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ON SELECTING THE BEST FEATURES
IN A NOISY ENVIRONMENT

Jan Flusser1 and Tomáš Suk

This paper introduces a novel method for selecting a feature subset yielding an optimal
trade-off between class separability and feature space dimensionality. We assume the fol-
lowing feature properties: (a) the features are ordered into a sequence, (b) robustness of
the features decreases with an increasing order and (c) higher-order features supply more
detailed information about the objects. We present a general algorithm how to find under
those assumptions the optimal feature subset. Its performance is demonstrated experimen-
tally in the space of moment-based descriptors of 1-D signals, which are invariant to linear
filtering.

1. INTRODUCTION

Selection of a subset of a large set of features which is “optimal” in some sense is
an essential task on the field of pattern recognition. Usually there are two opposite
requirements working against one another: the subset should be “small enough”
to reduce significantly the dimension of the feature space and, on the other hand,
it should provide sufficient object representation and discriminative power. There
have been published numerous feature selection methods in the last three decades,
we refer to classical monographs [1] and [2] for a survey.

The problem formulation we are dealing with in this paper is slightly different.
We assume the features are ordered and having the following property: robustness
to noise in the original data decreases with the increasing feature order whereas its
ability to supply detailed information about the objects increases. Central moments
of signals and images, all moment-based invariants and some of differential invariants
and Fourier descriptors behave exactly in that way.

We consider only subsets formed by first p members of the feature sequence.
Thus, the problem of the optimal feature selection is restricted to searching for an
optimal order popt.

There have not been many publications devoted to the problem formulated above.
Mostafa and Psaltis [3] and Teh and Chin [4] proved that image moments satisfy
our assumption. Liao and Pawlak analyzed the one-class problem of noisy image
representation by moments in [5] and [6]. They defined the optimal order popt

1This work has been supported by the grant No. 102/96/1694 of the Grant Agency of the Czech
Republic and by the grant No. 4178–3 of the Ministry of Health.
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according to the minimum-reconstruction-error criterion and they showed that such
an optimum exists and that it decreases with increasing noise variance.

In this paper, we consider objects belonging to different classes. We try to opti-
mize the discrimination power of the features (i. e. the separability of the classes)
which obviously differs from its reconstruction ability.

2. A TWO–CLASS PROBLEM

Consider a problem of two pattern classes w1 and w2 with mean vectors m1,m2

and covariance matrices C1,C2, respectively, in a p-dimensional space of features
S1, . . . , Sp. Define the mean covariance matrix C as

C = P (w1)C1 + P (w2)C2,

where P (wi) is an a priori probability of wi and assume that C is non-singular.

Fig. 1. Typical behaviour of the Mahalanobis distance between two classes.

p1 – threshold of separability; p2 – threshold of noise sensitivity.
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Under these conditions, we can take the Mahalanobis distance

D(p) = (m1 −m2)C−1(m1 −m2)′

as the measure of the class separability.
The typical course of the Mahalanobis distance under the assumptions given in

Section 1 as a function of p is depicted in Figure 1. The features of order less than p1

have not enough discriminative power to separate the given classes. The features of
order greater than p2 do not contribute significantly to the class separability because
of their high sensitivity to noise. Thus, we consider (Sp1 , . . . , Sp2) as the optimal
feature subset. Clearly, the values of p1 and p2 depend on the given classes. If the
classes are “well-separable” by lower-order features, then p1 is close to one. Similarly
if they are “well-separable” by higher-order features, p2 becomes very high. On the
other hand, if the classes are “similar” to each other, then p2 may be equal to p1

and those classes may be non-separable by any feature subset.
In practice we do not search for p1 because it is usually small and the dimen-

sionality reduction by p1 is not significant. Moreover, most features we are dealing
with are calculated recursively. To calculate the feature Sp of the object, one has to
know all lower-order features first.

3. AN OPTIMIZATION PROCEDURE

In this Section, we present a numeric algorithm which finds the optimal feature
number defined above.

1. Inputs:
f

(k)
1 , . . . , f

(k)
nk – training patterns of wk, k = 1, 2,

ε – user defined tolerance parameter.
2. Set p = 1; ind = 0;
3. for k = 1 : 2

P (wk) = nk/(n1 + n2);
end;

4. for k = 1 : 2
Estimate mk and Ck;

end;
5. C = P (w1)C1 + P (w2)C2;
6. D(p) = (m1 −m2)C−1(m1 −m2)′;
7. if (p ≤ 2) then goto Step 7;

else if (D(p)−D(p− 2) ≥ 2ε) then ind = 1;
else if (ind = 1) then popt = p− 2; STOP

end;
end;

end;
8. p = p + 1;

goto Step 4.
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Step 7 is a key point of the algorithm. The logical variable ind tells us whether
the current p is greater than p1 (ind = 1). Without this indicator the algorithm
would stop in most cases at the beginning giving a false result popt < p1. The stop
condition says that for two consecutive values of p the average increment of the
Mahalanobis distance D(p) must be less than ε.

4. NUMERICAL EXPERIMENTS

To demonstrate the previous considerations as well as the optimization procedure
experimentally, we employ one kind of moment invariants of 1-D signals. (We could
use, however, any features meeting our assumptions.)

In the following text, by signal we understand any absolutely integrable function
f(t) which is non-zero on bounded support and the integral of which is non-zero.

Let us define for any odd p the feature Sp(f) by the following recursive formula:

Sp(f) = µ(f)
p − 1

µ
(f)
0

(p−1)/2∑
n=1

(
p

2n

)
Sp−2n(f) · µ(f)

2n ,

where µ
(f)
p is the central moment of the signal f(t).

It was proved in [7] that each Sp is an invariant with respect to blur, that means
its value does not change when the signal is convolved with any symmetric impulse
response h(t), i. e. Sp(f) = Sp(f ∗h). Due to this property, these invariants are very
powerful features for recognizing signals filtered by an unknown linear system [8].

First, let us demonstrate that the blur invariants do meet our assumption about
the decreasing robustness. Let g be a noisy version of f , i. e. g = f + n, where n
denotes zero-mean Gaussian noise. The robustness of the invariants can be charac-
terized by their relative error

rp =
|Sp(g)− Sp(f)|

Sp(f)

(high relative error indicates low robustness).
The course of the mean value of rp as the function of the order of the invariants

is depicted in Figure 2. In this experiment, 100 realizations of the noisy signal
were generated to estimate E(rp). Signal-to-noise ratio was always equal to 5 dB.
The increasing character of E(rp) demonstrates the decreasing robustness of the
invariants with respect to additive random noise.

Now two classes of 1-D digital signals are given, each of them containing 30
elements. We applied the above algorithm (with the tolerance parameter ε = 0.05)
to find the optimal number of the blur invariants for class separation. Figure 3
shows the course of the Mahalanobis distance between the classes depending on the
number of the invariants used. The algorithm yields the result popt = 6. Thus, the
optimal subset consists of blur invariants S3, S5, S7, S9, S11 and S13 in this case (S1

is useless because S1 = 0 everywhere).
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Fig. 2. Robustness of the blur invariants with respect to additive random noise.

Horizontal axis: the order of the invariant; vertical axis: relative error (mean value over

100 runs).

5. CONCLUSION

In this paper, we have introduced a method for selecting the optimal feature subset
for class separability in a noisy environment. The method works for any ordered
feature sets which meet the two following assumptions: robustness of the features
decreases with the increasing order and the higher-order features supply more de-
tailed information about the objects. The performance of the presented algorithm
has been demonstrated experimentally in the space of the moment-based descriptors
of 1-D signals, which are invariant to linear filtering.

We have defined the optimal number of features popt as the highest order, which
contributes “significantly” to class separability measured by Mahalanobis distance.
If we use more than popt features, the class separability cannot be worse but com-
putational cost increases. On the other hand, popt might be in some cases too high
to employ all features up to the order popt in practice. Moreover, the algorithm
may be numerically unstable for high p because covariance matrix C may become
ill-conditioned. Thus, we should define some threshold values of p or of Mahalanobis
distance D(p). Once one of these thresholds is exceeded the algorithm should stop
even if popt has not been reached.

(Received December 18, 1997.)
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Fig. 3. The Mahalanobis distance in the space of blur invariants between two classes of

signals depending on the order of invariants used.
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