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Editorial Office:
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Published bi-monthly by the Institute of Information Theory and Automation of the
Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8.
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PROGNOSIS AND OPTIMIZATION OF HOMOGENEOUS
MARKOV MESSAGE HANDLING NETWORKS1

Pavel Boček, Tomáš Feglar, Martin Janžura and Igor Vajda

Message handling systems with finitely many servers are mathematically described as
homogeneous Markov networks. For hierarchic networks is found a recursive algorithm
evaluating after finitely many steps all steady state parameters. Applications to optimiza-
tion of the system design and management are discussed, as well as a program product 5P
(Program for Prognosis of Performance Parameters and Problems) based on the presented
theoretical conclusions. The theoretic achievements as well as the practical applicability of
the program are illustrated on a hypermarket network with 34 servers at different locations
of the Czech Republic.

1. INTRODUCTION AND PROBLEM STATEMENT

By message handling we understand transmission of digital messages between objects
called servers. Typical messages are data files, computer programs or electronic
mail. Typical servers are computers. A message handling network (briefly, MHN)
is a system defined by a set of servers S = {S1, . . . , Sm} where m > 1, and by two
sets of rules RG and RT . The rules RG specify how the messages are generated and
how they enter and exit the servers from S. The rules RT specify how the messages
are transmitted between the servers of S.

The rules RG can be reduced to the convention that S is extended by a virtual
server S0 representing the collection of all the network users who produce and/or
consume the transmitted messages, and to the assumption that all the users alto-
gether produce X messages per time unit (in symbols, TU), of an average size β [bit].
The number X may be random, with the expectation

EX = λ [1/TU].

The parameters β and λ are related to the average rate R [bit/TU] of information
generated by the collection of all users by the formula

βλ = R.

1Supported by the Grant Agency of the Czech Republic under Grant 102/99/1137.
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If S = {S0, S1, . . . , Sm} then the rules of transmission of messages from S0 to the
remaining servers S1, . . . , Sm, and vice versa, are contained in the set RT .

Thus the rules RT must be able to specify for all 1 ≤ j ≤ m the numbers

nj(t) ∈ Z+, Z+ = {0, 1, . . .},
of messages in the servers Sj at a time t ≥ 0. In addition, we may set n0(t) = +∞,
which means that there is an infinite number of messages in the virtual (external)
server S0. State of the MHN at a time t ≥ 0 is thus described by a vector

n(t) = (n1(t), . . . , nm(t))

from the state space Zm
+ , and the rules RT must be able to specify evolution n(t),

t ≥ 0, of the state of MHN. We assume that n(0) = (0, . . . , 0) ∈ Zm
+ and that the

states n(t) for t > 0 are random vectors with values in Zm
+ . More precisely, we assume

that n(t), t ≥ 0, is a homogeneous Markov process. A Zm
+ -valued homogeneous

Markov process is specified by a semigroup of stochastic matrices

P (s) ≡ (Pn,ñ(s))n,ñ∈Zm
+

, s ≥ 0

where
Pn,ñ(s) = Pr (n(t + s) = ñ |n(t) = n) , t ≥ 0,

and for all s, s̃ ≥ 0
P (s) P (s̃) = P (s + s̃), P (0) = I,

with I being the identity matrix.
Our rules RT are thus reduced to the parameters β, λ and to the semigroup P (s),

s ≥ 0. Under standard technical assumptions (see, e. g., Norris [10] for a detailed
treatment), the semigroup is uniquely determined by a matrix

Q = (Qn,ñ)n,ñ∈Zm
+

of intensities of transitions from the states n to ñ satisfying for every s > 0 the
equations

d
ds

P (s) = P (s)Q and
d
ds

P (s) = QP (s).

These equations together with the above considered relations imply in particular
that (

d
ds

P (s)
)

s=0

4
= lim

s→0

P (s)− P (0)
s

= Q,

i. e.
P (s) = I + s ·Q + o(s) as s → 0. (1)

Therefore if a state ñ ∈ Zm
+ differs from n ∈ Zm

+ then for every t ≥ 0

Pr (n(t + s) = ñ |n(t) = n) = s ·Qn,ñ + o(s) as s → 0,

and for every n ∈ Zm
+ and t ≥ 0

Pr (n(t + s) = n |n(t) = n) = 1 + s ·Qn,n + o(s) as s → 0.
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It follows from here that Qn,ñ ≥ 0 for n 6= ñ and

Qn,n = −
∑

ñ∈Zm
+ , ñ 6=n

Qn,ñ for every n ∈ Zm
+ . (2)

Assuming that Q is irreducible and non-explosive (see again Norris [10], section
3.5), our problem is to find, whenever it exists, a stationary (steady-state) probability
distribution

π = (πn : n ∈ Zm
+ ) (3)

on the state space Zm
+ for a given MHN under consideration. In other words, the

problem is to prove that
lim

n→∞
P (t) = Π,

where all rows of the matrix Π are identical, equal π. Indeed, then

π P (t) = π for all t ≥ 0,

i. e. then π satisfies the standard Markov stationarity condition.
We shall see that a stationary distribution π enables to evaluate very easily the

steady-state expectation of the corresponding Markov process

ν = (ν1, . . . , νm)
4
= E n =

∑

n∈Zm
+

nπn, (4)

which is sufficient for prognosis of performance of the corresponding MHN and for
prognosis of eventual problems under extremal payloads. In this sense a reasonably
fast evaluation of the distribution π can be used to evaluate various designs of MHN’s
and to choose among them the optimal one.

It follows from (1) that if there exists a row vector π = (πn : n ∈ Zm
+ ) ∈ (0, 1)Zm

+

solving for a matrix of transition intensities Q the system of equations

π Q = 0 and
∑

n∈Zm
+

πn = 1 (5)

then π is a stationary distribution of the corresponding Markov process. Thus for
all MHN’s observing the transmission rules RT under consideration we reduced the
problem of estimation of performance parameters and prognosis to the statistical
estimation of b, λ and Q and to the solution of equations (5).

Zm
+ -valued time-homogeneous Markov processes n(t) = (n1(t), . . . , nm(t)), t ≥ 0,

considered above are traditional mathematical models of queuing networks with m
servers S1, . . . , Sm where nj(t) is a random size of queue of customers in (or in
front of) the server Sj at time t ≥ 0. A systematic theory of such networks has
been presented, e. g., by Walrand [14]. A more recent treatment can be found in
van Dijk [13]; see also corresponding chapters in Walrand [14], Pattavina [12] and
Higginbottom [3]. In this paper we extend the theory presented in Walrand [14]
and van Dijk [13] to the situation where the network customers are messages and
the servicing of messages follows rules prescribed by message handling protocols.
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We also propose special statistical procedures for estimation of parameters β, λ and
Q, and for testing hypotheses about these parameters. Further, for an important
class of hierarchic networks we derive a recursive algorithm solving analytically the
equations (5). It is able to find in a reasonable time exact solutions π for quite large
MHN’s (large m). Finally, we report about our program 5P (Program for Prognosis
of Performance Parameters and Problems) evaluating on the basis of this algorithm
the solutions π and related parameters serving for prognosis of performances of
MHN’s in the steady-state, and for prognosis of eventual problems in these networks.

2. SIMPLIFICATION OF MATRIX Q

Let us consider an arbitrary MHN specified in Section 1, defined by a set of servers
S = {S0, S1, . . . , Sm}, positive parameters β, λ, and a matrix of intensities of tran-
sitions Q with zero sums of rows and nonnegative non-diagonal elements.

By definition, the matrix Q is infinitely dimensional and thus at the first sight
practically intractable. In this section we discuss conditions which essentially sim-
plify its structure.

Consider special values of the state vector n, namely

ei = (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ Zm
+ for 1 ≤ i ≤ m

where 1 is at the place i, and

e0 = (0, 0, . . . , 0) ∈ Zm
+ .

We have seen in Section 1 that the elements Qn,ñ of the matrix Q characterize
probabilities of transitions n 7→ ñ of the network states n(t) = n in time intervals
(t, t+s) of a very short duration s. Consider the following three events in an interval
of a very short duration s.

E1: No message is transmitted between the servers of S (this implies ñ = n);

E2: One message is transmitted between the servers of S (this implies ñ = n−ej+ek

for some 0 ≤ j, k ≤ m, j + k 6= 0);

E3: More than one message is transmitted between the servers of S.

We assume that the transmission of messages from servers of S is autonomous (inde-
pendent) in the sense that the probability of E3 is negligible (like o(s2)) with respect
to the probability of E1 ∪ E2. As easy to see, E1 ∪ E2 implies ñ = n − ej + ek for
some 0 ≤ j, k ≤ m. Therefore

Qn,ñ = 0 unless ñ = n− ej + ek for some 0 ≤ j, k ≤ m.

This means that the matrix Q is sparse in the sense that majority of its elements is
zero. The potentially nonzero elements Qn,ñ are situated on or near the diagonal.

Moreover, the potentially nonzero elements of the matrix Q are assumed to be of
the form

Qn,n−ej+ek
= λj,k

φn−ej

φn
for all 0 ≤ j, k ≤ m, j 6= k, (6)
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where φn > 0 for n ∈ Zm
+ characterizes a potential of the network in the state n to

transmit messages (we can put formally φn = 0 for n /∈ Zm
+ ). The matrix

Λ = (λj,k)m
j,k=0 with λj,j = 0 for 0 ≤ j ≤ m (7)

and the sequence φn, n ∈ Zm
+ , characterize uniquely the whole matrix Q. Indeed,

by (2), the diagonal elements of Q are given by the formula

Qn,n = −
m∑

j,k=0

λj,k

φn−ej

φn
(8)

and the elements Qn,ñ appearing neither in (6) nor in (8) are zero.
In the most common case, where the potential of the network to transmit messages

is not influenced by the state n, we put Φn = 1 for all n ∈ Zm
+ . In this case the

matrix Q is determined by m(m + 1) nonnegative parameters – the nondiagonal
elements of Λ.

Let us point out that the number m(m+1) of unknown parameters of the matrix
Λ can be reduced by 1. Indeed, the overall intensity λ of transmission of messages
from the server S0 to the set of servers {S1, . . . , Sm} must satisfy for every n ∈ Zm

+

the relation

λ =
m∑

k=1

Qn,n+ek
.

Therefore, by (6),

λ =
m∑

k=1

λ0,k (9)

where λ is assumed to be given.
Note that the intensities Qn,ñ as well as λj,k are assumed to be measured in the

same units as the intensity λ, i. e. in [1/TU].

3. SOLUTION FOR GENERAL MHN’S

In this section we consider an arbitrary MHN specified in Sections 1 and 2, defined by
a set of servers S = {S0, S1, . . . , Sm}, positive parameters β, λ, an (m+1)× (m+1)
matrix Λ considered in (7), and a sequence of potentials φn considered in (6). The
problem is to solve the system of equations (5) for the matrix Q with the nonzero
elements given by (6) and (8).

It is easy to see that, under our assumptions, (5) is equivalent to

m∑

j,k=0

(
πn−ej+ek

Qn−ej+ek,n − πn Qn,n−ej+ek

)
= 0 for all n ∈ Zm

+ (10)

and ∑

n∈Zm
+

πn = 1. (11)
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The infinite system of equations (10) can be considerably simplified by seeking for
a solution π = (πn : n ∈ Zm

+ ) in the form

πn = c φn

m∏

`=1

wn`

` for n = (n1, . . . , nm) ∈ Zm
+ , (12)

where w = (w1, . . . , wm) is a vector of positive constants not depending on n and
c > 0 is a normalization constant which is to be specified from equation (11). After
substituting (12) in (10) and defining w0 = 1, we obtain

m∑

j,k=0

(
φn−ej+ek

m∏

`=1

wn`

`

wk

wj
λk,j

φn−ej

φn−ej+ek

− c φn

m∏

`=1

wn`

` λj,k

φn−ej

φn

)
= 0

and, after an obvious simplification,

m∏

`=1

wn`

`

m∑

j=0

φn−ej wj

(
m∑

k=0

(wkλk,j − λj,kwj)

)
= 0.

From here we obtain the following result.

Theorem 1. If the system of equations

m∑

k=0

(wkλk,j − λj,kwj) = 0, 1 ≤ j ≤ m with w0 = 1 (13)

has a positive solution w1, . . . , wm then (12) with c satisfying (11) is a stationary
distribution of the MHN under consideration. If φn = 1 for all n ∈ Zm

+ then c
satisfying (11) exists if and only if w` < 1 for all 1 ≤ ` ≤ m. In this case the
stationary distribution is

πn =
m∏

`=1

(1− w`)wn`

` for n = (n1, . . . , nm) ∈ Zm
+ . (14)

P r o o f . The only assertion which remains to be proved is that the reduced system
of equations for 1 ≤ j ≤ m figuring in (13) is equivalent to the full system for
0 ≤ j ≤ m which is required in the last equality preceding Theorem 1. This follows
from the fact that the rank of the full system of m+1 equations is at most m because
the sum of these equations is zero,

m∑

j=0

m∑

k=0

(wkλk,j − λj,kwj) = 0.

Therefore any one of these equations can be deleted. 2
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Remark 1. In fact, we have proved that the distribution π satisfies the stronger
partial balance equations

m∑

k=0

(
πn−ej+ek

Qn−ej+ek,n − πn Qn,n−ej+ek

)
= 0

for every j = 0, . . . , m and all n ∈ Zm
+ .

Remark 2. The solution (w1, . . . , wm) of (13) is unique providing the matrix Q
given by (6) is irreducible (cf. Theorem 3.2 in Whittle [15]).

Theorem 1 is not an entirely new result. As already mentioned in Section 1, it
can be obtained by adapting similar results of Walrand [14] or van Dijk [13] to the
networks specified in Sections 1 and 2.

4. SOLUTION FOR HIERARCHIC MHN’S

Let us consider the same MHN as in the previous section with φn = 1 for all n ∈ Zm
+ .

Such an MHN is defined by a set of servers S = {S0, S1, . . . , Sm}, positive parameters
β, λ, and an (m + 1) × (m + 1) matrix Λ = (λj,k) with λj,k ≥ 0 and zeros on the
diagonal. Obviously,

λj,k + λk,j = 0

is equivalent to the assumption that there is no message transmission link between
the servers Sj and Sk. The matrix Λ thus defines a symmetric binary relation of
“being connected by a link” on S: Two servers Sj and Sk are connected by a link if
at least one of the intensities λj,k and λk,j is positive. This relation is not reflexive
(λjj = 0 for all 0 ≤ j ≤ m) and it needs not to be transitive. It defines a graph
G(S̃) on every nonvoid subset of servers S̃ ⊂ S.

We shall suppose that the graph G(S0, S1, . . . , Sm) is connected (which implies the
irreducibility of the matrix Q) and its subgraph G(S1, . . . , Sm) is a tree. This means
that the virtual server representing the collection of network users, is connected to
the servers S1, . . . , Sm and that there is a hierarchy between the servers S1, . . . , Sm.
To describe this hierarchy, define subsets of servers

SK = {Sk : k ∈ K} for K ⊂ {1, . . . , m} 4= K0.

For every k ∈ K0 let us denote by C(k) ⊂ K0 \ {k} the set of servers connected to
k.

(1) We fix a unique root server Sr ∈ {S1, . . . , Sm}. This is a first order server,
superordinated to all those from SK0\K1 6= ∅ where K1 = {r}.

(2) For every i = 2, 3, . . . we set

Ki =
⋃

j∈Ki−1

P (j)
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where P (j) = C(j) \ Ki−2 for every j ∈ Ki−1. Thus SP (j) ⊂ SKi
is the set

of servers subordinated to the server Sj ∈ SKi−1, and Sn(j) ∈ SKi−2 , where
{n(j)} = C(j) ∩Ki−2, is the unique server superordinated to Sj ∈ SKi−1 .
The set of the ith order servers disjointly decomposes as follows

SKi
= SBi

+ SLi

where SLi with Li = {j ∈ Ki; P (j) = ∅} is the (possibly empty) set of leaf
servers of the second order and its relative complement SB2 is the set of branch
servers of the ith order.

(3) After finitely many steps, say `, we obtain SK`
= SB`

+ SL`
where

SB`
= ∅ and L` 6= ∅,

i. e. ` is the maximal order of the tree. Then

SL =
⋃̀

i=2

SLi

(
i. e. L =

⋃̀

i=2

Li 6= ∅
)

is the set of leaf servers of the network and

SB =
`−1⋃

i=2

SBi

(
i. e. B =

`−1⋃

i=2

Bi where Bi 6= ∅
)

is the set of branch servers of the network. Obviously,

SK0 = S{r} + SB + SL (i. e. {1, . . . ,m} = {r}+ B + L), (15)

where SB contains branch servers of all orders 1 < i < ` while SL may contain
leaf servers of only some of the orders 1 < i ≤ ` (e. g. all servers in SL may be
of order `).

Note that hierarchic networks of the described type (with S0 connected by a link to
all the leaf servers) are quite common in the practice.

Next follows a recursive algorithm which solves equations (13) for these networks.
In this algorithm, Sn(j) again denotes the (unique) superordinated server connected
by a link with Sj ∈ SK0−{r}, and SP (j) denoted the (nonvoid) set of subordinated
servers connected by a link with Sj ∈ SK0−L.

Step 1: Put cj = bj = 0 for all j ∈ L.

Step 2: Put

cj =
∑

k∈P (j)

λk,j(ck + λ0,k)
λk,j + bk + λk,0

and bj =
∑

k∈P (j)

λj,k(bk + λk,0)
λk,j + bk + λk,0

for j ∈ Bi

and i = `− 1, `− 2, . . . , 1 where B1 = {r}.
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Step 3: Put

wr =
cr + λ0,r

br + λr,0
.

Step 4: Put

wj =
wn(j)λn(j),j + cj + λ0,j

λj,n(j) + bj + λj,0
for j ∈ Bi.

Theorem 2. For hierarchic networks under consideration, the above defined al-
gorithm solves after finitely many operations the system of equations (13). The
complexity of this algorithm is proportional to the network size m.

P r o o f . For j ∈ L we get from Steps 1 and 4

wj =
wn(j) λn(j),j + λ0,j

λj,n(j) + λj,0

which verifies the jth equation of (13). Let us now consider ` − 1 < i < 1 and
suppose that for all j ∈ Bi+1 + Li+1 the equations of (13) with wj given in Step 4
have already been verified. We are interested in the equation of (13) for j ∈ Bi.
Since P (j) ⊂ Bi+1 + Li+1 and n(k) = j for k ∈ P (j), we obtain

wn(j) λn(j),j−wj λj,n(j)+
∑

k∈P (j)

(
wjλj,k + ck − λ0,k

λk,j + bk + λk,0
λk,j − wj λj,k

)
+λ0,j−wj λ0,j = 0.

After standard calculations we obtain from here the solution

wj =
wn(j)λn(j),j +

∑
k∈P (j)

λk,j(ck+λ0,k)
λk,j+bk+λk,0

+ λj,0

λn(j),j +
∑

k∈P (j)
λj,k(bk+λk,0)
λk,j+bk+λk,0

+ λj,0

=
wn(j)λn(j),j + cj + λ0,j

λj,n(j) + bj + λj,0
,

i. e. the solution prescribed by Step 4. If j = r then the equation (13) differs from
the previous one only by putting

λn(j),j = λj,n(j) = 0.

Therefore we obtain from the previous calculations the solution

wr =
cr + λ0,r

br + λr,0

which coincides with that given in Step 3. By taking into account the disjoint
decomposition (15), we see that the values w1, w2, . . . , wm defined by the algorithm
solve the equations (13) for all 1 ≤ j ≤ m. The proportionality of the complexity
to m is easily seen from Steps 1 – 4 if one takes into account that the number of
elements in L (and thus the number of substitutions in Step 1) is bounded by m,
and also that the maximal hierarchic order ` (and thus the number of computations
in Steps 2 or 4) is also bounded by m. 2
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5. SPECIFICATION OF PARAMETERS β, λ AND Λ

In this section we consider the MHN’s introduced in Sections 1, 2 and studied in Sec-
tion 3 and 4. It was assumed there that the parameters of the networks are given,
namely that there are given the average message size β [bit], average intensity of ar-
rivals of messages into the network λ [1/TU], the nondiagonal elements of the matrix
Λ, i. e. the intensities λjk [1/TU] for 0 ≤ j, k ≤ m, and the sequence of potentials
φ,, n ∈ Zm

+ . It was mentioned that if these parameters are at the disposal then it
is possible to compute variables w1, . . . , wm enabling an easy prognosis of perfor-
mances of MHN’s and prognosis of problems such as buffer overflows, congestions,
unacceptable message delays (for more about this see the next section).

In this section we study methods for specification and verification of these param-
eters. For simplicity we restrict ourselves to the case φn = 1 for n ∈ Zm

+ considered
in Sections 3 and 4, so that the attention is focused on the parameters β, λ and Λ.
We propose methods for statistical estimation of these parameters, and for testing
hypotheses about them.

Performance of any MHN is sensitive to the flow of information from the network
users to the network, i. e. it depends on intensities and sizes of messages produced
by the collection of users (virtual server S0). The intensities, and possibly also the
sizes, depend on hours of a day, days of a week and weeks of a year. We are usually
interested in performances of MHN’s during the periods of peak activities of users,
when the flow of information from them (in average) culminates and the network is
under maximal pressure. Therefore the statistical inference discussed below should
be done under the extremal circumstances when the activity of users achieves a
global maximum. However, one might be interested in the network performances
under different circumstances, e. g. under various locally maximal activities of users.
However, in every case assumptions about the users should be clarified as precisely as
possible, and it should not be forgotten that conclusions drawn from the mathemat-
ical MHN model can be taken seriously only in situations where these assumptions
are fulfilled. When we discuss in the sequel the inference about parameters β, λ and
Λ, we have in mind the situation of globally maximal activity of users, or another
well defined situation, and we assume that this situation remains unchanged during
collecting empirical data.

5.1. Inference about β and λ

Suppose that users (or potential users) of an MHN produced empirical data (β1, t1),
. . . , (βN , tN ), where βi denotes the size of the ith message (in [bit]), and ti the
daytime (in [TU]) when this message was sent to the MHN (in the case of potential
users of a planned MHN, ti is the time when the message was ready for sending).
We suppose that t1 < t2 < · · · < tN . Then one can deduce from the empirical data
that the total amount of information

N−1∑

i=1

βi
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was prepared for the network in the time interval (t1, tN ) so that

R̂ =
∑N−1

i=1 βi

tN − t1
[bit/TU] (16)

is an estimate of the average rate of information R produced by the collection of
users.

If we assume that the arrivals of the sampled messages are realizations of a ho-
mogeneous Poisson process then the interarrival times ti+1 − ti, 1 ≤ i ≤ N − 1, are
independent realizations of a random variable Y with the exponential density

f(y) = λ e−λy for y ≥ 0 (17)

where λ is the intensity parameter which we are interested in. This parameter can
be estimated from the available data t1, t2, . . . , tN by several different methods. The
maximum likelihood method leads to the estimate

λ̂ =
N − 1
tN − t1

[1/TU]. (18)

An alternative class of minimum disparity methods can be found in Menéndez et al [6].
We see that the maximum likelihood estimate (18) relies on the assumption that

the differences t2−t1, . . . , tN−1 are distributed by the density (17) to the degree that
it ignores the data t2, . . . , tN−1. This means that this estimate is very sensitive to
the deviations of the true distribution densities from (17) (and thus to violations of
the assumption that the messages arrive to the network as a homogeneous Poisson
process). Alternatives to (18), which are much more robust with respect to viola-
tions of the above mentioned assumptions, are the minimum disparity estimators
systematically studied in Menéndez et al [6].

An alternative to the statistical estimation of R and λ, based on the empirical
knowledge contained in data (β1, t1), . . . , (βN , tN ), is an expert estimation based on
a theoretical a priori collected knowledge. Expert estimates R̂ and λ̂ can be tested
with the help of empirical data by using the disparity or entropy tests studied in
Menéndez et al [7], Darbellay and Vajda [1] and Esteban et al [2], or by the special
tests proposed by Menéndez et al [5], Morales et al [8] or Pardo et al [11].

For any estimates λ̂ and R̂, an estimate β̂ of the average message size β follows
from the formula βλ = R of Section 1, namely

β̂ =
R̂

λ̂
[bit].

For example, for the statistical estimates R̂ and λ̂ given by (16) and (18) we get the
intuitively appealing sample mean

β̂ =
1

N − 1

N−1∑

i=1

βi [bit]. (19)

If we use a robust estimator λ̂ which differs from (18) then we obtain in this manner
a robust formula for β̂, which will be different from the sample mean (19).
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5.2. Inference about Λ

In this subsection we assume that the parameters β and λ are already specified
and the problem which remains is specification of Λ = (λj,k)m

j,k=0 with λj,j = 0 for
0 ≤ j ≤ m. To simplify the notation, we drop from double subscripts the comma,
e. g. we put

λjk = λj,k.

The intensities λjk cannot be statistically estimated as easily as the overall input
intensity λ in 5.1. From this, and also from the interpretational point of view, it is
convenient to decompose these intensities 0 ≤ j, k ≤ m by the formula

λjk = µjpjk, (20)

where µj is an average intensity of service in the server Sj and pjk is a probability
of routing a message from Sj to Sk and where we put µ0 = λ (cf. below). The
separate estimation of the intensities µj , 0 ≤ j ≤ m, and of the stochastic matrices
of routing probabilities

P = (pij)m
i,j=0 (21)

looks more hopefully than the direct estimation of the matrix Λ.
It follows from (9) and (20) that

µ0 =
m∑

k=1

λ0k = λ.

For the remaining µj , 1 ≤ j ≤ m, we get from the definition that

µj =
m∑

k=0

µjk pjk, (22)

where µjk > 0 is the intensity with which Sj serves the messages routed to Sk. We
can put for every j 6= k

µjk =
(

τjk +
β

αjkBjkRjk

)−1

[1/TU], (23)

where β was introduced above and

τjk [TU] is an average time needed to prepare a message for transmission and
to activate the transmission link from Sj to Sk,

αjk ∈ (0, 1) is coefficient of effectivity of the link from Sj to Sk (ratio of the
effective transmission rate and the transmission rate); depends on
the data link protocol,

Rjk [bit/TU] is the transmission rate of the link from Sj to Sk.

Bjk [bit/TU] is the number of links from Sj to Sk.
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The data transmission rates Rjk are standard technical parameters of data links,
and the coefficients of effectivity αjk are standard technical parameters of data link
protocols. The time delays τjk can be estimated by using an expert knowledge, or
by using randomly sampled empirical data and employing the statistical estimators
cited in Subsection 5.1.

The only open problem which remains is estimation of the routing probability
matrices P considered in (21) which are needed in (20) as well as in (22). This
problem is studied separately in the next subsection.

5.3. Inference about P

From (20) and the assumption that the diagonal elements of Λ are zero we see
that the diagonal elements of P = (pjk)m

j,k=0 are zero. In this subsection we study
estimates

P̂ = (p̂jk)j,k=0

of the matrix P under assumption that there are at the disposal estimates (f̂1, . . . , f̂m)
and (f̂1, . . . , f̂m) with the following interpretation:

f̂j is the probability that a message enters the network through the server Sj

f̂ j is the probability that a message leaves the network from the server Sj

for every j ∈ K0. One can use expert estimates or relative frequency estimates based
on the empirical data. (If the MHN is not yet realized then only the first option is
applicable.) In this subsection we skip the symbol ˆ in all estimates, i. e. we denote
all estimates simply by fj , f j and pjk.

We propose three different heuristic methods for estimation of the matrix P based
on the evidence (f1, . . . , fm) and (f1, . . . , fm). The attention will be restricted to
the hierarchic networks of Section 4. We shall need the notation n(j) and P (j)
introduced there, and also the disjoint decomposition (with + denoting the disjoint
union of sets)

K0 = {1, . . . , m} = L + B + {r} (cf. (15)).

Note that n(j) is undefined for j = r and P (j) = ∅ for j ∈ L. By Π(j) we denote
for every 1 ≤ j ≤ m the set of indices of the server Sj and of all servers directly or
indirectly subordinated to Sj . Formally Π(j) can be defined by induction as follows

Π(j) =





{j} if j ∈ L

{j}+
∑

k∈P (j) Π(k) if j ∈ B

{1, . . . , m} if j = r.

For the sake of brevity we define

fA =
∑

j∈A

fj

for A ⊂ K0, and analogously fA.
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Method A.
Put p0k = fk for k ∈ K0.
For every 1 ≤ j ≤ m put

pjk =





f j if k = 0

fΠ(k) if k ∈ P (j)

1− fΠ(j) if k = n(j)

0 otherwise.

Method B.
Put p0k = fk for k ∈ K0.
For every 1 ≤ j ≤ m, j 6= r, put

pjk =





fj

fΠ(j)+fΠ(j) if k = 0

fΠ(k)

fΠ(j)+fΠ(j) if k ∈ P (j)

fΠ(j)

fΠ(j)+fΠ(j) if k = n(j)

0 otherwise

and

prk =





fr if k = 0

fΠ(k) if k ∈ P (r)

0 otherwise.

Both these methods are based on rational assumptions. But Method A does not take
sufficiently into account where the messages entered the network. Method B takes
into account where the message entered the network but assumes a well organized
centralistic protocol under which all messages are passing through the root server
Sr. Both types of assumptions are questionable and they represent extremes of some
kind.

Certain compromise between these extremes might be the following combination
of both methods. It uses probabilities πj of a local communication in the subnetworks
of servers SΠ(j), 1 ≤ j ≤ m. The local communication probabilities are defined by

πj =
F

Π(j)
Π(j)

fΠ(j)
, 1 ≤ j ≤ m,

where F
Π(j)
Π(j) is the probability that a message enters the network through the set

of servers Π(j) and leaves the network from the same set of servers. Under our
assumptions we have πr = 1. For j ∈ B we can say only that in typical situations
0 < πj < 1.
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Method C. For every 0 ≤ j, k ≤ m put

pjk = πj pA
jk + (1− πj) pB

jk,

where pB
jk is the solution by the Method B and pA

jk is the solution by the Method A
for the subnetwork of servers SΠ(j), i. e.

pA
jk =





fj

fΠ(j) if k = 0

fΠ(k)

fΠ(j) if k ∈ P (j)

0 otherwise.

A disadvantage of the Method C is that it requires an additional inference about
the vector (πj : +j ∈ B). Expert estimates are in this situation probably difficult
and statistical inference requires many random samplings.

Thus neither of these methods is completely satisfactory. The exact rigorous
solution, however, can be obtained only under additional information.

Method D (general). Similarly as above, let F k
j for every j, k ∈ K0 denote the

probability that a message enters the network through the server Sj and then leaves
the network from the server Sk. Suppose that the probabilities

F = {F k
j }j,k∈K0

are given. We have
∑

j,k∈K0
F k

j = 1, and let us again write FD
A =

∑
j∈A

∑
k∈D F k

j .
Due to the tree structure of the network, the path of every message is linear and

uniquely given. Thus, we may observe

pD
jk =

Pr(message enters Sj and then passes to Sk)
Pr(message enters Sj)

=





FK0
k for j = 0, k ∈ K0,

1
γ(j) F j

K0
for j ∈ K0, k = 0,

1
γ(j) F

Π(j)c

Π(j) for j ∈ K0, k = n(j),

1
γ(j) F

Π(j)
Π(k)c for j ∈ K0, k ∈ P (j),

0 otherwise,

where γ(j) = F j
K0

+ F
Π(j)c

Π(j) +
∑

k∈P (j) F
Π(k)
Π(k)c is for every j ∈ K0 an appropriate

normalizing constant.

Method D’ (with independence). Providing we have only the “entrance” and
“exit” probabilities (f1, . . . , fm) and (f1, . . . , fm) as above, we may add the inde-
pendence assumption in order to obtain the probabilities F , namely

F k
j = fj · fk.
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Then the above formulas simplify, and we have

pD′
jk =





fk for j = 0, k ∈ K0,

1
γ(j) f j for j ∈ K0, k = 0,

1
γ(j) fΠ(j)(1− fΠ(j)) for j ∈ K0, k = n(j),

1
γ(j) (1− fΠ(k)) fΠ(k) for j ∈ K0, k ∈ P (j),

0 otherwise,

where now γ(j) = f j + fΠ(j)(1− fΠ(j)) +
∑

k∈P (j)(1− fΠ(k)) · fΠ(k).
The estimate PD′

, in spite of being derived from the exact solution PD, can-
not be considered universally better than those obtained under A,B, and C. The
independence assumption is rather strong and can be easily violated in practical
situations. It depends on the number and type of users connected to the particular
servers. (E. g., one should expect F j

j = fj · f j for messages entering and leaving the
same server Sj .)

6. PROGNOSIS OF PERFORMANCE AND OPTIMIZATION

In this section we use solutions w1, . . . , wm of the equations (13). Before going further
notice that if the intensities from the matrix Λ can be decomposed as assumed in
(20) then these equations can be transformed into the form

m∑

k=0

yk pkj = yj , 1 ≤ j ≤ m with y0 = µ0 = λ. (24)

The desired w1, . . . , wm are then obtained from solution y1, . . . , ym of this system
by formula

wj =
yj

µj
for 1 ≤ j ≤ m.

From w1, . . . , wm and the basic network parameters β, λ, µ1, . . . , µn and P can
be done conclusions about the performance of the network and prognosis of values
of many performance parameters. The most important conclusion is that if wj ≥ 1
for at least one j then the number nj of messages in the server Sj will increase to
infinity and the whole network will collapse. When the remaining basic network
parameters remain then the initial condition y0 in (24), and therefore also solutions
y1, . . . , ym and w1, . . . , wm, are increasing functions of λ. Therefore

C = β sup
{

λ > 0 : sup
1≤j≤m

wj < 1
}

[bit/TU] (25)

is a capacity of the network. It is a sharp upper bound on the amount of information
which can be transmitted by the network with a finite delay.

In the rest of this section we assume that 0 < wn < 1 for all 1 ≤ j ≤ m and the
conclusions are valid in the steady state of the network, achieved for t →∞. Then,
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applying the above results and the well-known Little’s formula (cf., e. g. Nelson [9],
Section 7.1), we arrive at the following conclusions.

(i) Average number of messages in the server is

νj =
wj

1− wj

and the average number of all messages in the network is

N =
m∑

j=1

νj .

(ii) A message spends in the server Sj

νj

λ
time units (TU),

namely
wjνj

λ
TU

by waiting in a queue and
wj

λ
TU

by the processing and transmission.

(iii) The average number of messages passing through the server Sj per one TU is
µjwj , of them µjwjpjk are routed into the server Sk.

(iv) Average delay of a message in the network is

N

λ
TU.

Of this time
1
λ

m∑

j=1

wj νj TU

is spent by waiting in the server queues and

1
λ

m∑

j=1

wj TU

by processing in the servers and transmission in the communication links.

Prognosis of the network capacity by means of (25), and of the performance pa-
rameters by means of the formulas in (i) – (ii), enables to detect eventual problems
in existing MHN’s or in their projects. By combining the prognosed parameters
with cost functions and network management rules, one can optimize projects of
planned MHN’s, or innovations of existing MHN’s, like admission of new users or
modernization of hardware and software.
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7. PROGRAM 5P AND AN ILLUSTRATIVE EXAMPLE

We prepared a Program for Prognosis of Performance Parameters and Problems
(5P). Its basic unit is a subprogram for evaluation of solutions of Section 4. Inputs
and outputs are provisional and simple, in order to replace them easily when 5P will
be incorporated into professional program products of potential users. The input
data structure describing servers S1, . . . , Sm is proposed so that it is independent
on m and on the structure of links between the servers. Therefore 5P imposes no
a priori limitations on the network size m, and the only limitation is the computing
time. Solutions for m ≈ 103 are very fast on most modern PC’s. Input data of the
subprogram concerning each server Sj are as follows.

— Index n(j) of the superordinated server Sn(j) (not for n = r).

— Transmission rate Rjn(j) [bit/sec] of one link to Sn(j) (not for j = r).

— Number of links to Sn(j) (not for j = r).

— Time tjn(j) [sec] for activation of the links to Sn(j).

— Probabilities fj and f j .

We assume the symmetry of the transmission rates, Rjk = Rkj for 1 ≤ j, k ≤ m,
and Rj0 = ∞ for all 1 ≤ j ≤ m.
Input data of the subprogram concerning the network are as follows.

— Coefficient of effectivity of links α (assumed to be the same for all links).

— Average message size β [bit].

— Input intensity λ [1/hour].

Output data of the subprogram concerning each server Sj are as follows.

— Intensity of service µj [1/hour].

— Intensities λn(j) j and λjn(j) [1/hour] (not for j = r).

— Intensities λj0 and λ0j [1/hour].

— Solution wj .

The program is implemented in Borland Pascal for Windows, version 7. It allows
graphical realizations of all performance parameters (except the MHN capacity) as
functions of variable input intensity λ. More details about it can be found in Janžura
and Boček [4].

Next follow an example analyzing a hypermarket MHN physically covering the
Czech Republic and consisting of 34 servers. The input data for the subprogram
are in Table 1, where the root server Sr = S1 and the number of links between all
servers is 1. The network data were as follows

α = 0.8333, β = 30 000 [bit], λ = 100 [1/hour]

and the Method A of Section 5.3 was used to evaluate the routing probabilities pjk

for j 6= 0. Output data of the subprogram and some of the output data of the
program are in Table 2.
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Table 1. Input subprogram data for servers S1, . . . , S34.

Sj Sn(j) Rjn(j) tjn(j) fj f j

S1 – – – 0.61181 0.39898
S2 S1 4800 6 0.001 0.001
S3 S1 4800 6 0.001 0.013
S4 S1 4800 6 0.001 0.013
S5 S1 64000 4 0.03986 0.11997
S6 S5 4800 6 0.001 0.013
S7 S5 4800 6 0.001 0.001
S8 S5 9600 6 0.001 0.001
S9 S5 9600 6 0.001 0.001
S10 S5 56000 6 0.001 0.001
S11 S5 56000 6 0.001 0.001
S12 S1 256000 2 0.14791 0.11999
S13 S12 800 6 0.001 0.001
S14 S12 4800 6 0.001 0.001
S15 S12 4800 6 0.001 0.013
S16 S12 4800 6 0.001 0.001
S17 S12 19200 6 0.001 0.001
S18 S12 19200 6 0.001 0.013
S19 S1 256000 2 0.00299 0.005
S20 S19 64000 6 0.00299 0.005
S21 S20 4800 6 0.001 0.001
S22 S20 4800 6 0.001 0.001
S23 S20 4800 6 0.001 0.001
S24 S20 4800 6 0.001 0.001
S25 S20 4800 6 0.001 0.001
S26 S20 48000 6 0.001 0.001
S27 S20 4800 6 0.001 0.001
S28 S20 48000 6 0.001 0.001
S29 S20 48000 6 0.001 0.013
S30 S20 48000 6 0.001 0.0131
S31 S20 9600 6 0.001 0.001
S32 S20 9600 6 0.001 0.001
S33 S20 100000000 1 0.08372 0.11998
S34 S19 100000000 1 0.08372 0.11998
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Table 2. Output subprogram data and some performance characteristics.

Sj µj λn(j) j λjn(j) λ0j λj0 wj νj νj/λ µjwj

S1 1302.38754 0 0 39.898 796.81372 0.10709 0.1199337 0.001199 139.4726817

S2 172.45665 0.17246 172.28419 0.1 0.17246 0.00127 0.001271615 0.000013 0.219019946

S3 172.45665 0.17246 172.28419 1.3 0.17246 0.01517 0.015403674 0.000154 2.616167381

S4 172.45665 0.17246 172.28419 1.3 0.17246 0.01517 0.015403674 0.000154 2.616167381

S5 719.92081 33.01557 686.90525 11.997 28.69604 0.04181 0.043634352 0.000436 30.09988907

S6 172.45665 0.17246 172.28419 1.3 0.17246 0.0151 0.015331506 0.000153 2.604095415

S7 172.45665 0.17246 172.28419 0.1 0.17246 0.0012 0.001201442 0.000012 0.20694798

S8 267.5994 0.2676 267.3318 0.1 0.2676 0.00079 0.000790625 0.000008 0.211403526

S9 267.5994 0.2676 267.3318 0.1 0.2676 0.00079 0.000790625 0.000008 0.211403526

S10 494.82318 0.49482 494.32835 0.1 0.49482 0.00045 0.000450203 0.000005 0.222670431

S11 494.82318 0.49482 494.32835 0.1 0.49482 0.00045 0.000450203 0.000005 0.222670431

S12 1513.98044 233.01673 1280.96371 11.999 223.93285 0.03178 0.032823119 0.000328 48.11429838

S13 38.66235 0.03866 38.62369 0.1 0.03866 0.0052 0.005227181 0.000052 0.20104422

S14 172.45665 0.17246 172.28419 0.1 0.17246 0.00119 0.001191418 0.000012 0.205223414

S15 172.45665 0.17246 172.28419 1.3 0.17246 0.01509 0.015321197 0.000153 2.602370849

S16 172.45665 0.17246 172.28419 0.1 0.17246 0.00119 0.001191418 0.000012 0.205223414

S17 370.06097 0.37006 369.69091 0.1 0.37006 0.00057 0.000570325 0.000006 0.210934753

S18 370.06097 0.37006 369.69091 1.3 0.37006 0.00705 0.007100055 0.000071 2.608929839

S19 1638.17352 303.75013 1334.42339 0.5 4.89814 0.05775 0.061289467 0.000613 94.60452078

S20 761.69571 75.18698 686.50873 0.5 2.27747 0.04469 0.046780626 0.000468 34.04018128

S21 172.45665 0.17246 172.28419 0.1 0.17246 0.0012 0.001201442 0.000012 0.20694798

S22 172.45665 0.17246 172.28419 0.1 0.17246 0.0012 0.001201442 0.000012 0.20694798

S23 172.45665 0.17246 172.28419 0.1 0.17246 0.0012 0.001201442 0.000012 0.20694798

S24 172.45665 0.17246 172.28419 0.1 0.17246 0.0012 0.001201442 0.000012 0.20694798

S25 172.45665 0.17246 172.28419 0.1 0.17246 0.0012 0.001201442 0.000012 0.20694798

S26 480.71961 0.48072 480.23889 0.1 0.48072 0.00046 0.000460212 0.000005 0.221131021

S27 172.45665 0.17246 172.28419 0.1 0.17246 0.0012 0.001201442 0.000012 0.20694798

S28 480.71961 0.48072 480.23889 0.1 0.48072 0.00046 0.000460212 0.000005 0.221131021

S29 480.71961 0.48072 480.23889 1.3 0.48072 0.00545 0.005479865 0.000055 2.619921875

S30 480.71961 0.48072 480.23889 1.31 0.48072 0.00549 0.005520306 0.000055 2.639150659

S31 267.5994 0.2676 267.3318 0.1 0.2676 0.00079 0.000790625 0.000008 0.211403526

S32 267.5994 0.2676 267.3318 0.1 0.2676 0.00079 0.000790625 0.000008 0.211403526

S33 3375.4913 282.59613 3092.89517 11.998 282.59613 0.01001 0.010111213 0.000101 33.78866791

S34 3375.4913 282.59613 3092.89517 11.998 282.59613 0.01102 0.011142794 0.000111 37.19791413



Prognosis and Optimization of Homogeneous Markov Message Handling Networks 645

Moreover, the program calculated the average delay of messages in the network

1
λ

34∑

i=1

νi = 0.04281 hours .= 2 minutes and and 34 seconds,

of which time the messages spend in average

1
λ

34∑

i=1

wj νj = 0.00226 hours .= 8 seconds

in the server queues (buffers) and

1
λ

34∑

i=1

wj = 0.04055 hours .= 2 minutes and 26 seconds

in the servers and transmission lines. Further, the program calculated that for

λmax = 933 messages per hour

the maximal solution wmax of equations (13) achieves 1. Therefore the capacity of
the network is

C = β · λmax = 30 000× 933 = 27990000 [bit/hour] .= 2.8 Mbits per hour.

If the message flow into the network approaches the critical value 2.8 Mbits/hour
then the congestion of the network is unavoidable.

(Received January 26, 2001.)
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