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ON GENERALIZED POPOV THEORY
FOR DELAY SYSTEMS

S. I. Niculescu, V. Ionescu, D. Ivănescu1, L. Dugard and J.-M. Dion

This paper focuses on the Popov generalized theory for a class of some linear systems
including discrete and distributed delays. Sufficient conditions for stabilizing such systems
as well as for coerciveness of an appropriate quadratic cost are developed. The obtained re-
sults are applied for the design of a memoryless state feedback control law which guarantees
the (exponential) closed-loop stability with an L2 norm bound constraint on disturbance
attenuation.

Note that the proposed results extend similar ones proposed by some of the authors [11].

1. INTRODUCTION

Control of time-delay systems is a problem of recurring interest since many physical
processes involving transport phenomena (engineering or biological systems) can be
modelized using delays (see, for instance Kolmanovskii and Nosov [13], Kolmanovskii
and Myshkis [12] or Răsva [28] and the references therein) and the existence of a
delay may induce instability or poor performances for the closed-loop schemes.

Recently, special interest has been focused on the stabilization problem of linear
systems including delayed state via memoryless controllers (state-feedback, output
feedback). A classification of such controllers function of the closed-loop stability
property, which could depend or not on the delay size has been given in [20] (and
the references therein).

Although the last decade has witnessed significant advances on the H∞ con-
trol theory for linear systems (see [3] for a Riccati based approach or [1] for an
LMI based approach), the H∞ control for linear systems with delayed state have
not been fully investigated. Memoryless controllers for such systems have been
considered in [16] (frequency-domain, constant delay, state feedback), [19] (time-
domain, supplimentary constraints on the closed-loop system, LMI approach) for
systems without uncertainties. The uncertainty case have been considered in [22]
(time-varying and bounded uncertainties, a Riccati equation approach, time-varying
delay, uncertainty, state feedback), [30] (time-varying and bounded uncertainties, a
Riccati equation approach, constant delay, output feedback) or in [17, 18] (IQC
uncertainties, LMI approach, state-feedback and dynamic state feedback).

1All the correspondence should be sent to this author
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The development is essentially based on the ‘generalized’ Riccati theory presented
by Ionescu and Weiss [7] which is an extension of the famous Popov’s positivity
theory [27] to the indefinite sign case, usually encountered in game-theory situations.
To be more specific, our results are based on the necessary and sufficient condition for
the existence of the stabilizing solution to an adequate Kalman – Yakubovich – Popov
system (KYPS) of indefinite sign, called KYPS in ‘J-form’. This approach, combined
with the Krasovskii theory for time-delay systems, leads to explicit representation
formulae. The delay system class considered includes discrete and distributed delay
terms and can be seen as a special case of infinite-dimensional systems described by
distributional convolutions (see [20] and the references therein). Note that the results
presented here extend previous results obtained by some of the authors [9, 10, 11, 23],
and can be further extended to multiple delays and/or structured uncertainty.

The novelty of the approach lies in the way to interpret the Lyapunov – Krasovskii
functional as a quadratic index for an appropriate linear time-invariant system. Note
that an overview of some finite-dimensional interpretations and related (closed-loop)
stability results for linear time-delay systems can be found in [20]. Further comments
can be also found in [24, 29].

The paper is organized as follows: in Section 2 the problem statement is given;
Section 3 addresses some basic results on Popov theory. The main results are pre-
sented in Section 4. The H∞ problem is considered in Section 5. A numerical
example is presented in Section 6. Some concluding remarks end the paper. For the
sake of clarity, the proofs of some results are included in Appendix.

2. PROBLEM STATEMENT

Consider the state-delayed system including ‘discrete’ and ‘distributed’ delays (fol-
lowing the terminology proposed in Kolmanovskii and Myshkis [12]) of the form:

ẋ(t) = Ax(t) + A1xt(−τ1) +
∫ τ2

0

A2(θ)xt(−θ) dθ

+B1u1(t) + B2u2(t), (1)

where xt represents the translation operator xt(θ) = x(t + θ), and A2(θ) is a piece-
wise continuous function, x(t) ∈ Rn is the state, u1(t) ∈ Rm1 , u2(t) ∈ Rm2 are
the disturbance and control inputs, A, A1, Bi i, j = 1, 2 are constant matrices of
appropriate dimensions; τ1 is the ‘discrete’ delay (to reconstruct the state at t we
need information only in a ‘point’ of the interval [t−τ1, t]) and τ2 corresponds to the
‘distributed’ delay due to the integral ‘action’ (information on all interval [t− τ2, t]).

We are interested in finding a memoryless controller of the form:

u2(t) = F2x(t) (2)

that simultaneously

– stabilizes the system (1), i. e. the closed-loop is exponentially stable and

– achieves the γ – attenuation property, that is

‖Ty1u1‖ < γ,
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where Ty1u1 is the L2-linear bounded input-output operator defined by the
closed-loop configuration obtained by coupling.

Several discussions on the delays τ1 and τ2 will be also considered. Note also that the
proposed approach can be easily extended to multiple discrete and/or distributed
delays by an appropriate construction of the corresponding Lyapunov –Krasovskii
functional. Note also that the idea used here is to construct a Lyapunov candidate
that allows, in some sense, to ‘decouple’ present state (seen in the usual sense) from
delayed state (see also the guided tour proposed in [24] for discrete delays). Such
functional (defined on an appropriate product space) allows the use of appropriate
finite-dimensional techniques (matrix pencils, LMIs, Riccati equations) for deriving
sufficient conditions.

Unlike the techniques previously mentioned, our interest is directed towards the
tools offered by the generalized Popov theory. The interest on such techniques
is twofold: firstly, we may give some alternative computational schemes for the
analysis and synthesis of some class of delay systems (by using appropriate finite-
dimensional interpretations), and secondly, we may extend the generalized Popov
theory developed for linear systems to some classes of infinite-dimensional systems
(i. e. time-delay systems). The main interest of the authors is to propose some
tractable methods (in fact, easy to compute) for the analysis and design of some
classes of (time-varying) delay systems.

Notations. In the sequel, we will drop the explicit time dependence of x(t), u1(t)
and u2(t) on t for brevity.

3. SOME BASIC RESULTS ON THE GENERALIZED POPOV THEORY

In this section, several basic notions and results concerning matrix pencil techniques
applied to general Riccati theory are presented. The present developement is essen-
tially based on the theory exposed in Ionescu and Weiss [7] or in Ionescu, Oară and
Weiss [8]. Some comments on the delay-independent stability of linear time-delay
systems have been considered in Niculescu and Ionescu [21], or in Niculescu [20].

Definition 1. Call Σ = (A,B; P ) where A ∈ Rn×n, B ∈ Rn×m and

P =
[

Q L
LT R

]
= PT ∈ R(n+m)×(n+m)

a Popov triplet.

Frequently, the extensive notation Σ = (A,B; Q,L, R) will be used.
Let Σ = (A,B; Q,L, R) be a Popov triplet and let

J =
[ −Im1

Im2

]
, m1 + m2 = m (3)

be an arbitrary sign matrix. Associated with Σ the following two objects:
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(1) The Kalman – Popov – Yakubovich system in J form (KPYS(Σ, J))

The following nonlinear system with unknown X, V , W :

R = V T JV

L + XB = WT JV (4)
Q + AT X + XA = WT JW

is usually denoted as the KPYS(Σ, J).

(2) The extended Hamiltonian pencil EHP(Σ) λM −N where




M =




In 0 0
0 In 0
0 0 0


 ,

N =




A 0 B
−Q −AT −L
LT BT R


 ,

M,N ∈ R(2n+m)×(2n+m).

(5)

Definition 2. Any triplet (X, V, W ) for which (4) is fulfilled and in addition X =
XT , V is nonsingular and of lower-left block triangular form

V =
[

V11 0
V21 V22

]
(6)

partitioned in accordance with J in (3) and A + BF is exponentially stable for

F = −V −1W, (7)

called the stabilizing feedback gain, is called a stabilizing solution to the KPYS(Σ, J).

Definition 3. The EHP(Σ) is said disconjugate if it has a stable proper deflating
subspace V of dimension n and, in addition, if

V =




V1

V2

V3




n
n
m

is any basis matrix for V(V = 〈V 〉), then V1 is nonsingular.

Recall that V is said to be a stable proper deflating subspace [7, 26] of an arbitrary
matrix pencil λM −N if NV = MV S, MV is monic, S is Hurwitzian and V = 〈V 〉.
A relevant result of the generalized Popov theory is [8]:
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Theorem 1. Let Σ = (A,B; Q,L, R) be a Popov triplet and J any sign matrix as
in (3). Then the following statements are equivalent:

1. R is nonsingular and the KPYS(Σ, J) has a stabilizing solution (X, V,W );

2. The EHP(Σ) is regular and disconjugate and, in addition, if R is partitioned
in accordance with J in (3), i. e.,

R =
[

R11 R12

RT
12 R22

]
(8)

then
R22 > 0, sgnR = J. (9)

If 2 is true, then (see Definition 3) X = V2V
−1
1 and F = V3V

−1
1 .

4. MAIN RESULTS

In a first step, let us consider the following delay system:
{

ẋ = Ax + A1xt(−τ1) +
∫ τ2

0
A2(θ)xt(−θ) dθ + Bu,

x = φ on [−τ, 0]
(10)

where x ∈ Rn is the state, u ∈ Rm is the input, A,A1 ∈ Rn×n, B ∈ Rn×m, A2(·) is
a piecewise continuous function, τ = max{τ1, τ2} is the delay and φ is any continuous
n-valued function on [−τ, 0].

Let Σ = (A, B;Q,L, R) be a Popov triplet where the entries A and B coincide
with A and B in (10). Let Rd1 ∈ Rn×n and consider the extended time-varying
Popov triplet

Σv =


A, [A1 A2(·) B];Q, [0 0 L],




Rd1 0 0
0 Rd2(·) 0
0 0 R





 , (11)

(v from time-varying) associated to (10), where Rd2 is a continuous time-varying
function with some sign constraints.

Such extended Popov triplet allows to reduce the control problem of a time-
varying delay system to a time-varying system free of delay. For the sake of simplicity
we shall not address such problem here.

Remark 1. If A2 is a constant matrix, we recover the time-invariant Popov triplet
used in [23] with Rd2 a symmetric and strictly negative-definite matrix. Furthermore,
if A2 ≡ 0, we recover the Popov triplet proposed in [11].

The approach considered here is based on the following extended time-invariant
(parametrized) Popov triplet

Σe =


A, [A1 M

1
2 (S) B]; Q, [0 0 L],




Rd1 0 0
0 −In 0
0 0 R





 , (12)
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where:

M =
∫ τ2

0

A2(θ) (S + εI)−1A2(θ)T dθ, S = ST (13)

for some matrix S (seen as a parameter).
We shall see later how the considered control problem for (10) is reduced to some

algebraic properties of the extended triplet Σe. The idea is to interpret such problem
as a control problem of an appropriate system free of delay. Furthermore, the cor-
responding Lyapunov –Krasovskii functional will be interpreted as an appropriate
quadratic index for the associated system.

Let also the following (extended) sign matrix

Je =
[ −I2n

J

]
=



−I2n

−Im1

Im2


 , (m1 + m2 = m) (14)

be considered. Let B, L and R be partitioned in accordance with J in (14), i. e.,

B = [B1 B2], L = [L1 L2], R =
[

R11 R12

RT
12 R22

]
. (15)

The basic result of this section is

Theorem 2. Assume that the KPYS(Σe, Je) has a stabilizing solution (X, Ve,We).
Let the stabilizing feedback gain Fe be partitioned in accordance with Je in (14),
that is,

Fe = −V −1
e We =




Fd

F1

F2


 . (16)

Let also u be split in accordance with B in (15), i. e.,

u =
[

u1

u2

]
m1

m2
.

Let S be a symmetric and positive-definite matrix and ε a positive scalar. Assume
further that

X ≥ 0 (17)
R11 < 0 (18)

Rd2(τ2) < 0 (19)
Q̃ + Rd1 + Rd2(0) > 0 (20)

where

Rd2(θ) = Rd2(0) + (S + εIn) θ, θ ∈ [0, τ2] (21)
Q̃ = Q + L2F2 + FT

2 LT
2 + FT

2 R22F2. (22)
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Then the state feedback
u2 = F2x (23)

stabilizes (10), i. e.,
{

ẋ = Ãx + A1xt(−τ1) +
∫ τ2

0
A2(θ)xt(−θ) dθ,

x = φ on [−τ, 0]
(24)

defines an exponentially stable solution for all φ. Here Ã = A + B2F2.

The complete proof is given in Appendix and makes use of the following Lia-
punov – Krasovkii functional:

V (xt) = xT (t) Xx(t) +
∫ t

t−τ1

xT (θ) (−Rd1)x(θ) dθ

+
∫ t

t−τ2

xT (θ) (−Rd2(t− θ)) x(θ) dθ, (25)

where X = XT ≥ 0 and Rd1 = RT
d1 < 0 are given before; the time-varying matrix

function Rd2 is constructed according (21). Note that since the inequality (19)
is satisfied and S and ε are positive, it follows that −Rd2(ξ) is a symmetric and
positive-definite matrix for each ξ ∈ [0, τ2], etc.

As specified, the idea is to see (25) as a quadratic index for an appropriate time-
invariant linear system free of delay, and, thus to apply the generalized Popov theory
to such system. Note also the particular construction of the matrix function Rd2(·),
which simplifies such interpretation.

Remark 2. Since the Liapunov –Krasovskii functional (25) is very general, one
may construct various S–parametrizations (not only linear!) of the time-varying
matrix function Rd2(·), for which Theorem 2 is still true.

Thus, due to the particular form of the distributed delay, if, for example, Rd2 is
a continuous increasing (decreasing) function, we need “strong” conditions only in
2 points: 0 and τ2, etc.

Remark 3. Using the results developed in [21], it follows that one may relax
the condition Rd1 < 0 to Rd1 ≤ 0, and thus to use more general forms for the
corresponding J matrix. For the sake of simplicity, we have not presented such
analysis here.

Remark 4. It is easy to see that if τ1 is a continuous time-varying function, with
bounded derivative as in [22], i. e.

τ̇1(t) ≤ β1 < 1, β ∈ R, (26)

then the Theorem holds if one changes Rd1 by 1
1−β1

Rd1. Note that the corresponding
Liapunov – Krasovskii functional changes similarly.
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Similar technique can be used if we assume that τ2 is a continuous time-varying
function.

For the sake of simplicity, we shall not develop such extension here.

A natural consequence of this Theorem is given by the following:

Corollary 1. If all the conditions in the statement of Theorem 2 hold, then
{

ẋ = Ãx + A1xt(−τ1) +
∫ τ2

0
A2(t− θ) xt(−θ) dθ,

x = 0 on [−τ, 0]
(27)

defines a linear bounded input-state operator from L2,m1
+ into L2,n

+ .

P r o o f . By L2,r
+ we mean the Hilbert space of norm square integrable Cr-valued

functions defined on [0,∞). The proof is a trivial consequence of the exponentially
stable evolution defined by (24) (see also [6, 28]). 2

Taking into account Theorem 1, an equivalent form of Theorem 2 can be stated
as follows:

Theorem 3. Assume that the EHP(Σe) is disconjugate. Assume also that

S > 0, R22 > 0, sgnR = J, Rd1 < 0. (28)

If
V2V

−1
1 ≥ 0 (29)

and both (18) and (20) hold, then (23) stabilizes (10). Here



V1

V2

V3




n
n

n + m

is any basis matrix for the maximal stable proper deflating subspace of the EHP(Σe)
and

Fe = V3V
−1
1

partitioned as in (16).

Remark 5. Theorem 3 provides easy checkable sufficient conditions for the sta-
bilizability of the state-delayed system (10) (see also [21]) in terms of algebraic
properties of the associated matrix pencil.

Let Q̂ be any n × n symmetric matrix. Let Σ = (A, B; Q̂, L, R) be the Popov
triplet constructed with Q̂ and with entries of Σe. Associate with Σ the “usual”
Popov index [4]

JΣ(φ, u) =
〈[

x
u

]
,

[
Q̂ L
LT R

] [
x
u

]〉
(30)

where (x, u) ∈ L2,n
+ × L2,m

+ and x and u are linked via (10) for some φ.

Then we have (for the proofs, see the Appendix):
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Proposition 1. Let us consider a symmetric matrix Q̂ satisfying
[

Q̂ L2

LT
2 R22

]
≥ 0. (31)

Assume also that all the conditions in the statement of Theorem 2 hold except (20)
which is modified as

Q̃ + Rd1 + Rd2(0) >
˜̂
Q (32)

where
˜̂
Q = Q̂ + L2F2 + FT

2 LT
2 + FT

2 R22F2. (33)

If the controller (23) stabilizes the delay system and φ = 0, i. e., (10) becomes (27),
then there exists ζ̄ > 0 such that

JΣ(0, u1) ≤ −ζ̄‖u1 − F1x‖22, ∀u1 ∈ L2,m1
+ (34)

where
JΣ(0, u1) := JΣ(0, u)|u2=F2x . (35)

Proposition 2. Assume that all conditions in the statement of Theorem 2 hold.
Assume additionally that

Q̄ + Rd1 + Rd2(0) > 0 (36)

where
Q̄ := Q + LF + FT LT + FT RF.

Then
{

ẋ = Ãx + A1xt(−τ1) +
∫ τ2

0
A2(θ)xt(−θ) dθ + B1u1

v1 = −F1x + u1

(with x = 0 on [−τ, 0]) defines a linear boundedly invertible operator on L2,m1
+ .

Using all the results presented before, we shall state and prove the main result of
this paper.

Theorem 4. Let (10) together with the quadratic cost defined by the right-hand
side of (30) be given. For arbitrary m1, m2 such that m1 + m2 = m, let B, L and
R be partitioned as in (15).

Assume that there exists three n × n symmetric matrices S > 0, Q, Rd1 and a
positive scalar ε such that the KPYS(Σe, Je), where Σe and Je are defined by (11)
and (14), respectively, has a stabilizing solution (X, Ve,We) and let the stabilizing
feedback Fe be partitioned in accordance with (16).

Assume also that the following conditions all hold:

1. X ≥ 0

2.
[

Q̂ L2

LT
2 R22

]
≥ 0
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3. R11 < 0

4. Rd2(τ2) < 0

5. Q̃ + Rd1 + Rd2(0) >
˜̂
Q

6. Q̄ + Rd1 + Rd2(0) > 0

where

Q̃ = Q + L2F2 + FT
2 LT

2 + FT
2 R22F2

˜̂
Q = Q̂ + L2F2 + FT

2 LT
2 + FT

2 R22F2

Q̄ = Q + LF + FT LT + FT RF

Rd2(θ) = Rd2(0) + (S + εIn)θ, θ ∈ [0, τ2].

Then

a. u2 = F2x stabilizes (10)

b. There exists c0 > 0 such that

JΣ(0, u1) ≤ −c0‖u1‖22 ∀u1 ∈ L2,m1
+

where JΣ(0, u1) has been defined by (35), (30).

P r o o f . a. follows directly from Theorem 2 combined with 2 and 4 in the state-
ment (see the proof of Proposition 1).

b. From Proposition 2 it follows that there exists ζ1 > 0 such that

‖v1‖22 = ‖u1 − F1x‖22 ≥ ζ1‖u1‖22. (37)

Using Proposition 1 the conclusion follows by substituting (37) in (34) and putting
c0 = ζ1ζ̄. 2

5. H∞–CONTROL

In this section the theory developed in Section 4 will be applied for solving the H∞-
control problem formulated for state-delayed systems. Such a problem is stated as
follows.

Let the system
(

ẋ = Ax + A1xt(−τ1) +
R τ2
0

A2(θ) xt(−θ) dθ + B1u1 + B2u2

y1 = C1x + D11u1 + D12u2

(38)

(where x = 0 on [−τ, 0]) be given. Here x is the state (in the usual sense), u1 and
u2 are the disturbance and control inputs, respectively, and y1 is the output to be
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controlled. The state x is assumed to be accessible for measurement. We are looking
for a state feedback law

u2 = F2x (39)

which stabilizes (38) and achieves γ-attenuation property for the closed-loop system,
i. e., there exists c0 > 0 such that

−γ2‖u1‖22 + ‖y1‖22 ≤ −c0‖u1‖22 ∀u1 ∈ L2,m1
+ (40)

or equivalently the system
8
><
>:

ẋ = (A + B2F2) x + A1xt(−τ1) +
R τ2
0

A2(θ) xt(−θ) dθ
+B1u1

y1 = (C1 + D12F2) x + D11u1

(41)

(where x = 0 on [−τ, 0]) defines a γ-strictly contractive input-output map. Here γ
is a prescribed tolerance for the attenuation level.

Introduce

m1 m2

B = [B1 B2]

Q̂ = CT
1 C1, L = [L1 L2] = CT

1 [D11 D12] (42)
(43)

R =
[

R11 R12

RT
12 R22

]
=

[ −γ2I + DT
11D11 DT

11D12

DT
12D11 DT

12D12

]

Then we have

Theorem 5. Assume that there exist two n × n symmetric matrices Q and Rd

such that all the conditions of Theorem 4 hold with respect to the particular data
(42). Then for F2 given in Theorem 4, (39) is a solution to the H∞-control problem
stated above.

P r o o f . Let Σ = (A,B; Q̂, L, R). Then

JΣ = −γ2‖u1‖22 + ‖y1‖22 (44)

as directly follows by simple computation from (42). Apply Theorem 4 to (44) and
the conclusion follows trivially. 2

Note that ˜̂
Q in Theorem 4 reads now as ˜̂

Q = CT
1F2

C1F2 where C1F2 = C1+D12F2.

6. AN EXAMPLE

In this section a numerical example is presented to illustrate our approach. It should
be pointed out that there are few results in the literature addressed to this problem
(Dugard, Verriest eds., [2]).
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Let the following unstable distributed state-delayed system given by:

A =
[

1 0
0 1

]
, A1 =

[
1 0
0 1

]
A2(θ) =

[
θ 0
0 θ

]

B1 =
[

1
0

]
B2 =

[
0
1

]
, C1 =

[
1 1

]
D12 =

[
1

]
.

The problem is to find a memoryless controller

u2 = F2x (45)

that achieves simultaneously closed-loop stability and γ-attenuation.
The prescribed tolerance is

γ = 0.5 (46)

Choose Rd =

» −11 0
0 −11

–
.Then the extended Popov triplet (see (12)) is

Σe =
“
A, [A1 M(τ2)

1
2 B1 B2]; Q, [0 0 L1 L2],

2
664

Rd 0 0 0
0 −I2 0 0
0 0 −γ2 0
0 0 0 1

3
775
”

(47)

and (see (14))

Je =



−I

−1
1


 . (48)

As we consider here ε = 0 and taking S = 2 ∗ I, the equation (13) yields M(τ2) =
diag

(
0.5 τ3

3 , 0.5 τ3

3

)
. But (47) is equivalent to the algebraic Riccati equation (ARE)

associated with Σe, that is,

AT X + XA + Q− ([0 0 L] + X[A1 M(τ2)
1
2 B])

2
4

Rd 0 0
0 −I 0
0 0 R

3
5
−10
@
2
4

0
0

LT

3
5+

2
4

AT
1

M(τ2)
1
2 T

BT

3
5X

1
A = 0.

Solving this Riccati equation we find that X = f(Q, M(τ2)). The stabilizing solution
X is still positive for τ2 max = 1.13. Let us check the conditions stated in Theorem 4.
The first condition is fulfilled when Q >

»
1 0
0 1

–
. For the next five ones, we obtain

2) and 3) are obviously fulfilled

4) Rd2(τ2) = Rd2(0) + Sτ2 < 0. That means Rd2(0) ≤ −
[

0.7 0
0 0.7

]

5) and 6) are fulfilled whenever Q > −Rd2(0)−Rd1 + Q̂.
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Therefore all of the conditions stated in Theorem 30 hold for Q >
[

13.7 0
0 13.7

]
.

Rd2(0) ≤ −
[

0.7 0
0 0.7

]
,and consequently: u2 = [−0.62 − 8.56] x is the desired

feedback law.

7. CONCLUSIONS

An extension of the generalized Popov theory to the case of delay system with dis-
crete and distributed delays has been done. Our interest has been focused on the
memoryless controller design for H∞-control problem stated for systems described
by retarded functional differential equations. As future research directions we sug-
gest: a) the analysis of the general time-varying case; b) statement of necessary
solvability conditions in terms of signature condition; c) investigation of observer-
based compensation technique.

APPENDIX

A. Proof of Theorem 2

Since (X,Ve, We) is a stabilizing solution to the KPYS(Σe, Je), it has the following
form:




Rd1 0 0
0 −I 0
0 0 R


 = V T

e JeVe

[0 0 L] + X
[
A1 M(τ2)

1
2 B

]
= WT

e JeVe (49)

Q + AT X + XA = WT
e JeWe.

Taking into account Definition 2 in conjugation with (14), the first equation in (49)
leads to the following structure for Ve:

Ve =
[

Vdp

V

]
=




Vdp

V11 0
V21 V22


 , (50)

where Vdp =
[

Vd1

Vd2

]
.

Let We be partitioned accordingly, i. e.,

We =
[

Wdp

W

]
=




Wdp

W1

W2


 , (51)
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where WT
dp = [WT

d1 WT
d2]. Substituting (50), (51) in (49), leads to the following form:

[Rd1 − I R] =
[−V T

d1Vd1 − V T
d2Vd2 V T JV

]
[
XA1 XM(τ2)

1
2

]
=

[−WT
d1Vd1 −WT

d2Vd2

]
(52)

L + XB = WT JV

Q + AT X + XA = −WT
d1Wd1 −WT

d2Wd2 + WT JW.

Using (16) one gets

Fe =
[

Fdp

F

]
=

[ −V −1
dp Wdp

− V −1W

]
=




Fdp

F1

F2


 =




−V −1
dp Wdp

− V −1
11 W1

V −1
22 V21V

−1
11 W1 − V −1

22 W2




(53)
where the structure (6) has been also taken into account and where

A + [A1 M(τ2)
1
2 B]




Fd1

Fd2

F


 .

is uniformly asymptotically stable.
Let now

F̃e,2 :=
[

0
F̃2

]
=




0
0
F2


 (54)

and let Σ̃e,2 be the F̃e,2-equivalent of Σe in (11). Following Theorem 1 and taking
into account the zero structure of F̃e,2 in (54), the updated form of the last equation
in (52) corresponding to Σ̃e,2 is

ÃT X + XÃ = −Q̃−WT
d1Wd1 −WT

d2Wd2 + (W + V F̃2)T J(W + V F̃2). (55)

Furthermore

W + V F̃2 =
[

W1

W2

]
+

[
V11 0
V21 V22

] [
0

V −1
22 V21V

−1
11 W1 − V −1

22 W2

]

=
[

W1

V21V
−1
11 W1

]

from which

(W + V F̃2)T J(W + V F̃2) = −WT
1 W1 + WT

1 V −T
11 V T

21V21V
−1
11 W1

= WT
1 V −T

11 (−V T
11V11 + V T

21V21)V −1
11 W1. (56)

Taking into account (15), the second equation in (52) yields, by equating the (1, 1)
entries

R11 = −V T
11V11 + V T

21V21. (57)
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With (57) in (56) and then with (56) in (55), one gets eventually

ÃT X + XÃ = −Q̃−WT
d1Wd1 −WT

d2Wd2 −WT
1 V −T

11 R̃11V
−1
11 W1 (58)

where
R̃11 := −R11 > 0 (59)

as follows from (18).
We introduce the Lyapunov functional

V (xt) = xT (t) Xx(t) +
∫ t

t−τ1

xT (θ) (−Rd1)x(θ) dθ

+
∫ t

t−τ2

xT (θ)(−Rd2(t− θ)) x(θ) dθ, (60)

where X = XT ≥ 0 and Rd1 = RT
d1 < 0 are given before; the time-varying matrix

function Rd2(·) is given in (21). Note that since the inequality (19) is satisfied, it
follows that −Rd2(ξ) is a symmetric and positive-definite matrix for each ξ ∈ [0, τ2].
Simple computations prove that there exist two positive numbers d1, d2 such that

d1 ‖ x(t) ‖2≤ V (t, xt) ≤ d2 sup
θ∈[t−τ,t]

‖ x(θ) ‖2 . (61)

Taking the Lyapunov derivative of (60) with respect to (24), one obtains:

V̇ (xt) = xT (ÃT X + XÃ) x + x(t− τ1)T AT
1 Xx + xT XA1x(t− τ1)

+
(∫ τ2

0

A2(θ) x(t− θ) dθ

)T

Xx + xT X

(∫ τ2

0

A2(θ)x(t− θ) dθ

)

+ xT (−Rd1) x− xT (t− τ1) (−Rd1) x(t− τ1) + xT (−Rd2(0)) x

− xT (t− τ2) (−Rd2(τ2))x(t− τ2)

+
∫ 0

−τ2

xT (θ + t)
(

dRd2(θ)
dθ

)
x(θ + t) dθ. (62)

Since

2xT X

∫ τ2

0

A2(θ) x(t− θ) dθ

≤ xT X

(∫ τ2

0

A2(θ) (S + εI)−1AT
2 (θ) dθ

)
Xx (63)

+
∫ τ2

0

xT (t + θ) (S + εI)x(t + θ) dθ,

and since we have (52), we can write the corresponding equations of the KPYS(Σ̃e,2, Je)
(see the structure of F̃e,2 in (54)), and (62) becomes:

V̇ (xt) ≤ −xT Q̃x− xT WT
d1Wd1x− xT WT

d2Wd2 − xT WT
1 V −T

11 R̃11V
−1
11 W1x

− xT WT
d1Vd1x(t− τ1)− x(t− τ1)T V T

d1Wd1x− x(t− τ1)T V T
d1Vd1(t− τ2)

+ xT Rd1x− xT Rd2(0) x− xT (t− τ2) (−Rd2(τ2)) x(t− τ2)
+ xT XM1/2M1/2Xx (64)
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where both (20) and (58) have been used. With (61) the proof is completed via the
Krasovskii stability theorem [6].

B. Proof of Proposition 1

In order to obtain a criterium for γ – attenuation for the distributed time-delay
system, we shall associate an index defined from C([−τ, 0]× L2,m

+ to R by

JΣe(φ, u) :=

〈



x
x(t− τ1)

x
u


 ,




Q 0 0 L
0 Rd1 0 0
0 0 Rd2 0

LT 0 0 R







x
x(t− τ1)

x
u




〉
(65)

which will be called an Extended Popov index.
Here (x, u) is any pair satisfying (1) and in addition it belongs to L2,n

+ × L2,m
+ .

Here 〈·, ·〉 stands for the L2
+-inner product.

Assume that the KPYS(Σe, Je) has a stabilizing solution (X, Ve,We). Assume
also that there exists a pair (x, u) ∈ L2,n

+ × L2,m
+ such that (1) is fulfilled for some

φ. Then the following evaluation holds:

JΣe
(φ, u) ≤ −‖Wdx + Vdx(t− τ1)‖22 + 〈Wx + V u, J(Wx + V u)〉+ xT

0 Xx0

(x0 = x(0)). (66)

The proof of 66 is straightforward using only algebraic manipulations
Notice now that:[

˜̂
Q L̃2

L̃T
2 R22

]
=

[
I FT

2

0 I

] [
Q̂ L2

LT
2 R22

] [
I 0
F2 I

]
(67)

As (31) holds, (67) shows that ˜̂
Q ≥ 0. Hence (32) implies (20) and consequently

Corollary 1 works and JΣ(0, u1) defined by (35) makes sense.
Let

JΣe(0, u1) := JΣe(0, u)|u2=F2x (68)

which makes sense as well. Since

JΣ(0, u1) =

〈[
x
u1

]
,

[
˜̂
Q L̃1

L̃T
1 R11

] [
x
u1

]〉
(69)

and

JΣe(φ, u) :=

〈



x
x(t− τ1)

x
u


 ,




Q̃ 0 0 L
0 Rd1 0 0
0 0 Rd2(0) 0

LT 0 0 R







x
x(t− τ1)

x
u




〉
(70)

it follows from (69) and (70) and (66) that JΣ(0, u1) and JΣe(0, u1) are linked by

JΣ(0, u1) = JΣe(0, u1)− 〈x(t− τ1), Rd1x(t− τ1)〉 (71)

−〈x, Q̃x〉+ 〈x,
˜̂
Qx〉 − 〈x,Rd2(0) x〉.
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Set u2 = F2x in the right-hand side of (66) and obtain with (54)

JΣe
(0, u1) ≤

≤ −‖Wdx + Vdx(t− τ1)‖22

+
〈[

W1x + V11u1

W2x + V21u1 + V22u2

]
,

[ −(W1x + V11u1)
W2x + V21u1 + V22u2

]〉
p

= −‖Wdx + Vdx(t− τ1)‖22 + 〈u1 − F1x, (−V T
11V11 + V T

21V21) (u1 − F1x)〉

= −‖Wdx + Vdx(t− τ1)‖22 − 〈u1 − F1x, R̃11(u1 − F1x)〉 (72)

where u2 = (V −1
22 V21V

−1
11 W1 − V −1

22 W2)x.

Here (58), (60) have been considered.
Substituting (72) in (72), one obtains (see also (60)) after some algebraic compu-

tations:

JΣ(0, u1) ≤ −‖Wdx + Vdx(t− τ1)‖22 − 〈x, (Q̃ + Rd1 − ˜̂
Q + Rd2(0)) x〉

−
∫ ∞

0

V̇ (xt) dt + 〈x(t− τ2), Rd2(τ2)x(t− τ2)〉 − ‖R̃
1
2
11(u1 − F1x)‖22. (73)

As (32) holds, (34) follows from (73), where ζ̄ > 0 is the least eigenvalue of R̃11.

C. Proof of Proposition 2

According to Corollary 1, u1 7→ v1 is an L2
+ operator. Let

ẋ = Āx + A1x(t− τ1) +
∫ τ2

0

A2(t− θ)xt(−θ) dθ + B1v1

u1 = F1x + v1 (74)

be the inverse system of (37). Here Ā = Ã+B1F1 = A+B1F1 +B2F2. Let us show
that

ẋ = Āx + A1x(t− τ1) +
∫ τ2

0

A2(t− θ)xt(−θ) dθ, x = φ on [−τ, 0]

defines an exponentially stable evolution for all φ. Proceed similarly to the proof of
Theorem 2 and consider Σ̃e,1 – the F̃e,1-equivalent of Σe where

F̃e,1 =
[

0
F

]
=




0
F1

F2


 .

Then, as W + V F = 0, the updated form of the last equation in (53) is

ĀT X + XĀ = −Q̄−WT
d1Wd1 −WT

d2Wd2
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and (64) becomes now:

V̇ (xt) ≤ −xT (Q̄ + Rd1 + Rd2(0)) x− ‖Wdx− Vdx(t− τ1)‖2 ≤ −ζ̂‖x‖2, ζ̂ > 0

as follows from (36). Thus the proof ends.

(Received December 11, 1998.)
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