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ALTERNATIVE POLYNOMIAL EQUATION APPROACH
TO LQ DISCRETE–TIME OPEN–LOOP CONTROL

Václav Soukup

Like [4] for the feedback control this contribution brings the modification of the poly-
nomial equation way of solving LQ discrete-time SISO control problem in the open-loop
structure. Using this approach the conditions are found under which the only implied
equation minimum solution is the LQ optimal one.

1. INTRODUCTION

A single-input, single-output (SISO) open-loop control problem is considered ac-
cording to Figure 1. A controlled process output Y , load disturbance V (referred
to the output), possible nonzero starting conditions Y0, as well as the model P of a
controlled process, are assumed to be described in the discrete-time form.
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Fig. 1.

The error signal

E = Wr − Y = W − PU , where W = Wr − V − Y0 (1)

represents the only equivalent reference input.
Such a control sequence U is to be determined in LQ open-loop control, which

minimizes the performance index

ϑ =
∞∑

k=0

[
ψe2(kT ) + φu2(kT )

]
, (2)
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where e(kT ) and/or u(kT ) are the error and/or control signal values at time kT ,
k = 0, 1, . . . ; ψ > 0 and φ > 0 are chosen weighting scalars.

Quadratic or the least squares control strategy is widely applied in both state-
space as well as transfer function methods of the control design for a long time. Many
contributions concerning polynomial and polynomial matrix input-output methods
in LQ and LQG control have been written following the fundamental book [2] in
this field. Feedback SISO LQG control problems are treated in [1]. Based on the
general results contained in [2], open-loop SISO LQ control solution using coprime
polynomials for a system and signal description, has been presented in [3]. The same
approach is used in this work.

Polynomials and sequences in d (one step delay in the time domain or the in-
verse Z-transform complex variable in the complex frequency domain) as well as
usual symbols of polynomial theory [2] are used in the paper. Namely, deg a, a∗ =
a(d−1), a∼ = ddeg aa∗, a = a+a0a= , where all zeros di of a+(d), a0(d) and a=(d) have
the property |di| > 1, |di| = 1 and di < 1, respectively, ac denotes a polynomial for
which (ac)−1 is a causal sequence. For two polynomials (a, b) is the greatest common
divisor of a, b , b|ameans that a = bc and b ∼ a denotes a = bc with deg c = 0. The se-
quence F∗(d) = F (d−1) and 〈F 〉 = φ0 for a sequence F = . . .+φ−1d

−1+φ0+φ1d+. . ..
Following this Introduction the standard open-loop LQ control solution is de-

scribed briefly in Section 2. The alternative possibility starting with the so-called
“implied” equation is explained in Section 3. The part dealing with LQ optimality
of the implied equation minimum solution follows in the fourth section. In Section 5
the respective conditions, which make this simpler solution possible, are compared
with the similar ones beeing derived in [4] for the closed-loop control structure. One
illustrative example is given at the end.

2. USUAL SOLUTION OF LQ OPEN–LOOP DISCRETE–TIME CONTROL

Considering the structure in Figure 1 with

P =
b

a
, a, b coprime, a causal , b = dβbc , β ≥ 0 , (3)

and
W = Wr − V − Y0 =

f

h
; h, f coprime, h = hc, (4)

the LQ optimal control and the corresponding error sequences are

U =
ahy

has
and E =

(b, f)x
has

, (5)

where
ah =

a

(a, h)
and ha =

h

(a, h)
(6)

and s = s+ follows from
ss∗ = φaa∗ + ψbb∗ . (7)

The polynomials x and y in (5) along with z solve the couple of the equations
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dρs∗y + hz = dρb∗ψf (8)

and
dρs∗x− bfhaz = dρa∗φahfb (9)

with the minimum deg z < ρ , where

ρ = max(deg a, deg b) , bf =
b

(b, f)
and fb =

f

(b, f)
. (10)

The optimal solution exists if and only if ha = h+
a and is unique.

The only equation (8) gives the optimal solution y, z with deg z<ρ, if deg (dρs∗, h)
= 0. The remaining x then follows from (9).

3. ALTERNATIVE SOLUTION OF LQ OPEN–LOOP DISCRETE–TIME
CONTROL

The further, third equation implies from (8) and (9). Multiplying (8) by b and (9)
by (a, h) (b, f) and adding them mutually yields

dρs∗[(a, h) (b, f)x+ by] = dρs∗sf

and hence
(a, h)x+ bfy = sfb . (11)

Using this, so-called “implied” open-loop equation (11), the alternative way to solve
LQ control can be presented and proved.

Claim 1. LQ discrete-time, open-loop control, defined by the relations (1) to (7)
and (10), is solved by

y = yp + (a, h) t and x = xp − bf t , (12)

where xp, yp is any arbitrary particular solution of equation (11) and t belongs to
the minimum deg z solution t, z, deg z < ρ, of the polynomial equation

dρs∗t+ haz = r , (13)

where introducing
q = ψb(b, f)∗xp∗ − φaah∗yp∗ (14)

yields
r =

dρq∗
s

.

The optimal solution exists if and only if ha = h+
a and is unique.

P r o o f . Substituting (12) into equations (8) and (9) yields

dρs∗yp + dρs∗(a, h) t+ hz = dρb∗ψf (15)
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and
dρs∗xp − dρs∗bf t− bfhaz = dρa∗φahfb . (16)

If (15) multiplied by xp and (16) by yp are mutually subtracted, we obtain

[(a, h)xp + bfyp] (dρs∗t+ haz) = dρfb[ψb∗(b, f)xp − φa∗ahyp] .

Since (11) is true for any xp and yp then using (13) and (14)

s(dρs∗t+ haz) = dρq∗ or sr = dρq∗ , (17)

2

4. OPTIMAL LQ OPEN–LOOP CONTROL SOLUTION
VIA THE IMPLIED EQUATION ONLY

Using the relations derived above the sufficient conditions can be found under which
the minimum solution of the implied equation (11) is LQ optimal. The following
claim gives the result.

Claim 2. LQ discrete-time,open-loop control problem, described by the relations
(1) to (7) and (10), is solved uniquely by the minimum deg y solution x, y, deg y <
deg (a, h), of the equation (11), if simultaneously

deg ha = 0 (18)

and
deg (a, h) + β > deg f . (19)

P r o o f . If xp, yp is the minimum deg y solution of (11), then t = 0 in (12) as
well as (13) and hence haz = r. Since generally ha does not divide r, z ∼ r must be
supposed. Therefore (18) and

deg z = deg r < ρ (20)

are the necessary general conditions for xp, yp as the minimum deg y solution of (11)
can be LQ optimal at all.

The following relations introduced in [4] are valid:

deg (dρs∗) = deg (dρa∗) = ρ and deg (dρb∗) = ρ− β ;

i) if deg a > deg bc then deg s = deg a ; (21)

ii) if deg a = deg bc then either deg s = deg a (22)

or deg s < deg a ; (23)

iii) if deg a < deg bc then deg s = deg bc . (24)
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The minimum deg y solution xp, yp of (11) has the following properties:

deg yp < deg (a, h) (25)

and
deg xp < deg bf (26)

if
deg (a, h) + deg bf > deg s+ deg fb (27)

or
deg xp < deg s+ deg fb − deg (a, h) + 1 (28)

if
deg (a, h) + deg bf ≤ deg s+ deg fb . (29)

Using the presented relations along with (14) and (17) we can write

deg r = deg (dρq∗)− deg s
≤ max[ρ− β + deg (b, f) + deg xp , ρ+ deg ah + deg yp]− deg s
= ρ− deg s+ max[deg (b, f)− β + deg xp, deg ah + deg yp] . (30)

If (27) is true the relation (30) obtains the form

deg r < ρ− deg s+ max(deg a,deg bc) .

Hence one can see that (20) will be valid if (21) or (22) or (24) holds. Assuming
(23) we can write

(a, h) bfdρq∗ = (a, h) bf [dρb∗ψ(b, f)xp − dρa∗φahyp]
= dρb∗ψb(a, h)xp − dρs∗sbfyp + dρb∗ψbbfyp

= dρb∗ψbsfb − dρs∗sbfyp = sbf (dρb∗ψf − dρs∗yp)

and hence

deg r = deg (dρb∗ψf − dρs∗yp)− deg (a, h)
≤ max[ρ− β + deg f, ρ+ deg (a, h)− 1]− deg (a, h)
= ρ+ max[deg f − β − deg (a, h),−1] .

Therefore the condition (19) must be valid to secure (20) in this case. It is satisfied
in the previous case too.

In the second case, when (29) holds, we obtain from (30)

deg r < ρ− deg s+ max[deg (b, f)− β + deg s+ deg fb − deg (a, h) + 1,
deg ah + deg (a, h)] = ρ+ max[deg f − deg (a, h)− β + 1, deg a− deg s] .

Hence provided (19) is true, (20) is satisfied in the cases (21) or (22). Considering
(23) and (24) then (20) cannot be ensured since the contradictory relation deg (a, h)+
β ≤ deg f follows from (29). Moreover in the case (23) the requirement (20) can be
broken by deg a− deg s > 0 too.

Thus the conditions (18) with (19) are found to be the sufficient ones for LQ
optimality of the minimum deg y solution of (11). 2
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The condition (19)

— is always valid if either (21) or (22) or (24) along with (27) hold

— can be true if (23) with (27) or (21) or (22) with (29) are valid

— can never be true if (23) or (24) along with (29) hold.

5. COMPARISONS

The conditions (18) and (19) are very similar to the ones which have been derived
in [4] for the minimum solution of the respective implied equation in feedback LQ
optimal control.

Let us introduce the basic results concerning this closed-loop LQ problem treated
in [4]. The structure under consideration is shown in Figure 2.
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Fig. 2.

The relations (1) to (4) as well as (6) and (7) are valid in the same way (the
only β = 0 must be excluded from (3)), ρ stands in (10) and a feedback controller
is supposed to be described by

C =
m

n
, n−,m− coprime , n = nc.

Then LQ optimal controller is determined as

n = np − bt and m = mp + at ,

where np, mp is any particular solution of the equation

an+ bm = sp (31)

with p following from pp∗ = ahah∗ff∗ , and t belongs to the minimum deg z solution
z, t, deg z < ρ , of the equation

dρs∗t+ haz = l

with
sl = dρ(ψb∗np − φa∗mp) .

The feedback LQ optimal solution exists if and only if ha =h+
a and p=p+ (p0∼1).

Provided
deg ha = 0
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and
deg a+ β > deg p (32)

the only equation (31) may be solved for minimum degm, degm < deg a.
Comparing now the conditions for the simplified solution of the closed-loop and

open-loop LQ control, we can see that the first condition (18) is identical in both
the cases. Provided it is valid and the feedback problem solvability is guaranteed,
then

deg (a, h) = deg h and deg a = deg h+ deg ah . (33)

Using (33) we can find

deg a=∼
h = deg a=

h , f= = dνf=c , ν ≥ 0 ,

and hence
deg f= = ν + deg f=c but deg f=∼ = deg f=c ,

and the second open-loop condition (19) obtains the form

deg h+ β > deg f+ + f=c + ν . (34)

In a similar way the closed-loop condition (32) can be rewritten as

deg h+ β > deg f+ + deg f=c . (35)

Comparing (34) and (35) they are found to be identical if ν = 0. Provided
ν > 0 such a case can occur when LQ optimal feedback controller may be found
through the implied equation while the open-loop control may not. For example, if
P = d/(1− d) and W = d(1 + 0.5d)/(1− d) , then (35) is satisfied while (34) is not.

Finally we shall return to the general case of LQ control when the conditions
(18) and (19) or (32) play no role. The question can arise, when the LQ optimal
feedback controller can simply be designed as the ratio C = U/E where U and E
are LQ optimal open-loop signals standing in (5).

Using these relations
C =

m

n
=

ahy

(b, f)x
and substituting it into the corresponding LQ optimal closed-loop equation (31)
yields

a(b, f)x+ bahy = sf+f=∼a+
h a

=∼
h . (36)

Hence
ah(b, f)[(a, h)x+ bfy] = ah(b, f) sfb = sfah , (37)

where the open-loop implied equation (11) has been applied.
Comparing right sides of (36) and (37) closed-loop and open-loop LQ optimal

signals are found to be identical if and only if ah = a+
h and f = f+. Then m = a+

h y
and n = (b, f)+x and the closed-loop coupled equations used in the standard design
[2, 4]

dρs∗m+ ahaz = dρb∗ψp

and
dρs∗n− bhaz = dρa∗φp

obtain the open-loop form (8) and (9).



238 V. SOUKUP

6. EXAMPLE

Let us solve the LQ open-loop control problem for

P =
b

a
=

d

1− d
, W =

f

h
=

1 + 0.5d
1− d

and ψ = φ = 1 .

We have

ha = ah = 1 , bf = d , fb = f = 1 + 0.5d , (a, h) = 1− d ,

β = 1 , ρ = 1 and s = 1.618− 0.618d .
Since deg ha = 0 and deg (a, h)+β = 2 > 1 = deg f , the conditions (18) and (19)

are satisfied and the simple solution according to Claim 2 can be applied.
Then the equation (11)

(1− d)x+ dy = (1.618− 0.618d) (1 + 0.5d)

has the minimum deg y solution x = 1.618+0.309d and y = 1.5, which is just optimal
one.

The resulting optimal signals according to (5) are

U =
1.5

1.618− 0.618d
and E =

1.618 + 0.309d
1.618− 0.618d

.

Using the way of Claim 1 we write the general solution of (11)

x = 1.618 + 0.309d− dt and y = 1.5 + (1− d) t ,

q = −1.191 + 3.118d and r = 1.927 .
The equation (13)

(−0.618 + 1.618d) t+ z = 1.927
is solved for minimum deg z < ρ by t = 0 , z = r = 1.927 .

Since ah = a+
h = 1 as well as f = f+ = 1 + 0.5d , the closed-loop LQ optimal

controller can be determined as the ratio U/E of the open-loop optimal signals and

C =
1.5

1.618 + 0.309d
.

(Received March 21, 1995.)
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