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ERLANG DISTRIBUTED ACTIVITY TIMES
IN STOCHASTIC ACTIVITY NETWORKS

Yousry H. Abdelkader

It is assumed that activity times in stochastic activity networks (SANs) are independent
Erlang random variable (r.v.). A recurrence method of determining the kth moments of
the completion time is presented. Applications are provided for illustration and are used
to evaluate the applicability and appropriateness of the Erlang model to represent activity
network.

Keywords: project planning, PERT, Erlang distribution

AMS Subject Classification: 90C39, 90B35, 33B99

1. INTRODUCTION

Stochastic activity networks (SANs) can be represented by a priori cumulative dis-
tribution function (c.d.f.). Normally distributed is proposed by Sculli [15] and Kam-
burowski [7], exponentially distributed is assumed by Kamburowski [8], Kulkarni
and Adlakha [10], and by Magott and Skudlarski [12]. Bendell et al [1] considered
the problem of using the Erlang distribution as a representation of activity times.
Their method based on the moments approach which is a more practical alternative
to both the analytical and the numerical integration. However, they derived the
first four central moments of max(X1, X2) and X1 +X2 only where X1 and X2 are
independent r.v.’s. A survey of recent developments and complexity in SANs can be
found in Elmaghraby [4] and [5]. This paper generalized the work of Bendell et al
[1]. It presents the kth moments of the max(X1, X2, . . . , Xn) and the c.d.f. of the
sum of n independent r.v.’s is also given.

SANs are defined as (N,A, F (·)), where N is the set of nodes N = {1, 2, . . . , n},
A is the set of arcs A = {a1, a2, . . . , am} and F (t) = P(Tr ≤ t), for t > 0 is the c.d.f.,
where Tr is a r.v. which describes the duration of the arc ar. The network has one
starting and one ending node and is acyclic, i. e., the nodes are numbered in such
a way that whenever there exists an arc(i, j), then i < j. We shall use the names
“activity” and “arc”, “event” and “node”, “project” and “network” synonymously.

The main problem in SANs (largest and shortest path) is divided into two cate-
gories. The first category is to find the distribution of

Y = X1 + X2 + · · ·+Xn (1)
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where the r.v.’s X1, X2, · · · , Xn represent the time of the project activities. The
distribution of this sum can be achieved through the convolution operation.

The second category is to find the distribution of

Xn:n = max(X1, X2, · · · , Xn) and X1:n = min(X1, X2, · · · , Xn) (2)

that is, finding Hn(t) = P(Xn:n ≤ t) and Ln(t) = P(X1:n ≤ t) or finding the kth
moments of Xn:n and X1:n or approximating them.

We shall derive the distribution of (1) and the kth moments of (2) that is, µ(k)
1:n =

E(Xk
1:n) and µ(k)

n:n = E(Xk
n:n), of the minimum and the maximum of a sample of size

n from the Erlang distribution. Two applications are examined in light of the Erlang
model. These applications are provided for illustration and are used to evaluate the
applicability and appropriateness of the Erlang model to represent activity network.

We finish this section with some definitions, see Ross [14]. Let F (x) be the c.d.f.
of the r.v. X, F (x) = 1− F (x) denotes the survival function.

Definition 1. A c.d.f. F (x) is New Better than Used in Expectation (NBUE) if
F (x) has a finite mean µ and

∫∞
t
F (x) dx ≤ µF (t) for t ≥ 0.

Definition 2. Let X and Y are two r.v.’s with c.d.f.’s F (x) and F (y) respectively,
Y is stochastically larger than X, written Y Â X, if F (y) ≥ F (x).

Definition 3. The r.v. X is said to be more variable than Y , written X ≥v Y with
E(X) = E(Y ), when E[φ(X)] ≥ E[φ(Y )] for all increasing and convex functions φ.

Proposition 1. If F (x) is an NBUE distribution having mean µ, then

F ≤v exp(µ),

where exp(µ) is the exponential distribution with mean µ.

The above proposition states that the exponential distribution is maximal vari-
ability in the class of NBUE distributions.

2. MAIN RESULTS

Let Xi be a r.v. that obeys the Erlang distribution with the probability density
function (p.d.f.) given by

fi(x) =
λmi

i xmi−1e−λix

Γ(mi)
x ≥ 0, λi > 0 (3)

and the cumulative distribution function

Fi(x) = 1−
mi−1∑
t=0

(λix)t

t!
e−λix x ≥ 0, λi > 0, (4)
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for i = 1, 2, . . . , n, where mi denotes to the shape parameter, λi denotes to the scale
parameter and Γ(·) is the gamma function. The sum on the right-hand side involves
the firstmi terms of the Poisson probability mass function. There is a strong relation
between the exponential, the Erlang, and the Gamma d.f.’s. The Erlang distribution
is a special case of the Gamma distribution with p.d.f., f(x) = λαxα−1e−λx

Γ(α) x ≥ 0, λ
and α > 0, when α = m and m is a positive integer. The exponential distribution
is obtained by letting m = 1. In addition, the Erlang r.v. results from the sum of
m independent, exponentially distributed r.v.’s with parameter λ.

The following lemma gives the c.d.f. of (1) and Theorem 1 gives the kth moments
of (2).

Lemma 1. The cumulative distribution function of (1) is given by

F (y) =
n∏

i=1

(λi)mi

n∑

i=1

mi∑

j=1

Bij(
1
λi

)mi−j+1

(
1− e−λiy

mi−j∑
r=0

(λiy)r

r!

)
(5)

where

Bij =
1

(j − 1)!
dj−1

dsj−1

(
(s+ λi)mi

∏n
k=1(s+ λk)mk

)
(6)

evaluated at s = −λi and d
ds (·) stands for the derivative.

P r o o f . The Laplace transform of the p.d.f. of (1) can be written as

f∗(s) =
n∏

i=1

(
λi

s+ λi

)mi

.

By using partial fraction expansion Kleinrock [9] (formulae (I40) and (I41)) showed
that

f∗(s) =
n∏

i=1

(λi)mi

n∑

i=1

mi∑

j=1

Bij

(s+ λi)mi−j+1

where Bij is defined in (6). Then the p.d.f. of (1) is given by

f(y) =
n∏

i=1

(λi)mi

n∑

i=1

mi∑

j=1

Bij
ymi−j

(mi − j)!
e−λiy.

In consequence, the c.d.f. can be written as in (5). 2

Theorem 1. Let Xi’s be independent and non-identically r.v.’s that obey the
Erlang distribution. For n = 1, 2, . . . and k = 1, 2, . . .

µ(k)
n:n = k

n∑

j=1

(−1)j+1 Ij (7)
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where

Ij =
∑ ∑

1≤i1<i2...≤ij≤n

mi1−1∑
t1=0

. . .

mij
−1∑

tj=0

Γ(
∑j

s=1 ts + k)

(
∑j

s=1 λis
)
Pj

s=1 ts+k

j∏
s=1

λts
is

ts!
(8)

and
µ

(k)
1:n = In. (9)

P r o o f . By definition

µ(k)
n:n = k

∫ ∞

0

xk−1(1− Fn:n(x))dx

= k

∫ ∞

0

xk−1

(
1−

n∏

i=1

(1−
mi−1∑
t=0

(λix)t

t!
e−λix)

)
dx

= k

∫ ∞

0

xk−1




n∑

i1=1

mi1−1∑
t1=0

(λi1x)
t1

t1!
e−λi1x

−
∑ ∑

1≤i1<i2≤n

mi1−1∑
t1=0

mi2−1∑
t2=0

λt1
i1
λt2

i2

t1!t2!
xt1+t2 e−(λi1+λi2 )x

+
∑ ∑

1≤i1<i2≤i3≤n

mi1−1∑
t1=0

mi2−1∑
t2=0

mi3−1∑
t3=0

λt1
i1
λt2

i2
λt3

i3

t1!t2!t3!
xt1+t2+t3e−(λi1+λi2+λi3 )x

+ · · ·+ (−1)n−1

mi1−1∑
t1=0

· · ·
min−1∑
tn=0

n∏
s=1

λts
is

ts!
x
Pn

s=1 tse−x
Pn

s=1 λs


dx

where Fn:n(x) =
∏n

i=1 Fi(x) and F1:n(x) = 1 −∏n
i=1(1 − Fi(x)) are the c.d.f.’s of

the max(X1, X2, · · · , Xn) and the d.f. of the min(X1, X2, · · · , Xn) respectively.
Upon using ∫ ∞

0

xβ+k−1e−αxx =
Γ(k + β)
αk+β

(10)

we get (7). The proof of (9) follows from the relation

µ
(k)
1:n = k

∫ ∞

0

xk−1
n∏

i=1

(1− Fi(x))dx

= k

∫ ∞

0

xk−1
n∏

i=1

(
mi−1∑
t=0

(λix)t

t!
e−λix

)
dx

and using (10). 2
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Bounds for Erlang Estimate (EE). The Increasing Failure Rate (IFR) distri-
bution class (recall that F (x) belongs to the IFR class if r(t) = f(t)

1−F (t) is increasing)
contains all distributions proposed for describing the activity duration in SANs, see
Kamburowski [8]. This class includes the exponential, the Weibull with parameter
α ≥ 1, the Erlang, and all strongly unimodal distributions of non-negative r.v.’s.
So, it is easy to argue that EE is located between a lower bound (LB) based on
the critical path method (CPM) with deterministic model, see Devroye [2] and the
upper bound (UB) with exponentially distributed times of activities which is given
by Kamburowski [8]. Better lower bounds have been discussed by Fulkerson [6],
Elmaghraby [3], and Robillard [13]. However, the computational effort for these
procedures are increasing. A survey of the above methods, recent developments and
complexity can be found in Elmaghraby [4] and [5], Tavares [16] and the papers cited
herein.

Lemma 2. LB ≤ EE.

P r o o f . The relation follows by using Jensen’s inequality

ψ[E(X)] ≤ E[ψ(X)]

for each convex function ψ and each r.v. X, the higher moments are also follow from
Jensen’s inequality. 2

Lemma 3. EE ≤ UB.

P r o o f . Since the Erlang distribution belongs to the IFR class and the exponen-
tial distribution is the maximal one on it, then the proof follows. 2

3. APPLICATIONS

The Erlang distribution is used in this paper to represent the input distribution of
activity duration. The thrust, the appropriateness and the advantages of using the
Erlang distribution are discussed in Bendell et al [1] by providing some numerical
examples to demonstrate the accuracy of the method. This paper devoted to com-
pare the Erlang estimate (when m = 2 and 3) with the other distribution estimates
such as: the exponential and the normal distribution.

In order to perform the comparison between EE and other distribution estimates,
two example networks are given in Figures 1 and 2 with mean indicated on each arc.
The comparison of the estimates is given in Tables 1 and 2, where C.V. denotes to
the coefficient of variation (=

√
variance
mean ).

To compute the mean completion time of the project, let Xi’s i = 1, 2, . . . , n be
n r.v.’s with

h(X1, X2, · · · , Xn) = Emax(X1, X2, · · · , Xn). (11)

The mean completion time of the node j is determined recursively by

W1 = 0
Wj = h(Wi +Xij , i ∈ Bj) j = 2, 3, . . . (12)
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where Bj denotes the set of predecessors of arcs connected with the node j and
Xij denotes the random duration of the arc (i, j) which is assumed to be Erlang
distributed. The other moments can be easily computed by using equations (7) and
(12) with a little bit modifications. Some special cases, for the maximum of two and
three r.v.’s, are given in the Appendix.

To sum up the computations for obtaining the kth moment completion time of
the project, we present the following algorithm:

INPUT: k, m and E(Xij)

OUTPUT: The completion time of node j, j = 2, 3, . . . , n.
Step 1. Set W1 = 0 (starting node).
Step 2. Compute Wj , for j = 2, 3, 4, . . . , n by using equations (12), (7) and (8).
Step 3. Go to Step 2.

Example 1. The network in Figure 1, for which the duration of each activity is
exponentially distributed, is taken from Kamburowski [7]. Each activity duration is
discretized by three values of equal probability. This was done in order to achieve
the exact mean completion time through enumeration all possible realizations. The
normal approach which is given by Sculli [15] is also presented. Table 1 summa-
rizes the completion time for these estimates as well as the Erlang estimate for two
different values (m = 2 and 3).

Fig. 1. Example network with mean duration is shown next to each activity.
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Example 2. The network in Figure 2, for which the activity times are assumed
to be exponentially distributed, was first introduced by Loulou and Beale [11] and
used by Kulkarni and Adlakha [10] who developed analytical procedure known as
Markov PERT networks (MPNs). They estimated the mean completion time of this
network to be 40.985. But their method suffers from the exponential state explosion.
Table 2 summarizes the completion time for different estimates.

Fig. 2. Network (Loulou and Beale). The numbers

on the arcs represent mean activity duration.

Table 1. Comparison between different estimates.

Type of activity Mean Variance C.V. Appr.
duration Estimates Estimates Error ( % )
Exact 18.257 21.078 0.2514
Sculli [15] 20.064 25.512 0.2517 9.89
Exponential (UB) [8] 26.777 301.69 0.6486 46.67
Erlang (m = 2) 22.446 112.81 0.4731 22.94
Erlang (m = 3) 20.455 93.59 0.4729 10.27
PERT(LB) [2] 12 54 0.6123 −34.27
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Table 2. Comparison between different estimates.

Type of activity Mean Variance C.V. Appr.
duration Estimates Estimates Error ( % )
Kulkarni and Adlakha [10] 40.985 58.803 0.187
Sculli [15] 42.61 12.03 0.081 3.96
Exponential (UB) [8] 315.75 56144 0.75 670.40
Erlang (m = 2) 167.05 8137.3 0.54 307.58
Erlang (m = 3) 122.30 2972.6 0.445 198.40
PERT(LB) [2] 26.1 70.05 0.321 −36.32

The values of the percentage errors for the estimates are included in Tables 1
and 2. By considering the approximated exact values, which give good approxima-
tions for the mean completion time, for the networks in Example 1 and 2 we get
18.257 and 40.985. We note that from the Tables 1 and 2 the percentage errors of
the Erlang estimate are smaller than the exponential upper bound given in [8].

Remark 1. Exponential (UB) is the Erlang distribution with m = 1.

Remark 2. From Tables 1 and 2 we see that the Erlang estimate is an upper
bound much better than the best upper bound which is given by Kamburowski [8].

4. COMMENTS

Kamburowski [8] proposed a method to determine an upper bound on the mean
completion time by replacing the individual activity durations with exponentially
distributed r.v.’s with the same mean, and proceeding iteratively over the nodes. He
computed the mean completion time of the node j using equation (12) by replacing
the distribution of Wj (which is not exponentially distributed) with an exponential
of the same mean as E(Wj). This compounded the error committed and resulted in
a very loose UB. We follow the same procedure by considering the distribution of Wj

is the Erlang distribution. This also compounded the error committed and resulted
in a little loose UB compared with Kamburowski [8]. There is also another reason
caused the error to be less than in Kamburowski [8], that is the Erlang distribution
has less extreme compared with the exponential distribution.

Kulkarni and Adlakha [10] do not follow the above strategy. They represented the
PERT network by a finite-state, absorbing, continuous-time Markov chain (CTMC)
with a single absorbing state. The state space of this chain is dependent on the
structure of the PERT network. The special structure of the chain allows them to
develop an exact analysis of the network. These assumptions led them to avoid using
the maximum operation to calculate the project completion time and hence there
is no error committed of assuming that the distribution of Wj is again exponential
(and the independent assumption in this case may disappeared). Consequently,
their estimate for the moments completion time is getting tighter than the UB
given by Kamburowski [8] and the Erlang estimate which is located between them.
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However, their method suffers from the exponential state explosion and requires
excessive computational effort to find the mean and the variance. Also one must
use a computer software to find these parameters even in a small network, e. g., in
the examples examined by them the in-degree of any node is at most two. If it
is assumed that the in-degree of some nodes are three or more, the computational
efforts could be impossible. On the other hand, these parameters can be derived
manually using the Erlang distribution. There is another important remark on their
work. They claimed that their work is stable. It seems that this is not always true,
e.g. consider Example 1 which is also cited in their paper. They estimated the mean
and the variance to be (14.7787, 46.6981) whereas the estimation by Kamburowski
[8] are (10.13, 60.46), i.e., Kamburowski’s [8] mean estimate is less than that of
Kulkarni and Adlakha [10].

5. CONCLUDING REMARKS

The advantages of using the Erlang distribution as a representation of activity times
are stated in Bendell et al [10]. They have derived only the four central moments of
the sum and the maximum of two independent Erlang r.v.’s. This paper generalized
the work of Bendell et al [10]. The distribution of the sum of n independent non-
identically distributed r.v.’s as well as the kth moments of the maximum and the
minimum are derived. Bounds on the mean completion time of the project are also
given. The higher moments can be obtained easily by using equations (7), (8) and
(12). Applications show that the Erlang estimate is an upper bound which is less
than that obtained by Kamburowski [8]. Similar results for stochastic shortest-route
networks can be obtained by using equations (8) and (9). Computational complexity
which is given in the algorithm may be an interesting topic for future research.

APPENDIX

The rth moment of the Erlang distribution about the origin is given by

µr =
∫ ∞

0

xrf(x) dx =
Γ(r +m)
λr Γ(m)

, (A1)

in particular,
E(X) =

m

λ
and Var(X) =

m

λ2
.

by letting λi = m
µi

, some special cases arose from equations (7) and (8).

For k = 1.

Case 1. n = 2 and m = 2.

E (max(X1, X2)) = µ2:2 = µ1 + µ2 −
(

1
1

µ1
+ 1

µ2

+
1

µ1µ2( 1
µ1

+ 1
µ2

)3

)
. (A2)
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Case 2. n = 3 and m = 2.

E (max(X1, X2, X3)) = µ3:3 = µ1 + µ2 + µ3 −
(

1
1

µ1
+ 1

µ2

+
1

1
µ1

+ 1
µ3

+
1

1
µ2

+ 1
µ3

+
1

µ1µ2( 1
µ1

+ 1
µ2

)3
1

µ1µ3( 1
µ1

+ 1
µ3

)3
+

1
µ2µ3( 1

µ2
+ 1

µ3
)3

)
+

1
1

µ1
+ 1

µ2
+ 1

µ3

+
µ1 + µ2 + µ3

µ1µ2µ3( 1
µ1

+ 1
µ2

+ 1
µ3

)3
+

3
µ1µ2µ3( 1

µ1
+ 1

µ2
+ 1

µ3
)4
. (A3)

Case 3. n = 2 and m = 3.

µ2:2 = µ1 + µ2 −
(

1
1

µ1
+ 1

µ2

+
1

µ1µ2( 1
µ1

+ 1
µ2

)3
+

2
µ2

1µ
2
2(

1
µ1

+ 1
µ2

)5

)
. (A4)

Case 4. n = 3 and m = 3.

µ3:3 = µ1 + µ2 + µ3 −
(

1
1

µ1
+ 1

µ2

+
1

1
µ1

+ 1
µ3

+
1

1
µ2

+ 1
µ3

+
1

µ1µ2( 1
µ1

+ 1
µ2

)3

+
1

µ1µ3( 1
µ1

+ 1
µ3

)3
+

1
µ2µ3( 1

µ2
+ 1

µ3
)3

+
2

µ2
1µ

2
2(

1
µ1

+ 1
µ2

)5
+

2
µ2

1µ
2
3(

1
µ1

+ 1
µ3

)5

+
2

µ2
2µ

2
3(

1
µ2

+ 1
µ3

)5

)

+
1

1
µ1

+ 1
µ2

+ 1
µ3

+
1

µ1
(µ2 + µ3) + 1

µ2
(µ1 + µ3) + 1

µ3
(µ1 + µ2) + 6

µ1µ2µ3( 1
µ1

+ 1
µ2

+ 1
µ3

)4

2
µ2

1 + µ2
2 + µ2

3

µ2
1µ

2
2µ

2
3(

1
µ1

+ 1
µ2

+ 1
µ3

)5
+ 10

µ1 + µ2 + µ3

µ2
1µ

2
2µ

2
3(

1
µ1

+ 1
µ2

+ 1
µ3

)6
+ 30

1
µ2

1µ
2
2µ

2
3(

1
µ1

+ 1
µ2

+ 1
µ3

)7
.

(A5)

For k = 2.

Case 1. n = 2 and m = 2.

µ
(2)
2:2 =

3
2

[
µ2

1 + µ2
2 −

(
1

( 1
µ1

+ 1
µ2

)2
+

2
µ1µ2( 1

µ1
+ 1

µ2
)4

)]
. (A6)
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Case 2. n = 2 and m = 3.

µ
(2)
2:2 =

4
3

[
µ2

1 + µ2
2 −

(
1

( 1
µ1

+ 1
µ2

)2
+

2
µ1µ2( 1

µ1
+ 1

µ2
)4

+
5

µ2
1µ

2
2(

1
µ1

+ 1
µ2

)6

)]
. (A7)

Case 3. n = 3 and m = 2.

µ
(2)
3:3 =

3
2

[
µ2

1 + µ2
2 + µ2

3 −
(

1
( 1

µ1
+ 1

µ2
)2

+
1

( 1
µ1

+ 1
µ3

)2
+

1
( 1

µ2
+ 1

µ3
)2

+
2

µ1µ2( 1
µ1

+ 1
µ2

)4
+

2
µ1µ3( 1
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