
KY BERNET I K A — V OL UME 3 1 (1 9 9 5) , NUM B E R 1 , PAGES 8 3 – 9 7

ON THE GENERATIVE CAPACITY OF COLONIES

Gheorghe Păun1

We consider here colonies (grammar systems having as components regular grammars
generating finite languages) with various derivation modes (∗, t,≤ k, = k,≥ k, as usual in
grammar systems area). Their generative capacity is investigated. Problems still open in
the theory of general grammar systems (concerning, for instance, hierarchies on the number
of components and on the parameter k mentioned above) are solved for this particular case.
When hypothesis languages are added or the cooperation is aided by a transducer, the
family of context-sensitive languages is characterized in most of these derivation modes.

1. INTRODUCTION

The notion of colony is introduced in [11] as an attempt to model in grammatical
terms ideas in [1], [2], of considering intelligent systems build from as simple as pos-
sible elements. Informally speaking, a colony is a system of regular grammars, each
generating a finite language, working on a common sentential form (in turn, each
component replaces its axiom by a string), thus generating a language. Therefore
we have a particular case of grammar systems, in the sense of [3], [4], a promising
approach to distribution and cooperation appearing in various questions of artificial
intelligence, cognitive psychology etc (see discussions in [10]). The colonies were
investigated in [6], [12], [13] from various points of view, but a systematic study of
them is still missing.

For instance, so far only the basic mode of derivation (one occurrence of a compo-
nent axiom is replaced by a string) and the terminal mode (the maximal competence
strategy: all occurrences of the axiom are replaced at a given step) have been con-
sidered (the last one in [13]). However, in grammar systems area more derivation
modes are investigated: at least k, exactly k, at most k, any number of rules used
when a component is enabled. In the case of colonies we do not count the used rules,
but the number of axiom occurrences replaced by strings generated by the corre-
sponding component. We start here the study of such variants, investigating their
generative power. They look theoretically natural, but also “practically” motivated:
think at intelligent systems whose components have to observe a precise protocol
of cooperation, in terms of time restrictions about the work when enabled. More

1Research supported by the Alexander von Humboldt Foundation.

84 Gh. PĂUN

generally, the motivations for considering colonies with the basic mode of derivation
[11] extend over these new derivation modes (consider, for example, a multi-agent
system with time restrictions). However, our approach is basically mathematical,
we do not look for specific “applications” of colonies with the working modes as
described above.

Some results are as expected (hierarchies on the number of components), others
are surprising (incomparability of families of languages defined by the parameter k,
counting the number of replaced axioms). Both these problems are open for general
grammar systems. It is also somewhat unexpected that colonies with further aid
in work (hypothesis languages or sequential transducers) are as powerful as general
grammar systems, characterizing again the family of context-sensitive languages.

2. COLONIES; DERIVATION MODES

For an alphabet V we denote by V ∗ the set of all strings of symbols in V , including
the empty one, denoted by λ; as usual, V + = V ∗ − {λ}. The length of x ∈ V ∗ is
denoted by |x| and |x|a denotes the number of occurrences of the symbol a in x.

We denote by FIN, REG, LIN, CF, CS the families of finite, regular, linear,
context-free, context-sensitive languages, respectively (all languages are considered
here modulo λ: two languages are identical if they differ at most in the empty string).

For all unexplained notions of formal language theory we refer to [16]; for regu-
lated rewriting we refer to [7] and for grammar systems theory to [4].

A colony, in the sense of [11], is a construct

σ = (T,R1, . . . , Rn, w),

where T is an alphabet, Ri = (Ni, Ti, Pi, Si) are regular grammars with L(Ri) finite,
1 ≤ i ≤ n, and w is a string over T ∪{S1, S2, . . . , Sn} containing at least one symbol
Si, for some i, 1 ≤ i ≤ n; T ⊆ ∪n

i=1Ti.

Because we are interested here only in the generative power of such machineries,
we consider in the following an equivalent but more compact definition (also more
suitable for introducing derivation modes of the types usual in grammar systems
area).

Definition 1. A colony (of degree n, n ≥ 1) is a construct

σ = (T, (S1, F1), . . . , (Sn, Fn), w),

where T is an alphabet, S1, . . . , Sn are symbols not in T (we denote N = {S1, . . . , Sn}),
Fi ⊆ (N ∪T −{Si})+, 1 ≤ i ≤ n, are finite languages, and w ∈ (N ∪T)∗N(N ∪T)∗.

Thus we are not interested in the way Fi is generated from Si, but only in the
strings it contains. Please note that in the style of [11], [12] we do not allow Fi to
contain the empty string, and that the start string w contains at least one axiom
symbol Si.

On the Generative Capacity of Colonies 85

Definition 2. For x, y ∈ (N ∪ T)∗, k ≥ 1, and a component (Si, Fi) of a colony σ
as above we define

x =⇒=k
i y iff x = x1Six2Si . . . xkSixk+1,

y = x1w1x2w2 . . . xkwkxk+1,

where wj ∈ Fi, 1 ≤ j ≤ k;

x =⇒≤k
i y iff x =⇒=k′

i for some k′ ≤ k;

x =⇒≥k
i y iff x =⇒=k′

i for some k′ ≥ k;
x =⇒∗

i y iff x =⇒=k
i for some k′ ≥ 0.

Moreover, we define

x =⇒t
i y iff x = x1Six2Si . . . xkSixk+1,

y = x1w1x2w2 . . . xkwkxk+1,

where wj ∈ Fi, 1 ≤ j ≤ k, and
|x1x2 . . . xk+1|Si

= 0

(all occurrences of Si are replaced by strings in Fi, not necessarily identical).

In [11], [12] only the derivation mode “= 1” is considered; the t-mode is investi-
gated in [13].

Definition 3. The language generated by a colony σ in the derivation mode f, f ∈
{∗, t} ∪ {≤ k, = k,≥ k | k ≥ 1}, is

Lf (σ) = {x ∈ T ∗ | w =⇒f
i1

w1 =⇒f
i2

. . . =⇒f
is

ws = x,

s ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ s}.

We denote by COLn(f) the family of languages generated by colonies of degree
at most n, n ≥ 1, in the derivation mode f, f as above; we also put COL(f) =⋃

n≥1 COLn(f).

3. THE GENERATIVE POWER

From definitions, we clearly have

COL1(f) ⊆ FIN,

COLn(f) ⊆ COLn+1(f),

for n ≥ 1, f as above, and the first relation is equality for f ∈ {∗, t, = 1,≥ 1}∪
{≤ k | k ≥ 1}. In [12] it is proved that

COL(= 1) = CF and COLn(= 1) ⊂ COLn+1(= 1), n ≥ 1,

86 Gh. PĂUN

whereas in [13] it is proved that

CF ⊂ COL(t) = EPTOL[1],

where EPTOL[1] is the family of languages generated by propagating ETOL systems
having at most one rule X → x, x 6= X, in each table (see [14]).

As clearly L=1(σ) = L∗(σ) = L≥1(σ) = L≤k(σ), k ≥ 1, we have

Theorem 1. COLn(= 1) = COLn(∗) = COLn(≤ k) = COLn(≥ 1)
⊂ CF, and COL(= 1) = COL(∗) = COL(≤ k) = COL(≥ 1) = CF, for all
n ≥ 1, k ≥ 1.

Consider now some examples: take the colony

σk = ({a, b}, (S1, {aS2a, aba}), (S2, {S1}), Sk
1), k ≥ 1.

We have
L=k(σk) = L≥k(σk) = {(aibai)k | i ≥ 1},

a language which for k ≥ 2 is not context-free.
Indeed, from a string containing less that k occurrences of the symbol S1 or

less than k occurrences of S2 we cannot continue the derivation, hence the first
component must either replace all occurrences of S1 by aS2a (and then the derivation
continues) or all of them by aba (and the derivation is finished).

This is a finite index matrix language; consider also the colony (of degree 2)

σ = ({a, b, c}, (S1, {S2S2, S2, aS2b, ab}), (S2, {S1}), (S1c)k).

It is easy to see that, for all f ∈ {∗, t}∪{≤ r | r ≥ 1}∪{= r,≥ r | 1 ≤ r ≤ k}, k ≥ 1,

Lf (σ) = {x1cx2c . . . xkc | xi ∈ Da,b − {λ}, 1 ≤ i ≤ k},

where Da,b is the Dyck language over {a, b} (the use of the replacement S1 → S2 in
the first component ensures the equality). Clearly, Lf (σ) can be mapped into Da,b

by a sequential transducer.
As Da,b is not a matrix language of finite index and the family of matrix lan-

guages of finite index (we denote it by MATfin) is closed under arbitrary sequential
transducers [7], it follows that Lf (σ) are not matrix languages of finite index.

The family COLn(t), n ≥ 3, contains also one-letter non-regular languages: take

σ = ({a}, (S1, {S2S2}), (S2, {S1}), (S1, {a}), S1).

Clearly,
Lt(σ) = {a2n | n ≥ 1}.

On the other hand, as all the strings in colonies components are non-empty, a lan-
guage L=k(σ) or L≥k(σ) can contain only strings x with |x| ≥ k. Therefore, for
k ≥ 2 and given V , languages L ⊆ V ∗ containing strings x ∈ V ∗, |x| < k, are not in
COL(= k), COL(≥ k), hence

On the Generative Capacity of Colonies 87

Theorem 2. The families FIN, REG, LIN, CF, MATfin are incomparable with
each of COLn(= k), COLn(≥ k), n ≥ 2, COL(= k), COL(≥ k), k ≥ 2.

For the case f = t, n = 2 we have

Theorem 3. COL2(t) is incomparable with REG, LIN,MATfin, but COL2(t) ⊂
CF.

P r o o f . The inclusion COL2(t) ⊆ CF follows as in [3], [4] for context-free gram-
mar systems, but, for technical reasons, we briefly prove it again: given σ =
(T, (S1, F1), (S2, F2), w) we construct the grammar

G = ({S, S1, S2}, T, {S → w} ∪ {Si → x | x ∈ Fi, i = 1, 2}, S).

In view of the fact that Fi ⊆ (T ∪ {Sj})∗, {i, j} = {1, 2}, we have the equality
Lt(σ) = L(G).

This implies Var(L) ≤ 3 for every L ∈ COL2(t) (Var(L) is the smallest number
of nonterminals necessary in order to generate L by means of context-free grammars
[8], [9]). As there are regular languages L with V ar(L) = n for every n, [8], we
obtain REG− COL2(t) 6= ∅.

On the other hand, as we have already pointed out, COL2(t) contains languages
not in MATfin. 2

A natural and important problem is whether the parameters n and k, in COLn(f),
f ∈ {∗, t}∪{≤ k, = k,≥ k | k ≥ 1}, lead to infinite hierarchies (are the colonies with
n+1 components more powerful than those with n components ?). This is proved in
[11] for COLn(= 1), hence also COLn(∗), COLn(≥ 1), COLn(≤ k), for given k, are
infinite hierarchies, whereas COLn(≤ k) = COLn(≤ 1), for all k ≥ 1 and given n.
The parameter n defines infinite hierarchies for the other modes of derivation too.
(Note that this problem is still open for general grammar systems [4].)

Theorem 4. COLn(t) ⊂ COLn+1(t), n ≥ 1.

P r o o f . For n = 1, 2 this is already proved (COL1(t) = FIN ⊂ COL2(t) ⊂ CF,
but COL3(t)− CF 6= ∅). Consider now the language

Ln =
n⋃

i=1

(aib)∗,

for n ≥ 2. It can be generated by the colony

σn = ({a, b}, (S0, {Si | 1 ≤ i ≤ n}), (S1, {abS′1, ab}), (S′1, {S1}),
(S2, {a2bS′2, a

2b}), (S′2, {S2}),
.

(Sn, {anbS′n, anb}), (S′n, {Sn}), S0).

Therefore, Ln ∈ COL2n+1(t).

88 Gh. PĂUN

Take now an arbitrary colony σ = ({a, b}, (S1, F1), . . . , (Sm, Fm), w) such that
Lt(σ) = Ln. The derivations in σ can be viewed also as derivations in the context-
free grammar G = ({S0, S1, S2, . . . , Sm}, {a, b}, {S0 → w} ∪ {Si → z | z ∈ Fi, 1 ≤
i ≤ m}, S0) (but not conversely), hence we can speak about derivations in σ as
derivations in G too. Because every subset (aib)∗, 1 ≤ i ≤ n, of Ln is infinite,
we must have a recursive derivation Si =⇒∗ uSiv, uv 6= λ; in order to obtain
it, at least two components of σ are involved (Si does not appear in strings of
Fi). This derivation can be finished by some Si =⇒∗ z and it can be iterated,
Si =⇒∗ urSiv

r, therefore urzvr will eventually generate strings of arbitrarily large
length (the colony is λ-free), hence containing substrings of the form baib. Two
such subderivations Si =⇒∗ uSiv must involve different nonterminal symbols (Si,
plus some S′i, S

′′
i , . . . used in intermediate steps), otherwise strings containing two

different substrings baib, bajb, i 6= j, could be obtained. This implies that at least 2n
different components are used in these n derivations Si =⇒∗ uSiv. The symbols Si

must also be produced (possibly in strings in (T ∪{Si})∗, 1 ≤ i ≤ m, not necessarily
as strings Si) by a further component, starting from the axiom of σ. In conclusion, σ
must have at least 2n+1 components, that is Ln /∈ COL2n(t). (The idea in the above
sketched argument is used in many similar contexts in the descriptional complexity
area – see, for instance, [8] – so we do not specify here all the technical details of
the proof.)

We have obtained COL2n(t) ⊂ COL2n+1(t), n ≥ 2.

For the language

L′n =
n⋃

i=2

(aib)∗ ∪ {a2i | i ≥ 1},

n ≥ 2, we have L′n = Lt(σ′) for

σ′ = ({a, b}, (S0, {Si | 1 ≤ i ≤ n}), (S1, {S′1S′1}), (S′1, {S1}), (S1, {a}),
(S2, {a2bS′2, a

2b}), (S′2, {S2}),
.

(Sn, {anbS′n, anb}), (S′n, {Sn}), S0),

hence L′n ∈ COL2n+2(t). However, L′n /∈ COL2n+1(t); the argument is the same as
for the language Ln, with the remark that the sublanguage {a2i |i ≥ 1} of L′k is not
context-free, hence it requests at least three components to cooperate in producing
it (see again Theorem 3).

It has remained the case COL3(t) ⊂ COL4(t). For, consider the colony

σ = ({a, b, c}, (S0, {bS1, cS1}), (S1, {S′1S′1}), (S′1, {S1}), (S1, {a}), S0).

We have
Lt(σ) = {ba2n

, ca2n | n ≥ 1}
and this language cannot be generated by a colony with only three components. (We
need three components for producing a2n

, n ≥ 1, but they cannot introduce also
symbols b, c, because b, c appear only once each in the strings of Lt(σ), hence they
cannot appear in cycles and cannot be produced by replacing symbols which appear

On the Generative Capacity of Colonies 89

at least two times in the sentential forms). Thus Lt(σ) /∈ COL3(t), which completes
the proof. 2

A similar result can be obtained for the derivation modes = k,≥ k for k ≥ 2.

Theorem 5. COLn(f) ⊂ COLn+1(f), n ≥ 1, f ∈ {= k,≥ k | k ≥ 2}.
P r o o f . Consider the colony

σn = ({a, b, c}, (S1, {abS′1ab, abcab}), (S′1, {S1}),
(S2, {a2bS′2a

2b, a2bca2b}), (S′2, {S2}),
.

(Sn, {anbS′nanb, anbcanb}), (S′n, {Sn}), (S1S2 . . . Sn)k),

for n ≥ 1. We obtain

L=k(σn) = L≥k(σn) =
= {((ab)i1c(ab)i1(a2b)i2c(a2b)i2 . . . (anb)inc(anb)in)k |

ij ≥ 1, 1 ≤ j ≤ n}.

Take now a colony σ = ({a, b, c}, (S1, F1), . . . , (Sm, Fm), w) such that L=k(σ) =
L=k(σn). Consider a substring (arb)irc(arb)ir of a string in L=k(σn), 1 ≤ r ≤ n.
As ir can be arbitrarily large, in generating such a substring at least one cycle
in σ is involved, Sr =⇒∗ uSrv, for some strings u, v eventually generating strings
containing substrings (arb)i, i ≥ 1. The symbol c cannot appear in such u, v or
in strings they generate (otherwise an unbounded number of c occurrences will be
produced). Therefore c is introduced only in terminal non-recurrent derivations,
Sr =⇒∗ xcy. If either u = λ or v = λ, then strings containing (arb)ic(arb)j , i 6= j,
are obtained, a contradiction. Similarly when either u or v eventually generates
strings containing substrings (asb)i with s 6= r. (Having k occurrences of Sr in some
sentential form, using the subderivation Sr =⇒∗ uSrv for all positions, the number
of nonterminal occurrences remain multiple of k for every Si, 1 ≤ i ≤ m, hence this
derivation can be correctly ended.) Finally, if the strings u, v above will eventually
produce terminal strings containing both (arb)i, i ≥ 1, and (asb)j , j ≥ 1, for some
r 6= s, then by iterating this derivation we can get strings containing arbitrarily
many substrings (arb)i in the right of which substrings (asb)j appear and conversely;
such strings are not in L=k(σn) (in the strings of this language we have exactly n
substrings (atb)itc(atb)it for each t, 1 ≤ t ≤ n). Consequently, for each derivation
Sr =⇒∗ uSrv we get a terminal string u′xcyv′ with u =⇒∗ u′, v =⇒∗ v′, Sr =⇒∗ xcy
such that u′xcyv′ = z1(arb)ic(arb)jz2, i, j ≥ 1, possibly with z1 a non-empty suffix
of arb and z2 a non-empty prefix of arb and given difference i− j, possibly not zero.
However, by iterating the subderivation Sr =⇒∗ uSrv we can assume that i and j
are arbitrarily large.

It is now clear that for two such derivations Sr =⇒∗ uSrv, Ss =⇒∗ u′Ssv
′ we can-

not have Sr = Ss (the two derivations can then be mixed and one generates strings
with arbitrarily many substrings (arb)i followed by (asb)j and conversely). Every

90 Gh. PĂUN

such cycle must involve two nonterminals, hence two components of σ. In conclusion,
σ must contain at least 2n components, which implies L=k(σn) /∈ COL2n−1(= k).

The same argument shows that L≥k(σn) /∈ COL2n−1(≥ k).
We have thus obtained the proper inclusions COL2n−1(f) ⊂ COL2n(f), n ≥ 1,

f ∈ {= k,≥ k | k ≥ 2}.
Modify now the above colony σn as follows:

σ′n = ({a, b, c}, (S0, {c2S1S2 . . . Sn, c3S1S2 . . . Sn}),
(S1, {abS′1ab, abcab}), (S′1, {S1}),
(S2, {a2bS′2a

2b, a2bca2b}), (S′2, {S2}),
.

(Sn, {anbS′nanb, anbcanb}), (S′n, {Sn}), Sk
0).

It is easy to see that we need now 2n components in order to obtain recurrent deri-
vations associated to the n substrings of the form (arb)ic(arb)i and one more compo-
nent introducing k times substrings c2 and c3 (such substrings cannot be produced
by symbols involved in cycles, as these symbols will either generate arbitrarily many
substrings c2, c3, or they will introduce such substrings only in the middle of the gen-
erated strings). In conclusion, L=k(σ′n)=L≥k(σ′n)∈COL2n+1(f)−COL2n(f), n≥1,
f ∈{= k,≥k | k≥2}, which completes the proof. 2

Somewhat surprising, the parameter k in derivation modes = k,≥ k does not give
infinite hierarchies, but infinitely many incomparable families. In order to prove this,
we shall use the next pumping property.

Theorem 6. If L ⊂ V ∗, L ∈ COL(= k) (or L ∈ COL(≥ k)), k ≥ 1, is an infinite
language, then there is a string y ∈ L, which can be written in the form

y = u1vw1xu2vw2x . . . ukvwkxuk+1,

with ui, wi ∈ V ∗ for all i, vx 6= λ, and

u1v
jw1x

ju2v
jw2x

j . . . ukvjwkxjuk+1

is in L for all j ≥ 1.

P r o o f . Take a colony σ = (T, (S1, F1), . . . , (Sn, Fn), z0) with infinite Lf (σ), f ∈
{= k,≥ k | k ≥ 1}. Consider an arbitrary derivation in σ,

D : z0 =⇒f
i1

z1 =⇒f
i2

. . . =⇒f
ir

zr = z ∈ Lf (σ).

This derivation can be completed with an initial step S =⇒ z0 and thus we have a
context-free derivation in the grammar

G = ({S, S1, . . . , Sn}, T, {S → z0} ∪ {Si → y | y ∈ Fi, 1 ≤ i ≤ n}, S).

Therefore we can consider the derivation tree associated to it in the usual way.

On the Generative Capacity of Colonies 91

As Lf (σ) is infinite, we can take z arbitrarily long, hence we may assume that the
above considered derivation tree contains a path from S to the leafs with two nodes
marked by the same symbol Si. This implies that a subderivation Si =⇒∗ v0Six0

there is in D using the components i, i′1, . . . , i′m,m ≥ 1. If all such subderivations
have vx = λ, for v0 =⇒∗ v, x0 =⇒∗ x, v, x ∈ T ∗, subderivations in D, then we
cannot obtain z of arbitrarily large length (the set of non-recurrent derivations is
finite).

Look now at the strings zt, zs, t < s, where the two occurrences of Si in Si =⇒∗

v0Six0 appear, namely zt = z′tSiz
′′
t , zs = z′sv0Six0z

′′
s . In the step zt =⇒f

i zt+1

exactly k (at least k in the ≥ k mode of derivation) occurrences of Si are rewritten.
Choose k of them (hence in both modes of derivation we proceed in the same way),
zt = α1Siα2Si . . . αkSiαk+1, and continue the derivation by using the rules in Si =⇒∗

v0Six0 for all these k occurrences of Si. (This is clearly possible.) In this way we
obtain a derivation

z0 =⇒f
i1

z1 =⇒f
i2

. . . =⇒f
it

zt = α1Siα2 . . . αkSiαk+1

=⇒f
i z′t+1 =⇒f

i′1
z′1 =⇒f

i′2
. . . =⇒f

i′m
z′m =

= α1v0Six0α2 . . . αkv0Six0αk+1.

These steps involving Si =⇒∗ v0Six0 can be iterated j ≥ 1 times:

. . . =⇒∗ α1v
j
0Six

j
0α2 . . . αkvj

0Six
j
0αk+1 = z′.

All the strings α1, . . . , αk+1 appear in zt, together with k occurrences of Si, therefore
we can derive them exactly as in D, until obtaining terminal strings, αq =⇒∗ uq, 1 ≤
q ≤ k + 1, Sq =⇒∗ wq, 1 ≤ q ≤ k.

In the string z′ we have exactly k occurrences of vj
0 and also k occurrences of xj

0.
Irrespective how many nonterminals appear in v0, x0, their number is a multiple of
k. Consequently, a terminal correct derivation in σ can be obtained (we choose k
occurrences of some nonterminal Sh and replace each occurrence by the same string
y ∈ Fh; continuing in this way, the number of nonterminals remains multiple of k,
hence the derivation can be finished). Write v0 =⇒∗ v, x0 =⇒∗ x. In conclusion, we
eventually obtain a string of the form

u1v
jw1x

ju2v
jw2x

j . . . ukvjwkxjuk+1,

which completes the proof (take as y the string as above with j = 1). 2

This theorem has a series of important consequences.

Corollary 1. All families COL(= k1), COL(= k2), COL(≥ k3), COL(≥ k4) with
different k1, k2, k3, k4 are pairwise incomparable.

P r o o f . The language
L = {(anbn)k | n ≥ 1}

is in COL(= k) ∩ COL(≥ k), but not in COL(= j) ∪ COL(≥ j′) for j 6= k 6= j′ (use
the previous necessary condition). 2

92 Gh. PĂUN

Corollary 2. The length set of languages in COL(= k), COL(≥ k), k ≥ 1,
contains infinite arithmetical progressions.

P r o o f . Directly from Theorem 6. 2

Theorem 7. The family COL(t) is incomparable with each of COL(=k), COL(≥
k), k ≥ 2.

P r o o f . The language {a2n |n ≥ 1} is in COL(t), but it does not have the property
in Corollary 2. On the other hand, consider the colony

σ = ({a, b}, (S1, {aS2b, ab}), (S2, {S1}), S2k
1).

Both L=k(σ) and L≥k(σ) (in fact, L=k(σ) ⊆ L≥k(σ)) contain strings of the form

an1bn1an2bn2 . . . an2kbn2k ,

with the following two properties:
1. for every i 6= j, the difference ni − nj can be arbitrarily large (start from S2k

1

and construct a derivation consisting of subderivations which rewrite different
k occurrences of S1 into aS2b and back to S1, iterated, in such a way that the
i-th substring anbn is arbitrarily increased but the j-th substring is bounded;
we can do this because we have 2k nonterminal occurrences);

2. for no j, 1 ≤ j ≤ 2k, we can have nj arbitrarily large and all ns, s 6= j, bounded
by a given constant (we have to increase at the same time the length of at least
k subwords anbn).

Suppose now that Lf (σ)∈COL(t), Lf (σ)=Lt(σ′), for some colony σ′=({a, b}, (S1,
F1), . . . , (Sm, Fm), w), f ∈ {= k,≥ k}.

In view of the above properties of strings of the considered forms, we must have in
σ′ derivations of the form Si =⇒∗ arSib

r, r ≥ 1 (we cannot have separate derivations
Si =⇒∗ arSi, Si =⇒∗ Sib

r, because then the equality of the number of occurrences
of a and b cannot be observed; derivations of different forms will mix the symbols a
and b – consider, for instance, Si =⇒∗ arSi, Si =⇒∗ brSi; the same for derivations
of other forms).

We consider from now on only the components (Si, Fi) corresponding to symbols
Si involved in such recurrent derivations. Denote their set by M .

In each sentential form of σ′ there are at most 2k occurrences of nonterminals Si,
but every nonterminal Si, if appearing in a sentential form, then it appears at least
twice (otherwise the previous property 2 is violated).

The strings in these sets Fi must be of the forms asSjb
s, s ≥ 0, j 6= i, or

as′bs′′ , s′, s′′ ≥ 0. If s = 0, then the symbols a, b in Si =⇒∗ arSib
r are introduced

in another component, F`, which is also in M . If Fi contains both a terminal and a
nonterminal string, then we can replace all occurrences of Si but one by a terminal
string and the remained occurrences by a nonterminal string. In this way a derivation
increasing only one substring anbn is obtained, violating again property 2. Similarly
if Fi contains two strings asSjb

s, atSlb
t, j 6= ` (we fix all occurrences of Si but one

On the Generative Capacity of Colonies 93

by replacing them by one string and work arbitrarily many steps on the non-fixed
component using the other string).

Consequently, all the sets Fi corresponding to components in M are singletons.
This implies that each occurrence of Si will lead to the same string amSib

m, m arbi-
trarily large. Finally, Si is replaced by a terminal string, which possibly differ from
an occurrence of Si to another, but only in the range of finitely many possibilities of
derivations without cycles. As we have pointed out, Si associated to components in
M appears at least twice in each sentential form. In this way, property 1 is violated
(we need arbitrarily different powers for all substrings anibni). Contradiction, hence
we cannot have Lf (σ) = Lt(σ′). 2

4. COLONIES WITH HYPOTHESIS LANGUAGES

A colony is a model of an intelligent system designed for solving certain problem,
hence it is supposed that the system has a target, its actions tend to some expected
results. This can be captured in colony terms by considering a target language, for
selecting the sentential forms generated by the colony. For grammar systems this
has been done in [5], by considering a regular language as hypothesis language of the
system behavior. The result is that such systems (with context-free components)
characterize the family of context-sensitive languages (this fits with results in reg-
ulated rewriting area [7], where similar characterizations of CS are obtained). We
shall see here that this is true also for colonies, thus strenghtening the results in [5].

Definition 4. A colony with (regular) hypothesis language (a h-colony, for short)
is a construct

σ = (T, (S1, F1), . . . , (Sn, Fn), R,w),

where (T, (S1, F1), . . . , (Sn, Fn), w) is a usual colony and R is a regular language in
(N ∪ T)∗ − T ∗.

Now, for f ∈ {∗, t}∪{≤ k, = k,≥ k | k ≥ 1} and 1 ≤ i ≤ n, we accept a derivation
x =⇒f

i y only when y ∈ R or y ∈ T ∗. The generated language is

Lf (σ) = {x ∈ T ∗ | w =⇒f
i1

w1 =⇒f
i2

. . . =⇒f
is

ws = x,

s ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ s, and
wj ∈ R, 1 ≤ j ≤ s− 1}.

(No hypothesis is made about the last string, the terminal one.)
We denote by HCOLn(f), HCOL(f), n ≥ 1, f as above, the families of languages

obtained in this way, corresponding to COLn(f), COL(f), respectively.
Every colony is a h-colony: take R = (N∪T)∗−T ∗, hence imposing no restriction.

Therefore,
COLn(f) ⊆ HCOLn(f), n ≥ 1,

COL(f) ⊆ HCOL(f), f as above.

For f ∈ {= k,≥ k | k ≥ 2} we again have finite languages not in HCOL(f), but the
hypothesis languages increase considerably the power of colonies of all types.

94 Gh. PĂUN

Theorem 8. HCOL(f) = CS, f ∈ {∗, t, = 1,≥ 1} ∪ {≤ k | k ≥ 1}.
P r o o f . The inclusions ⊆ are obvious (they can be obtained by straightforward

constructions).
Conversely, take a grammar G = (N,T, P, S) in Kuroda normal form, that is

with rules in P of the forms

A → a, A → BC, AB → CD, for A,B, C, D ∈ N, a ∈ T.

We allow also rules A → B, A, B ∈ N . Without loss of generality we may assume
that no lefthand nonterminal of a rule appears also in the righthand side of the same
rule.

Assume P = P1 ∪ P2 with

P1 = {pi : A → x | 1 ≤ i ≤ n},
P2 = {qi : AB → CD | 1 ≤ i ≤ m}.

We construct now a h-colony for the language L(G). All the cases f ∈{∗,=1,≥1}
∪{≤ k | k ≥ 1} can be treated together. Namely, take the colony σ with the terminal
alphabet T , the axiom string S and the next components:

1. (A, {x}), for pi : A → x ∈ P1, 1 ≤ i ≤ n,

2. (A, {A′}), A ∈ N,

3. (A, {A′′}), A ∈ N,

4. (A′, {Ci}),
5. (Ci, {C}),
6. (B′′, {Di}),
7. (Di, {D}), for qi : AB → CD ∈ P2, 1 ≤ i ≤ m.

Denote by N ′, N ′′ the set of symbols A′, A′′, respectively, A ∈ N.
Take also the hypothesis language R for σ

R = R0 ∪ (N ∪ T)∗N ′(N ∪ T)∗,

where

R0 = (N ∪ T)∗ − T ∗

∪ (N ∪ T)∗N ′N ′′(N ∪ T)∗ ∪
m⋃

i=1

(N ∪ T)∗CiN
′′(N ∪ T)∗

∪
m⋃

i=1

(N ∪ T)∗CiDi(N ∪ T)∗ ∪
m⋃

i=1

(N ∪ T)∗Di(N ∪ T)∗.

We have
L=1(σ) = L(G).

Indeed, rules in P1 are simulated by components in group 1 and conversely. In every
moment, one component of type 2 can be used (not more, due to restrictions imposed

On the Generative Capacity of Colonies 95

by R). Then a component of type 3 can be used (and only one). No component of
type 4 can be used before using the component of type 3. Now a component of type
5 can be used, then one of type 6 and finally one of type 7. These components must
correspond to the same index i, hence to the same rule qi in P2, which is simulated
in this way. The components of type 2 – 7 cannot be used in a different order as
above, due to the forms of strings in R.

The strings in R also ensure the equalities L=1(σ) = L∗(σ) = L≥1(σ) = L≤k(σ),
hence for all these cases we have the equality with L(G).

For the derivation mode t we construct the colony σ′ which is exactly as σ above,
but with components of types 2, 3 replaced by

2′. (A, {A′, Ā}), A ∈ N,

3′. (Ā, {A′′, A}), A ∈ N.

Denote again by N ′, N ′′, N̄ the sets of symbols A′, A′′, Ā, A ∈ N . Then the hypoth-
esis language of σ′ is

R′ = R0 ∪ (N̄ ∪ T)∗N ′(N̄ ∪ T)∗,

with R0 as above.
The equality L(G) = Lt(σ′) can be obtained as previously (the t-mode of deri-

vation makes necessary the use of symbols Ā, for the case when more occurrences
of some A are present, but only one can be replaced by A′, A′′, respectively, as re-
quested by R′). 2

Another way for increasing the power of grammar systems is considered in [15]:
it is supposed that the components “speak different languages” and a transducer
is necessary to intermediate them. Characterizations of context-sensitive languages
are obtained in this way [14]; the same result holds true for colonies.

Definition 5. A colony-transducer pair is a couple (σ, g), where σ = (T, (S1, F1),
. . . , (Sn, Fn), w) is a colony as above and g = (N ∪ T, N ∪ T, Q, s0, F, P) is a
generalized sequential machine (gsm) (Q is the set of states, s0 is the initial state, F
the set of final states, P the set of translation rules of the form sa → xs′, s, s′ ∈ Q,
a ∈ N ∪ T, x ∈ (N ∪ T)+). The language generated by (σ, g) in the mode f, f as
above, is

Lf (σ, g) = {x ∈ T ∗ | w =⇒f
i1

w1 =⇒ g(w1) =⇒f
i2

w2 =⇒ g(w2) =⇒ . . .

. . . =⇒f
is

ws = x, s ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ s}.

(Notice that if the string is terminal, then it is no more translated.)

We denote by TCOLn(f), TCOL(f), n ≥ 1, f as above, the obtained families of
languages.

As the transducer g can check whether the scanned string is in a given regular
language R, it can play the role of a hypothesis language. Consequently,

96 Gh. PĂUN

Theorem 9. TCOL(f) = CS, f ∈ {∗, t, = 1,≥ 1} ∪ {≤ k | k ≥ 1}.
For f ∈ {= k,≥ k | k ≥ 2} again we cannot generate strings of length strictly

smaller than k. However we have

Theorem 10. COL(f) ⊂ HCOL(f) ∩ TCOL(f), f ∈ {= k,≥ k | k ≥ 2}.
P r o o f . Consider the language

Lk = {(ancbn)k−1ccn | n ≥ 1}.
In view of Theorem 6, this language is not in COL(f), for f as above (we have
to pump three different subwords, an, bn, cn, while in Theorem 6 only two different
subwords can be pumped, on several positions, depending on f), but we have Lk =
L(σ) for

σ = ({a, b, c}, (S1, {aS2b, cS2, c}), (S2, {S1}), R, Sk
1),

where
R = (a∗S1b

∗)k−1c∗S1 ∪ (a∗S2b
∗)k−1c∗S2.

Clearly, the first k− 1 occurrences of S1 must be replaced in the first component by
aS2b and the last one by cS2, or all of them by c, otherwise the restriction imposed
by R is violated. This ensures the equality Lk = Lf (σ) for f ∈ {= k,≥ k}.

As above, the language R can be replaced by a gsm which can scan only strings
in R (without modifying them), hence we have also the relation Lk ∈ TCOL(f). 2

As a conclusion of all these results we may state that the colonies, with various
modes of derivation and having or not hypothesis languages or aided by transducers,
have a considerable generative power, in spite of the small complexity of components
(in fact, the components are the simplest we can imagine in Chomsky hierarchy,
regular grammars generating finite languages). And, of course, we have to stress
the richness of this subject from mathematical point of view, a statement already
illustrated in grammar systems theory [4].

ACKNOWLEDGEMENT

Useful remarks by dr. Alexandru Mateescu on an earlier version of this paper are gratefully
acknowledged.

(Received April 13, 1993.)

REFE REN CES

[1] R.A. Brooks: Intelligence without representation. Artificial Intelligence 47 (1991),
139–159.

[2] R.A. Brooks: Intelligence without reason. AI Memo 1293, MIT AI Laboratory, Cam-
bridge, Mass., 1991.

[3] E. Csuhaj-Varju and J. Dassow: On cooperating distributed grammar systems. J.
Inform. Proc. Cybern. EIK 26 (1990), 49–63.

[4] E. Csuhaj-Varju, J. Dassow, J. Kelemen and Gh. Păun: Grammar Systems. Gordon
and Breach, London 1994.

On the Generative Capacity of Colonies 97

[5] J. Dassow: Cooperating distributed grammar systems with hypothesis languages. J.
Exp. Theor. Artif. Intell. 3 (1991), 11–16.

[6] J. Dassow, J. Kelemen and Gh. Păun: On parallelism in colonies. Cybernetics and
Systems 24 (1993), 37–49.

[7] J. Dassow and Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin – Heidelberg 1989.

[8] J. Gruska: Some classifications of context-free languages. Inform. and Control 14
(1969), 152–179.

[9] J. Gruska: Descriptional complexity of context-free languages. Proc. MFCS Symp.,
High Tatras, 1973, 71– 84.

[10] J. Kelemen: Syntactical models of distributed cooperative systems. J. Exp. Theor.
Artif. Intell. 3 (1991), 1–10.

[11] J. Kelemen and A. Kelemenová: A subsumption architecture for generative symbol
systems. Cybernetics and Systems Research ’92, Proc. 11th European Meeting Cybern.
Syst. Res. (R. Trappl, ed.), World Scientific, Singapore, 1992, pp. 1529–1536.

[12] J. Kelemen and A. Kelemenová: A grammar-theoretic treatment of multiagent sys-
tems. Cybernetics and Systems 23 (1992), 621–633.

[13] A. Kelemenová and E. Csuhaj-Varju: Languages of colonies. 2nd Intern. Coll. Words,
Language, Combinatorics, Kyoto 1992.

[14] H.C.M. Kleijn and G. Rozenberg: A study in parallel rewriting systems. Inform. and
Control 44 (1980), 134–163.

[15] V. Mitrana: Pairs grammar systems – transducers. Ann. Univ. Buc., Series Matem.-
Inform. 39 (1990), 73–81.

[16] A. Salomaa: Formal Languages. Academic Press, New York – London 1973.

Dr. Gheorghe Păun, Institute of Mathematics of the Romanian Academy of Sciences,

PO Box 1–764, Bucuresti 70700. Romania.

	 INTRODUCTION
	 COLONIES; DERIVATION MODES
	 THE GENERATIVE POWER
	 COLONIES WITH HYPOTHESIS LANGUAGES

