ and

δ̂i(j) =





∑k
z=d+1 λ̂

(i)
z(∑k

w=1 λ̂
(i)
w

)2 j = 1, . . . , d ,

−

(∑d
z=1 λ̂

(i)
z

)

(∑k
w=1 λ̂

(i)
w

)2 j = d + 1, . . . , k ,

(34)

i. e., the index i serves for identifying the sampled population.

Theorem 3.3. Suppose that the positive integer d < k and define the test statistic
by the formula (cf. (32), (33) )

Tn1,...,nq =
q∑

i=1

ni
(R̂(i)

d − R̃d)2

σ̂2
i

, (35)

where
R̃d =

1
σ̃2

q∑

i=1

ni

σ̂2
i

R̂
(i)
d , σ̃2 =

q∑

i=1

ni

σ̂2
i

.

The statistics (35) are well-defined with probability tending to 1 as n1 →∞, . . . , nq →
∞, and for every t > 0

lim
n1→∞,...,nq→∞

P (Tn1,...,nq > t ) =

{
1− Fq−1(t) if (31) holds,

1 otherwise.

Similarly as in the case of (15) and (16), the purpose of the previous theorems is
to provide a basis for construction of asymptotic tests of the hypotheses (24), (27)
or (31). The test rule rejects the underlying null hypothesis if the concerned test
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statistic Tn1,...,nq
exceeds the (1−α)th quantile of the chi-square distribution having

the degrees of freedom described in the particular theorem.
The possible problems with the measurability and the uniqueness of the presented

test statistics are similar to those in the one-sample case and their aspects have been
discussed in the previous section.

To illustrate the effect of the asymptotics in the case of testing the hypothesis
that the underlying distributions do not differ in their d largest characteristic roots,
consider the sampling from the distributions N8(0, Σ1), N8(0,Σ2) and N8(0, Σ3),
where

Σ1 = diag( 9, 16, 25, 36, 64, 81, 100, 169 ) ,

Σ2 = P diag( 1, 4, 2.62, 3.72, 49, 81, 100, 169 )P ′ ,

Σ3 = P diag( 1, 4, 2.62, 3.72, 49, 100, 144, 256 )P ′ ,

and

P =




0.5 0.5 0.5 0.5 0 0 0 0
0 0 0 0 −0.5 0.5 0.5 −0.5

−0.5 −0.5 0.5 0.5 0 0 0 0
0 0 0 0 0.5 0.5 0.5 0.5

−0.5 0.5 −0.5 0.5 0 0 0 0
0 0 0 0 −0.5 −0.5 0.5 0.5

−0.5 0.5 0.5 −0.5 0 0 0 0
0 0 0 0 −0.5 0.5 −0.5 0.5




is an orthogonal matrix. In the following table nj denotes the size of sample from
the N8(0, Σj) distribution, Tni,nj is the statistic (25) for testing the null hypothesis
that the sampled populations do not differ in the largest d = 3 characteristic roots
(i. e., the equality λ

(i)
s = λ

(j)
s holds for s = 1, 2, 3), and P (Tni,nj > 7.8147) denotes

the simulation estimate, based on N = 5000 trials, of the probability of rejection this
null hypothesis, corresponding to the asymptotic significance level α = 0.05 (7.8147
is the 0.95th quantile of the chi-square distribution with (q − 1)d = 1.3 = 3 degrees
freedom).

Table 2. Probability P (Tni,nj > 7.8147).

n2

n1 30 50 100 200 500

30 0.02 0.01 0.02 0.03 0.05
50 0.03 0.02 0.02 0.02 0.03

100 0.06 0.04 0.02 0.02 0.03
200 0.10 0.06 0.04 0.03 0.03
500 0.13 0.09 0.06 0.05 0.04

n3

n1 30 50 100 200 500

30 0.11 0.19 0.37 0.49 0.58
50 0.13 0.24 0.44 0.63 0.74

100 0.17 0.31 0.59 0.82 0.93
200 0.20 0.37 0.70 0.93 0.99
500 0.23 0.41 0.79 0.99 1.00
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When the sampling is made from the first and the second normal distribution,
then the null hypothesis is fulfilled, and when the samples are drawn from the first
and the third normal distribution, then the null hypothesis does not hold. Thus for
these particular distributions the upper part of the table illustrates the magnitude
of the probability of the error of the type I and the lower part the power of the test.
Similarly as in the cases considered in Table 1, it is difficult to draw generally valid
conclusions on the distribution of the test statistic (25) in the finite sample cases,
because this distribution depends on the dimensionality, type and on characteristic
roots of the sampled distribution. Nevertheless, the results from Table 2 suggest that
the more balanced sampling schemes are preferable to the less ones, because in the
unbalanced cases the increase of the sample size may not result in a corresponding
increase of the power (as it is indeed the case, when in the previous table n3 = 30 is
fixed and n1 is allowed to increase till 500).

4. PROOFS

P r o o f o f T h e o r e m 2.1. For the purpose of this proof assume that e(Σ∗) =
(Σ∗(11),Σ∗(12), . . . , Σ∗(1k), Σ∗(22), . . . , Σ∗(2k), . . . , Σ∗(kk) ) ′ ∈ Rk(k+1)/2 denotes
elements of the symmetric k×k matrix Σ∗ and λ( e(Σ∗) ) are its characteristic roots
arranged in decreasing order. According to Note 2 on p. 160 of [3] there exist a
neighbourhood N ⊂ Rk(k+1)/2 of e(Σ) and a mapping p = (p1, . . . , pk) defined on N
and taking values in the set of the orthogonal k×k matrices such that all coordinates
of λ and p possess on N continuous partial derivatives and if a symmetric matrix
Σ∗ is such that e(Σ∗) ∈ N , then for the ith characteristic root λi(e(Σ∗)) of Σ∗

∂λi(e(Σ∗))
∂Σ∗(r, w)

=

{
p∗2ri r = w ,

2p∗rip
∗
wi r < w ,

where P ∗ = (p∗st) denotes the orthogonal matrix of the eigenvectors p(e(Σ∗)) =
(p∗1, . . . , p

∗
k) of Σ∗. These partial derivatives are continuous on the set N and there-

fore under the assumptions of this theorem the use of the Taylor theorem yields the
equality

λi(Sn)− λi(Σ) =
k∑

r=1

k∑
w=r

∂λi( e(Σ∗) )
∂Σ∗(r, w)

(Sn(r, w)− Σ(r, w) ) = p∗i
′(Sn − Σ)p∗i

= pi
′(Sn − Σ)pi + oP (n−1/2) , (36)

and (7) is proved.
To prove (6) assume that D is a neighbourhood of λ(Σ) such that D ⊂ U . If

i ∈ {1, . . . , z} is fixed, gi denotes the ith component of g and λ(Sn) ∈ D, then by
means of the Taylor formula

gi(λ(Sn))− gi(λ(Σ)) =
k∑

j=1

∂gi(λ∗)
∂λ∗j

(λj(Sn)− λj(Σ)) ,
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where the vector λ∗ belongs to the segment with the endpoints λ(Sn), λ(Σ). Thus

gi(λ(Sn))− gi(λ(Σ)) =
k∑

j=1

∂gi(λ(Σ))
∂λj(Σ)

(λj(Sn)− λj(Σ)) + oP (n−1/2) , (37)

because the derivatives of gi are continuous and (5), (36) yield that λj(Sn)−λj(Σ) =
OP (n−1/2). The relations (37) and (36) together with the fact, that λ(Sn) ∈ D with
probability tending to 1 as n →∞, imply (6). 2

P r o o f o f C o r o l l a r y 2.1. Put

ηm = Xm − µ , η =
1
n

n∑

j=1

ηj , Mn =
1
n

n∑
m=1

ηmηm
′ .

It follows from the central limit theorem that η = OP (n−1/2) and therefore

Sn =
1
n

n∑
m=1

ηmηm
′ − η η ′ = Mn + oP (n−1/2) . (38)

Since the fourth order moments of η1 are finite, the components of the random matrix
η1η1

′ have finite variances, which together with E(η1η1
′) = Σ and the central limit

theorem means, that the weak convergence L(
√

n(Mn − Σ)) −→ L∗ holds, hence
(38) yields validity of the condition (5). This together with (A I) means that the
conditions of Theorem 2.1 are fulfilled and therefore (7) holds. An application of (7)
and (38) leads to the equality

√
n
[
λ(Sn)− λ(Σ)

]
=
√

n




p1
′(Mn − Σ) p1

...
pk

′(Mn − Σ) pk


 + oP (1) ,

which together with the central limit theorem implies (10). 2

P r o o f o f L em m a 2.1. Without the loss of generality assume that µ = 0.
This by the law of large numbers means that X = oP (1). But

p̂ ′r(Xm −X)(Xm −X) ′p̂r = p̂ ′rXmXm
′p̂r − 2p̂ ′rXmX ′p̂r + p̂ ′rX X ′p̂r

and therefore

(p̂ ′r(Xm −X))2(p̂ ′t(Xm −X))2 = p̂ ′rXmXm
′p̂rp̂

′
tXmXm

′p̂t + ∆m , (39)

where by means of the Cauchy-Schwarz inequality after some calculation

|∆m| ≤ 4‖Xm‖3‖X‖+ 6‖Xm‖2‖X‖2 + 4‖Xm‖ ‖X‖3 + ‖X‖4 . (40)

Thus by the relation X = oP (1) and the law of large numbers

1
n

n∑
m=1

(p̂ ′r(Xm −X))2(p̂ ′t(Xm −X))2 =
1
n

n∑
m=1

(p̂ ′rXm)2(p̂ ′tXm)2 + oP (1) . (41)
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Since the characteristic roots depend on the symmetric matrix in a continuous way,
with probability tending to 1 as n →∞ the inequalities λ̂1 > . . . > λ̂k > 0 hold, the
value of (p̂ ′rXm)2 does not depend on the choice of the eigenvector and in accordance
with Theorem 7 of [3], p.158, we may assume that the differences αr = p̂r − pr tend
to zero in probability as n →∞. Hence similarly as in (39) – (41)

1
n

n∑
m=1

(p̂ ′rXm)2(p̂ ′tXm)2 =
1
n

n∑
m=1

(p ′rXm)2(p ′tXm)2 + oP (1)

which together with (41), the law of large numbers and the continuity of character-
istic roots yields (13); the validity of (II) can be easily proved by means of (13) and
the continuity of determinant. 2

P r o o f o f T h e o r em 2.2. Since the vector a 6= 0, the statistic (14) is well-
defined on the set An of the sample points, for which the matrix V̂ is regular. This
together with the Lemma 2.1 (II) means that the assertion (I) holds.

Since

a′λ =

(
k∑

i=1

λi

)
(Rd(λ)− γ) ,

the rest of the proof follows from (10) and (13). 2

P r o o f o f T h e o r em 2.3. Obviously

∂Rd(λ)
∂λj

= δj ,

where δ is the vector defined by (18) and λ̂ is replaced with λ. Thus by the delta
method and (10)

L[
√

n(Rd(λ̂)−Rd(λ) ) ] −→ N1(0, σ2) ,

where σ2 = δ ′V δ. Hence (19) holds, because (13) and the consistency of λ̂ imply
that σ̂ = σ + oP (1). The rest of the proof is obvious. 2

P r o o f o f T h e o r em 2.4. Put

Y = ( (p1
′(X1 − µ))2, . . . , (pk

′(X1 − µ))2 ) ′ (42)

and suppose that a ∈ Rk is a non-zero vector. Obviously

a ′ V a = E[g(Y )] , g(Y ) = (a ′Y − d)2 , d = a ′E(Y ) .

Since g(Y ) is a polynomial in coordinates of the random sample X1, . . . , Xn , accord-
ing to the Lemma of [5] it is sufficient to show that g(Y ) > 0 for a suitable chosen
value of X1.

Since a is a non-zero vector, there exists an index j such that aj 6= 0. For

X1 = Kpj + µ , K = (|d|+ 1)/
√
|aj |
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one obtains that
|a ′Y | = |K2aj | > |d| .

Hence for this value of X1 the inequality g(Y ) > 0 holds. 2

P r o o f o f T h e o r e m 3.1. According to the assumptions the matrices V (i),
i = 1, . . . , q, are positive definite. Hence also the matrices V

(i)
d , consisting for r, t =

1, . . . d of the elements (23), are positive definite and therefore regular. This together
with the Lemma 2.1 means, that the matrices V̂

(i)
d , i = 1, . . . , q are regular with

probability tending to 1, as n1 →∞, . . . , nq →∞. Thus it remains to prove (26).
Let n = n1 + . . . + nq, âi = ni/n, denote the total and the relative sample size,

respectively. Since every bounded sequence of real numbers contains a convergent
subsequence, we may assume without the loss of generality that

âj −→ aj , j = 1, . . . , q . (43)

To prove the first line in (26) suppose that λ
(1)
j = . . . = λ

(q)
j for j = 1, . . . , d

and put ξi = n
1/2
i (λ∗i − λ), where λ denotes the joint value of characteristic roots

(λ(i)
1 , . . . , λ

(i)
d ) ′. Since

q∑

i=1

ni(λ∗i − λ) ′(V̂ (i)
d )−1 = (λ̃− λ) ′W̃ ,

the equality

Tn1,...,nq =
q∑

i=1

ni

(
(λ∗i − λ) + (λ− λ̃)

)
′(V̂ (i)

d )−1
(

(λ∗i − λ) + (λ− λ̃)
)

=
q∑

i=1

ξi
′(V̂ (i)

d )−1ξi −
q∑

i=1

q∑

j=1

√
ninj ξi

′(V̂ (i)
d )−1W̃−1(V̂ (j)

d )−1ξj

holds. Hence

Tn1,...,nq = ξ ′Âξ , ξ = (ξ1
′, . . . , ξq

′) ′ , Â = B̂ − Ĉ , (44)

where the block-diagonal matrix B̂ = diag( (V̂ (1)
d )−1, . . . , (V̂ (q)

d )−1) and the (i, j)th
block of the matrix Ĉ equals

â
1/2
i (V̂ (i)

d )−1
( q∑

z=1

âz(V̂
(z)
d )−1

)−1

â
1/2
j (V̂ (j)

d )−1 .

The relations (43) and (13) imply that

Â = A + oP (1) , (45)
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where A = B−C and B, C are the matrices which one obtains by replacing V̂
(i)
d , âi

in B̂ and Ĉ with their limits V
(i)
d , ai, respectively. Since L(ξ) → Nqd(0, B−1), from

(44), (45) one obtains that the first line of (26) is true if

L(x ′Ax |Nqd(0, B−1) ) = χ2
(q−1)d . (46)

The matrix CB−1 is idempotent and therefore AB−1 also has this property. But for

W =
q∑

z=1

az(V
(z)
d )−1

the equalities

tr(AB−1) = qd−tr(CB−1) = qd−
q∑

i=1

tr
(
ai(V

(i)
d )−1W−1

)
= qd−tr(WW−1) = (q−1)d

hold and therefore Theorem 9.2.1 of [6] implies the validity of (46).
To prove the second line in (26) assume that

λi = (λ(i)
1 , . . . , λ

(i)
d ) ′ , λ = W−1

q∑

i=1

ai(V
(i)
d )−1λi ,

where the matrices W , V
(i)
d are defined in the previous part of the proof. It follows

from (10) and (13) that
λ̃ = λ + oP (1) .

Since now the identity λ1 = . . . = λq does not hold, λi 6= λ for some i. For this
index

(λ∗i − λ̃) ′(V̂ (i)
d )−1(λ∗i − λ̃) −→ (λi − λ) ′(V (i)

d )−1(λi − λ) > 0

in probability. Hence

Tn1,...,nq ≥ ni(λ∗i − λ̃) ′(V̂ (i)
d )−1(λ∗i − λ̃) −→ +∞

in probability. 2

P r o o f o f T h e o r e m 3.2. Since σ̂2
i = b ′V̂ (i)

d b, where b ∈ Rd is the vec-
tor with all coordinates equal to 1, and according to the proof of the previous
theorem the matrices V̂

(1)
d , . . . , V̂

(q)
d are regular with probability tending to 1 as

n1 → ∞, . . . , nq → ∞, the statistics (28) are well-defined with probability tending
to 1 as n1 →∞, . . . , nq →∞.

If
∑d

j=1 λ
(1)
j = . . . =

∑d
j=1 λ

(q)
j = κ, then for the statistic (28) the equality (44)

holds with ξi = n
1/2
i (κ̂i − κ), B̂ = diag(σ̂−2

1 , . . . , σ̂−2
q ) and the matrix Ĉ consisting

of the elements (âiâj)1/2(σ̂iσ̂j)−2(
∑d

z=1 âzσ̂
−2
z )−1. Hence the assertion (29) can be

proved analogously as (26). 2
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P r o o f o f T h e o r e m 3.3. Suppose that R
(1)
d = . . . = R

(q)
d = Rd and put

σ2
i = δi

′V (i)δi, where δi = (δi(1), . . . , δi(k)) ′ is defined by means of the formula
(34) in which λ̂

(i)
z , λ̂

(i)
w are replaced with λ

(i)
z , λ

(i)
w . Then (13) and (10) imply that

σ̂2
i = σ2

i + oP (1) and since for ξi =
√

ni(R̂
(i)
d − Rd) according to (19) the weak

convergence of distributions

L(ξi) −→ N1(0, σ2
i )

holds, the rest of the proof can be carried out similarly as in the case of Theorems 3.1
and 3.2, and is therefore omitted. 2

(Received December 22, 1999.)
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[7] F. Rubĺık: On consistency of the MLE. Kybernetika 31 (1995), 45–64.
[8] F.H. Ruymgaart and S. Yang: Some applications of Watson’s perturbation approach

to random matrices. J. Multivariate Anal. 60 (1997), 48–60.
[9] J. R. Schott: Some tests for common principal component subspaces in several groups.

Biometrika 78 (1991), 771–777.
[10] J. R. Schott: Asymptotics of eigenprojections of correlation matrices with some appli-

cations in principal components analysis. Biometrika 84 (1997), 327–337.
[11] D. E. Tyler: The asymptotic distribution of principal component roots under local

alternatives to multiple roots. Ann. Statist. 11 (1983), 1232–1242.
[12] C.M. Waternaux: Asymptotic distribution of the sample roots for a nonnormal pop-

ulation. Biometrika 63 (1976), 639–645.
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