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TEST OF LINEAR HYPOTHESIS
IN MULTIVARIATE MODELS

LuBoMiR KUBACGEK

In regular multivariate regression model a test of linear hypothesis is dependent on a
structure and a knowledge of the covariance matrix. Several tests procedures are given
for the cases that the covariance matrix is either totally unknown, or partially unknown
(variance components), or totally known.

Keywords: multivariate model, linear hypothesis, variance components, insensitive region

AMS Subject Classification: 62J05

1. NOTATIONS AND AUXILIARY STATEMENTS

Let a model

be under consideration. Here Y is an n X m normally distributed matrix with the
mean value matrix E(Y) equal to X B. The covariance matrix of the vector vec(Y')
(the vector composed of the columns of the matrix Y) is Var[vec(Y)| =2 & I (I is
the n x n identity matrix). The model is regular if the rank 7(X) of the matrix X
is 7(X) = k < n and the m x m matrix X is positive definite (p.d.).

The linear hypothesis of the unknown k£ x m parameter matrix B is considered
in the form
Hy: HB+ H,=0, (2)

where h x k matrix H is assumed to be known. The h x m matrix Hg is also
assumed to be known. The hypothesis is regular if »(H) = h < k. The alternative
hypothesis is

H,: HB+ H,#0.

Lemma 1.1. The best linear unbiased estimator of the matrix B is

B=(X'X)"'X'Y ~ N\uB, 2@ (X'X)1.

Proof. Cf. [1]. O
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Lemma 1.2. One of the test statistics for the regular hypothesis (2) in the case
of the known matrix ¥ is

T=T{(HB + Hy) [H(X'X)"'H'| " (HB + H)S™' | ~2,(0),  (3)

where
5= Tr{(HB* + Ho)[H(X'X)'H'|"\(HB" + Ho)zfl}.

The symbol anh(d) means the noncentral chi-square random variable with mh de-
grees of freedom and with the parameter of noncentrality equal to §, B* means the
actual value of the matrix B.

Proof. The statement can be obtained from an univariate model vec(Y) ~
Npym[(I @ X)vec(B),X ® I] in a standard way by utilization of the relationship
vec(X B) = (I ® X )vec(B). O

Lemma 1.3. The matrix (Y — X B)'(Y — X B) is the m x m Wishart matrix with
the n—k degrees of freedom and with the covariance matrix 3, i.e. (¥ —XB) (Y —
XB) ~ Wy (n— k).

Proof. The matrix Y — X B is distributed as Npm (0,2 ® M x), where M x =
I — Px and Pyx is the Euclidean projector on the subspace M(X) = {Xu :
u € R*}. Thus for any generalized inverse (cf. [6]) My of the matrix My the

matrix (Y — Xﬁ)’M;( (Y — X B) has the Wishart distribution W,,([r(Mx),3).
One version of the matrix M is I. m

Lemma 1.4. If ¥ = 0%V (V is p.d.), then the best estimator of o2 is

o DY -XB)(Y - XB)V] X0
B m(n —k) m(n—k)

This estimator is independent of the estimator B.

Proof. The statement is a transcription of the well known statement from the
theory of the univariate linear models (cf. e.g. [2]). O
Corollary 1.5. If ¥ = 62V, then one of the test statistics for the regular hypoth-
esis (2) is

Tr{(HJé + Ho)/[H(X'X) 'H'|"\(HB + HO)Vfl}/(mh)
T = = =

Tr[(Y - XB) (Y — XB)V~']/[m(n — k)]

~ th,m(nfk) (6)a

where
Tr{(HB* + Ho)[H(X'X) 'H')"\(HB" + HO)V*l}

0= o2

and Fy,,p m(n—k)(9) is the noncentral Fisher-Snedecor random variable with degrees
of freedom equal to mh and m(n — k) and with the noncentrality parameter equal
to 4.
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2. DIFFERENT STRUCTURES OF THE MATRIX &
Let 3 be given. Then
(HB+ Hy)'[H(X'X) "H'|""(HB + Hy) = Q, ~ Wy,(h, %)

(possibly noncentral) and therefore, under the null hypothesis, for any nonzero f €
R™ it is valid

FQuF/(F'2F) ~ xi(0).
Let HB* + H( # 0 (B” is the actual value of the matrix B) and let Apax be the
maximum solution of the equation

det {(HB* + Ho)[H(X'X) 'H')"Y(HB* + Hy) — AE} =0

and let f satisfy the relationship

{(HB + H/[H(X'X)" H'| " (HB" + Hy) = MiuxS | f e = 0.
Then

max

6 = Floax(HB" + Ho) [H(X'X) " "H'| " (HB" + Ho)f s | Fraas=F e
i.e. the parameter of noncentrality of the statistic

X%L((S) = .finalefmax/finaxzfmax (4)

is for this vector f, ., maximum and therefore the chance to detect that Hy is not

true is also maximum.

It is of some importance to compare the power functions of the statistics (3)

and (4).
Let
-2, 1, 4
-1, 2, 2 12, 0, 0
X = 0, 4, —4 Bg’g + €5,3, Var[vec(X)] = 0, 22, 0 X I5’5
1, 2, 2 0, 0, 3
2, 1

and the null hypothesis be ( (1)’ 1’ 1
k=3.1If

L1, 1\ g (05 —05 10
0, 1, 1)\ 0, 05 -05)
then 1@ Fana | Frnax S Fma ~ X3(01),01 = 2994 and T ~ x3(62), 8 = 6.603

(cf. Lemma 1.2).

)B:O.Itrneansh:2,m:3,n:57



466 L. KUBACEK

If Xfp (6) is approximated by f}f—ﬁs‘sxfﬁa)z (0), then we obtain for
TF25

o =0.05 P{x3(2.994) > 5.99} = 21% and P{x2(6.603) > 12.6} = 44 %. It shows a
prevalence of the test (3) versus (4). However it can be utilized only in the case of

the known matrix X, or if its estimator is very precise.
If the matrix X is unknown and (2) is true, then the relationships

Q, = (HB+H,) [HX'X)""H'|"\(HB + Ho) ~ Wy, (h, %),
Q = (Y-XB)(Y~XB)~Wyu(n-kX)

(it is to be remarked that @, and @, are independent) can be utilized for a con-
struction of different tests for the hypothesis (2). As and example can serve the

statistic g'Q,9/9'Qs9 ~ Fhn—k, Where

g9 _ maX{U’Qlu
9'Q.g u'Qyu
This statistic has the Fisher—Snedecor distribution Fj, ,,—(0) if the hypothesis Hy
is true and the distribution is independent of g. However if Hy is not true then the
statistics has the largest realization and thus there is the greatest chance to recognize
that Hj is not true. R R R
If n — k tends to infinity, then ¥ = (¥ — XB) (Y — XB)/(n — k) tends to X
- N -1
in probability and thus Tr{(HB +Hy)[H(X'X)"'H'"'\(HB+ Hy)XZ } tends
in distribution to x?2,,. This fact can be also utilized mainly in connection to a
consideration at the beginning of this section. Other tests based on the matrices Q;
and Q,, respectively, are analyzed in [4] and therefore they are omitted here.

:ueRm}.

Lemma 2.1. Let ¥ = >? | ¢,V,, where ¥;, i = 1,...,p, are unknown param-
eters, ¥ € ¥ C RP, and V,...,V,, are known symmetric matrices. The set ¥ is
open and it is valid 9 € 9 = > 9,V is p.d. Let the matrix Szal be regular.
Here
-1 -1 ..
{Szo_l}ij =TSy 'V V), dii=1,....p,

and X = > b, 1920)Vi,19(0) = (19§0), .. .,19,()0))’ is an approximate value of he un-
known parameter 9. Then the unbiased 19(0)-locally minimum variance quadratic
invariant estimator of the parameter 1 is

. (Y MxYE;'ViZ5h) )

5 _ -1 . 3y _ -1

9= p— kszgl : ,  Vary, (V) = p— kszgl.
Tr(Y MxYE;'V, 501

Proof. Cf. [5]. O

Now the problem arises whether the matrix E(??) =3, 9;V; can be used

instead the matrix ¥ in the statistic (3) without any essential deterioration of the
inference.
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In the following text a procedure for a construction of an insensitivity region
is described. For the sake of simplicity only a problem of the risk « of the test
is analyzed and problems of construction of the insensitivity region for the power
function of the test is omitted.

Lemma 2.2. Let
T(9) = Tr{(HB + Ho)[H(X'X)'H'|"\(HB + HO)E*I(ﬂ)}.

Then

oT(9)
99;

- —Tr{(HE + Ho)[H(X'X)'H'|"\(HB + HO)E‘l(ﬂ)ViE‘l(ﬂ)},

thus (8 + 60) ~ T(9) + X0, 25260; = T(9) + € and

¢ ~1 (—ha'89,2h89' S5-109),
where @’ = [Tr(V,271),..., Te(V,=71)].

Proof. Since under the null hypothesis (2)

B (agé?)) — —E(lvec(HB + H) {(=7'V:= ™) o [H(X'X)'H'| "'}
xvec(HB + Ho)) = ~Tx(((I o H)[S @ (X'X) (e B){(=71V,27)
®[H(X’X)*1H’]*1}) - fTr<(22*1V,;2’1) ® {H(X’X)*H’

x[H(X’X)‘lH’}‘l}) — _ATe(V,=7Y),

we have E ( - o1 () 61%) = —ha'sd.

oY
Further
Y ——

S[(H(X'X)" H ™ (e H)E o (X' X)) o H){(Z'V;57)

S[(H(X'X) " H ') = 2T [(S7ViE V) @ Ina| = 20 S},
i j=1,...,p. O

Theorem 2.3. If Hy is true and §9 € Ny,, where an insensitivity region is

Noy = {69 : (69 —up) Ag(69 — up) < &}, ug = Ay hémaxao,
Ay = 20°hSy-1 —hPagay, ¢ =0}, +h70).a0A 5 ao,

ay = [Te(ViZgh),....Te(V,35 )],
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then PHO{ (Yo + 69) > X%zh 0;1 — « } < a + €. Here 0pmax is a solution of the

equation P {x2,(0)+6 > x2,(0;1 —a)} = a+ ¢ and ¢ is sufficiently large real
number.

Proof. If Hy is true, then for a given 69 and sufficiently large ¢ the inequality

€ < —hayd0 + t\ /2159 Sy, 169 (5)

occurs with probability near to one. If

—hagdd +t /2159 S5 -169 < dmax, (6)

then P {th )+ E> 20,1 — )} a + ¢. The inequality (5) is implied by the
inequality (09 — ug)’ Ag(d9 — up) < ¢ O

Remark 2.4. The value ¢t need not be larger than 4. In [3] an optimum choice of
t was studied for some cases and it was found that the value t = 3 can be sufficient
large.

Corollary 2.5 Ifp=1,i.e. ¥ = 02V, then the inequality (6) can be rewritten as

m (619)2
—hI560 + 14/ 2hm 2 < O

Since §9) can be negative in this case, it must satisfy the inequality

’ % ’ hm-i?\?% ’

what can be approximated as |5"| <3 hmj;:/xﬁ where ¥ = 2. From Lemma 2.1

we obtain y/Var(c) = \/%. In this case the value 3, i.e. the matrix & = JV

can be used in the test (3) instead the actual value if the following inequality

1 G 0.707
2 hm + tV2hm \/m(n—k)

is satisfied. If @ = 0.05, € = 0.05, m =5, h =4, t = 3, then n — k > 617. It is
quite clear that a requirement on the accuracy of the estimator ¥ can be rigorous.

In the case p = 1 obviously the test from Corollary 1.5 must be used. The example
is given only for a demonstration how large the necessary number of observations
can be.

Remark 2.6. If the matrix 2t2h520‘1 — h2agay, is not p.d., then from the practi-
cal purposes in the spectral decomposition 2t2h5’251 — hlagal, = D" N f, i the
negative eigenvalues \; are substituted by their absolute values |A;|. In this way the
shape of the insensitivity region Ny, is always ellipsoid.
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Remark 2.7. If p > 2, and only s = P @-Vi is at our disposal, the matrix >
can be used in the test (3) in such case only that §9 € Ny, with certainty. Thus a

o~

consideration on the basis of Var(d) from Lemma 2.1 must be made.

If the estimator & = (Y - XB) (Y — XB) is at our disposal only and the
test (3) is to be used, the analogous consideration as in Theorem 2.3 can be made.

Let A B means the Hadamard product of the matrices A and B, i.e. {A x B},
= A, ;B; ; and diag(X) means the vector composed of the entries of the diagonal of
the matrix X.

W ~W,(n—k X), then

K= ﬁ {ding(S)[diag(2)] + = £} (7)

is the matrix with the following property. Its (4,7)th entry is the dispersion of
0ij = {Whij/(n—Fk).

If 64X is a matrix of infinitesimal shifts of the entries of the matrix X, it is valid
under the null hypothesis Hy:

T(S 4 0%) ~ Tr{(HB + Ho)[H(X'X) 'H')""(HB + H,)
x(Z7! - 2—1522—1)} =2 (0) + €,
where
£ = —Tr{(HTa + Ho)[H(X'X)"'H'|"\(HB + Ho)z:—lazz—l}.

Further
€~ { — hTr(ELE), zhﬂ(z—lézz—léz)]

Theorem 2.8. If Hy is true and X € Ny, where

Ny, = {62 : [vec(63) — uo]/Ao [vec(03) — ug| < 02},
uy = h5maxA51vec(Eal),
Ay = 2t%h(Zo @ o) — h?vec(Zy 1) [vec(Zg )],
= G+ D [vee(S ) Ag Hvee(Eg )],

P {anh(o) + 5max > anh(O, 1-— a)} =a+e¢,

then
P{T(Zp +6%) > x2,,(0;1 —a)} < a+e.

Proof is analogous as in Theorem 2.3. ]
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Remark 2.9. Let k = vec(K) from (7) and \/{k}; = {l};, i = 1,...,m?. The
vector [ is composed of the standard deviations /Var(c; ;) = [; ; of the estimators
Y~ XB) (Y — XB)}” of {¥};; = 0i;. The vector I generates the class

of 2™ vectors which have the same absolute values of their coordinates, however
different signs, e. g.

T = (+ll,17 711,27 cee +ll,m7 DR} +12,17 OERE) +12,ma ey 7lm,17 cey 7lm,m)l~

Now if the vectors r are sufficiently small with respect to the set Ny, i.e.

—hlvee(S5 H]'r + 1y/20r (551 © B3I < S,

then the estimator of 3 can be used in the test (3). This check is rather rough,
nevertheless for the first orientation is sufficient.
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