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ON d-OPTIMALITY OF THE LR TESTS

Frantǐsek Rubĺık1

The lower asymptotic distributional bound of the level attained is attained in the case
of the likelihood ratio statistics. The regularity conditions on which the proofs are based
are verified for the non-singular normal, the multinomial and the Poisson distribution.

1. INTRODUCTION AND THE MAIN RESULTS

First we introduce notations which will be useful for describing asymptotic properties
of tests of hypotheses about q statistical populations. These q populations will be
supposed to have their distributions from the same family of probabilities.

Let {P γ ; γ ∈ Ξ } be a family of probability measures, defined on (X,F) by means
of the densities {f(x, γ); γ ∈ Ξ } with respect to a measure ν. If we denote the q-fold
products

S = X∞ × . . .×X∞ , S = F∞ × . . .×F∞ , Θ = Ξq (1)

then for θ = (θ1, . . . , θq) ∈ Θ the corresponding product measure

Pθ = P
∞
θ1
× . . .× P

∞
θq
, (2)

defined on the σ-algebra S, describes independent sampling from the q populations
(X,F , P θj ), j = 1, . . . , q .

Throughout the paper we shall assume that the null and the alternative hypothe-
ses

∅ 6= Ω0 ⊂ Ω1 ⊂ Θ (3)

are tested by means of a test statistic Tu : S → R, whose large values are significant
(i. e. the null hypothesis Ω0 is rejected in favor of the alternative Ω1−Ω0, whenever
Tu exceeds a chosen critical constant). We shall suppose that Tu depends on

s =
(
{x(1)

j }∞j=1, . . . , {x(q)
j }∞j=1

)
∈ S

through
x(u) =

(
y(1, n(1)

u ), . . . , y(q, n(q)
u )

)
(4)
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only, where
y

(
j, n(j)

u

)
=

(
x

(j)
1 , . . . , x

(j)

n
(j)
u

)
(5)

is a sample from the jth population. To establish a bound for the asymptotic distri-
bution of the logLu(s), where the level attained Lu(s) = sup{Pθ[Tu ≥ Tu(s)]; θ ∈
Ω0 }, we impose these conditions.

(C1). In the notation

nu =
q∑

j=1

n(j)
u , p(j)

u = n(j)
u /nu (6)

the relations

lim
u→∞

nu = +∞ , lim
u→∞

p(j)
u = pj ∈ (0, 1〉 , j = 1, . . . , q (7)

hold.

(C2). The measurable space (X,F) = (Rm,Bm), the dominating measure ν is not
suppported on a flat, the parameter set

Ξ =
{
γ ∈ Rm;

∫
eγ ′ x dν(x) < +∞

}
(8)

is open, and the densities are determined by the formula

f(x, γ) =
dP γ

dν
(x) = eγ ′ x−C(γ) , (9)

where prime denotes transposition of the vector, and

C(γ) = log
∫

eγ ′ x dν(x) . (10)

Before proceeding to the further text we remark, that one of the consequences
of (C2) according to Lemma 2.1 in [2] is that P γ 6= P γ∗ whenever the parameters
γ 6= γ∗.

Let us denote

P = { p ∈ Rq;
q∑

j=1

pj = 1 and pj > 0 for all j } (11)

and for θ, θ∗ ∈ Θ, p ∈ P put

K(θ, θ∗, p) =
q∑

j=1

pjK(θj , θ
∗
j ) , (12)

K(θ,Ω0, p) = inf{K(θ, θ∗, p); θ∗ ∈ Ω0 } , (13)

where K(θj , θ
∗
j ) =

∫
log

(
f(x,θj)
f(x,θ∗j )

)
f(x, θj) dν(x) is the Kullback–Leibler information

number.



On d-Optimality of the LR Tests 191

Lemma 1.1. If the assumptions (C1), (C2) are fulfilled and θ ∈ Ω1 − Ω0, where
the bar denotes the closure of the set, then for every parameters ηu ∈ Ω0 such that

K(θ,Ω0, pu) = K(θ, ηu, pu) + o(1/nu) , (14)

and for every real number t

lim sup
u→∞

Pθ

[
logLu(s) + nuK(θ,Ω0, pu)√

nuσu
< t

]
≤ Φ(t) , (15)

where in the notation (6)
pu = (p(1)

u , . . . , p(q)
u ) , (16)

σ2
u =

q∑

j=1

p(j)
u σ2(Πj(θ),Πj(ηu)) , σ2(γ, γ∗) = Var

[
log

f(x, γ)
f(x, γ∗)

∣∣P γ

]
, (17)

Πj((θ1, . . . , θq)) = θj , (18)

and Φ is distribution function of the N(0 , 1) distribution.

If the set Ω0 is closed in Θ, i. e. if

Ω0 = Θ ∩ C where C ⊂ Rmq is a closed set, (19)

then in accordance with Lemma 1.1 and the terminology accepted in [1] we shall say
that the statistics Tu are d-optimal (distributionally optimal) for testing Ω0 against
Ω1 − Ω0, if for each θ ∈ Ω1 − Ω0, every real number t and ηu ∈ Ω0 satisfying (14)

lim
u→∞

Pθ

[
logLu(s) + nuK(θ,Ω0, pu)√

nuσu
< t

]
= Φ(t) (20)

whenever (C1) holds. In the one-sample case investigated in [3] obviouslyK(θ,Ω0, pu)
= inf{ K(θ, θ∗); θ∗ ∈ Ω0}. However, if q > 1, then K(θ,Ω0, pu) cannot be in (20)
replaced with its limiting value K(θ,Ω0, p) , because the left-hand side in (20) could
be zero and the set of d-optimal statistics would be empty for such hypotheses.

In considerations concerning the likelihood ratio test statistic we shall use for
Ω ⊂ Θ throughout the paper the notation

L(x(u),Ω) = sup





q∏

j=1

n(j)
u∏

i=1

f(x(j)
i , θj); θ = (θ1, . . . , θq) ∈ Ω



 . (21)

In proving d-optimality of the LRT statistics we shall use also the following condition.
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(C3). If (C1) holds, then there exist measurable functions hu : 〈0 ,+∞) −→ R
such that for every real t ≥ 0

sup
{
Pθ

[
2 log

L(x(u),Θ)
L(x(u), θ)

≥ t

]
; θ ∈ Θ

}
≤ exp

[−t
2

+ hu(t)
]

(22)

where

lim
u→∞

hu(tu)√
nu

= 0 (23)

for every sequence {tu}∞u=1 of non-negative numbers satisfying the inequality

lim sup
u→∞

tu
nu

< +∞ . (24)

If both (3) and (19) hold, then we shall say that the set Ω0 is Ω1 informationally
regular (or briefly, Ω1 IR), if for each p ∈ P and θ ∈ Ω1 there exists a unique point
η = η(θ, p) ∈ Ω0 such that in the notation (13) the equality

K(θ,Ω0, p) = K(θ, η(θ, p), p) (25)

holds.

Theorem 1.1. Let us assume, that the assumptions (C1), (C2) hold, the set Ω0

from (3) is Ω1 IR,
Tu = 2 log

L(x(u),Ω1)
L(x(u),Ω0)

(26)

and θ ∈ Ω1 − Ω0.
(I) In the notation (13), (16) – (18) and (2)

L




1
2
Tu − nuK(θ,Ω0, pu)

√
nuσu

∣∣Pθ


 −→ N(0, 1) (27)

in the sense of the weak convergence of probability measures.
(II) If also (C3) is fulfilled, then (20) holds and the statistics (26) are d-optimal

for testing Ω0 against Ω1 − Ω0.

This theorem is a q-sample version of Proposition 2.8 in [1], whose assumptions are
of the asymptotic nature, and require verification for every particular hypothesis,
which mainly in the q-sample case could be complicated. In contrast with this,
Theorem 1.1 provides us with an apriori knowledge, that for the given exponential
family the statistics (26) are d-optimal in the case of the IR hypotheses. As it is well
known, and explained also in considerations concerning (2.43) in [11], under validity
of (C2)

logL(x(u), θ) = G(u)(x(u))− nuK(θ̂, θ, pu) (28)
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provided that the unrestricted MLE θ̂ exists. Hence the MLE of the unknown pa-
rameter from Ω0 is the value minimizing K(θ̂, ·, pu) on Ω0, and the IR hypotheses
may be interpreted as the ones for which the restricted MLE is uniquely deter-
mined. This suggests that the assumption of being informationally regular is not
very restrictive.

2. PROOFS OF THE ASSERTIONS FROM SECTION 1

Lemma 2.1. Let the conditions (C1), (C2) hold and parameters θ, ηu satisfy the
assumptions of Lemma 1.1. There exists a compact set Γ ⊂ Θ such that

ηu ∈ Γ for all u (1)

and if we put (cf. (21))
Ru(s) = log

L(x(u), θ)
L(x(u), ηu)

(2)

then in the notation (13) and (16) - (18) for u→ ∞

L
[
Ru(s)− nuK(θ,Ω0, pu)√

nuσu
|Pθ

]
−→ N(0, 1) . (3)

Moreover, if the set Ω0 is Ω1 IR, then (cf. (25) )

lim
u→∞

ηu = η(θ, p) . (4)

P r o o f . First we shall assume that ηu → η for u→∞. Utilizing the Tchebychev
inequality and continuity of σ(γ, .) we obtain that

Ru(s)− nuK(θ,Ω0, pu) = oP (n1/2
u ) +

∑

j

∗Zu,j (5)

with (cf. (18), (5))

Zu,j = log
L(y(j, n(j)

u ),Πj(θ))

L(y(j, n(j)
u ),Πj(ηu))

− n(j)
u K(Πj(θ),Πj(ηu)) ,

where
∑∗ denotes the sum over the indices j for which the inequality Πj(θ) 6= Πj(η)

holds. Since ν is not supported on a flat, according to Lemma 2.1 in [2] the number
σ2(γ, γ∗) in (17) is positive if γ 6= γ∗. Furthermore, the parameter set Ξ of this
exponential family is open, which together with ηu → η enables us to apply the Lin-
deberg theorem on

[
n

(j)
u σ2(Πj(θ),Πj(ηu))

]−1/2
Zu,j . Thus (3) follows from (5) and

from the fact that σ2
u tends to the positive real number σ2 =

∑
j pjσ

2(Πj(θ),Πj(η)).
Let us not assume that the sequence {ηu} is convergent. Let θ̃ ∈ Ω0 be a fixed

parameter and

Γj = {θ∗ ∈ Ξ; K(Πj(θ),Πj(θ∗) ≤ cj } , cj =
1
pj

(
q∑

i=1

K(Πi(θ),Πi(θ̃)) + 1

)
,
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where p = (p1, . . . , pq)′ is vector of the limiting values from (7). According to Lemma
2.2 in [11] the set Γj is compact. Since non-negativity of K(·, ·) together with (14)
and (7) imply that ηu ∈ Γ̃ = Γ1 × . . .× Γq for all u sufficiently large, (1) is proved.
Since Γ̃ is compact, from the previous part of the proof we obtain that for every
subsequence {uj} of positive integers there exists a subsubsequence {uji

} for which
(3) holds, and the convergence (3) is proved.

Since the set Γ̃ is compact, each subsequence of {ηu} contains a convergent sub-
subsequence. But if the set Ω0 is Ω1 IR, continuity of K(·,Ω0, ·) proved in Lemma
2.3(III) in [11] implies that this subsubsequence converges to η(θ, p), and (4) is
proved. 2

P r o o f o f L e mm a 1.1. The proof can be performed analogously as the proof
of Theorem 2.1 in [3], where only the case q = 1 is considered and an assumption of
existence of a minimizing point is imposed. Let us denote for ε > 0

Au(ε) = {s ∈ S; logLu(s) +Ru(s) < −ε√nu} .
Since (3) holds, given δ > 0 we can find a number M such that the sets

Bu = {s ∈ S; |Ru(s)− nuK(θ, ηu, pu)| ≤M
√
nuσu}

satisfy the inequality 1 − Pθ(Bu) < δ. Hence following the lines of the proof of
Theorem 2.1 in [3], p. 387, we can prove that

lim
u→∞

Pθ(Au(ε) ) = 0

which together with Lemma 2.1 implies (15). 2

Lemma 2.2. Let the assumptions (C1), (C2) hold. If the set Ω0 is Ω1 IR, θ ∈ Ω1

and the parameters ηu ∈ Ω0 satisfy (14), then (cf. (21), (2) )

n−1/2
u log

L(x(u),Ω0)
L(x(u), ηu)

= oP (1), (6)

where P = Pθ.

P r o o f . Let us denote

An = {(x1, . . . , xn) ∈ Rmn; x ∈ B(ν)} ,
where x = 1

n

∑n
j=1 xj , and

B(ν) = {ξ(γ); γ ∈ Ξ} , ξ(γ) =
∫
xf(x, γ) dν(x) .

As it is explained in the proof of Theorem 1.2 in [11] on p. 61, the sets An, B(ν) are
open, the mapping ξ posseses an inversion ξ−1 and both ξ and ξ−1 have continuous
derivatives of the first order. Moreover, if we denote for (x1, . . . , xn) ∈ An

θ̂n(x1, . . . , xn) = ξ−1(x) , (7)
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and put gn(x1, . . . , xn) = n(xn
′θ̂n − C(θ̂n)), then for each parameter γ ∈ Ξ on An

logL(x1, . . . , xn, γ) = gn(x1, . . . , xn)− nK(θ̂n, γ) , (8)

where K(γ∗, γ) = (γ∗−γ)′Eγ∗(x)−C(γ∗)+C(γ) is the Kullback–Leibler information
quantity; non-negativity of K(·, ·) and (8) imply that θ̂n is the unrestricted MLE.
Since the set B(ν) is open, making use of the law of large numbers we get that for
each γ ∈ Ξ

lim
n→∞

Pγ(An) = 1 , θ̂n → γ a. e. P
∞
γ . (9)

According to the central limit theorem the random variables
√
n(x − ξ(γ)) are

bounded in the probability P
∞
γ . Combining this with the Taylor theorem, (7), the

fact that the set B(ν) is open and ξ−1 has on B(ν) continuous partial derivatives,
we get that

θ̂n = γ +OP (n−1/2) , P = P
∞
γ . (10)

Further, Ω0 = Ξq ∩ C, where C ⊂ Rmq is a closed set. This according to Theorem
1.2 in [11] means that there exist measurable mappings

θ̃u : Du = A
n

(1)
u
× . . .×A

n
(q)
u
−→ Ω0 (11)

such that on Du the equality

L
(
x(u),Ω0

)
= L

(
x(u), θ̃u(x(u))

)
(12)

holds, and in the notation H = {θ∗ ∈ Ω0; K(θ, θ∗, p) = K(θ,Ω0, p)} the random
variables ρ(θ̃u,H) tend to zero in probability Pθ. Since the set Ω0 is Ω1 IR, the set
H consists of the unique point η(θ, p), and taking into account the first relation in
(9) we see that

θ̃u = η(θ, p) + oP (1) , P = Pθ . (13)

If we denote for x(u) ∈ Du

θ̂(u)(x(u)) =
(
θ̂

n
(1)
u

(y(1, n(1)
u )), . . . , θ̂

n
(q)
u

(y(q, n(q)
u ))

)
, (14)

then taking into account (8), (12) and the first equality in (9) we see that in the
notation (18)

log
L(x(u),Ω0)
L(x(u), ηu)

=
q∑

j=1

n(j)
u

[
K(Πj(θ̂(u)),Πj(ηu))−K(Πj(θ̂(u)),Πj(θ̃u))

]
+ oP (1) .

(15)
Let us define the function ψ : Ξ× Ξ× Ξ −→ R1 by the formula

ψ(θ̂, θ∗, θ∗∗) = K(θ̂, θ∗)−K(θ̂, θ∗∗) . (16)

Since (C2) holds, the set Ξ is open, and according to Lemma 7, chapter II in [9]
also convex. If γ ∈ Ξ, then according to Theorem 9, chapter II in [9] derivatives of
all orders of

∫
eγ ′x dν(x) may be computed by differentiating under the integration
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sign, and therefore K(γ∗, γ) has on Ξ continuous partial derivatives of the first order.
Thus applying the Taylor theorem on (16) we get that

ψ
(
Πj(θ̂(u)),Πj(ηu),Πj(θ̃u)

)
= ψ

(
Πj(θ),Πj(ηu),Πj(θ̃u)

)
+ du , (17)

where

du =
m∑

i=1

∂ψ
(
αΠj(θ̂(u)) + (1− α)Πj(θ),Πj(ηu),Πj(θ̃u)

)

∂
(
αΠj(θ̂(u)) + (1− α)Πj(θ)

)
i

(
Πj(θ̂(u))−Πj(θ)

)
i
. (18)

Since the first derivatives are continuous, from (9), (4), (13) and (16) we get that

∂ψ
(
αΠj(θ̂(u)) + (1− α)Πj(θ),Πj(ηu),Πj(θ̃u)

)

∂
(
αΠj(θ̂(u)) + (1− α)Πj(θ)

)
i

=

=
∂ψ

(
Πj(θ),Πj(η(θ, p)),Πj(η(θ, p))

)

∂Πj(θ)i
+ oP (1) = oP (1) , (19)

where P = Pθ. Taking into account (18), (19), (10) and (C1) we see, that the
absolute value of the remainder term

|du| ≤ oP (1)‖Πj(θ̂(u))−Πj(θ)‖ = oP (1)OP ((n(j)
u )−1/2) = oP (n−1/2

u ) .

Hence (15) – (17) imply that

0 ≤ n−1/2
u log

L(x(u),Ω0)
L(x(u), ηu)

= n1/2
u

[
K(θ,Ω0, pu)−K(θ, θ̃u, pu)

]
+ oP (1) ≤ oP (1) ,

(20)
where the last inequality follows from the fact that θ̃u ∈ Ω0. Validity of (20) means
that (6) is proved. 2

P r o o f o f T h e o r e m 1.1. (I) Making use of Lemma 2.2 and the inequality

0 ≤ log
L(x(u),Ω1)
L(x(u), θ)

≤ log
L(x(u),Θ)
L(x(u), θ)

we see that (cf. (2))
(2n1/2

u )−1Tu = n−1/2
u Ru + oP (1) ,

and (27) follows from Lemma 2.1 and the inequality

lim inf
u→∞

σu > 0

which holds owing to (4) and θ ∈ Θ− Ω0.

(II) If θ0 ∈ Ω0, then

Tu ≤ 2 log
L(x(u),Θ)
L(x(u), θ0)

. (21)
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Since (C2) holds, the measure ν is not supported on a flat, which according to
Lemma 2.1 in [2] means that the probabilities {P γ ; γ ∈ Ξ} are mutually different.
Thus the Kullback–Leibler information quantity K(θ̂n, γ) ≥ 0 and the equality sign
holds if and only if γ = θ̂n. This together with (8) and (9) means, that for γ ∈ Ξ
almost everywhere Pγ

lim
n→∞

1
n

log
L(x1, . . . , xn,Ξ)
L(x1, . . . , xn, γ)

= lim
n→∞

K(θ̂n, γ) = 0 . (22)

Combining (21) with (C3) we obtain that

logLu(s) ≤ −Tu(s)
2

+ hu(Tu(s)) = −Tu(s)
2

+ n1/2
u oP (1) (23)

where the last equality follows from (C3), (21), (22) and the law of large numbers.
The equality (23) together with (27) and Lemma 1 yield (20). 2

3. APPLICATION TO THE NORMAL DISTRIBUTION

Let k > 1 be an integer and a = k(k + 1)/2. Let us put m = k + a and denote

Ξ =
{
γ = (µ′, σ′)′ ∈ Rm; µ ∈ Rk, σ ∈ Ra and V (σ) is positive definite

}
(1)

the set of parameters of the non-singular k-dimensional normal distributions, i. e., µ
is the vector of means, σ = (v11, . . . , v1k, v22, . . . , v2k, . . . , vkk)′ are elements of the
covariance matrix and V (σ) is the symmetric matrix with V (σ)ij = vij for i ≤ j.
For γ = (µ

′
, σ

′
)
′ ∈ Ξ let f(x, γ) be density of the normal distribution N(µ, V (σ)).

In this setting Theorem 1 gets the following form.

Theorem 3.1. Let us assume that Θ = Ξq, the set Ω0 from (3) satisfies (19) and
θ ∈ Ω1 − Ω0.

(I) The relations (7) imply (15).

(II) If Ω0 is Ω1 IR and if {Tu} are the statistics (26), then under validity of (7)
the convergence (27), (20) occurs and the statistics (26) are d-optimal for testing Ω0

against Ω1 − Ω0.

P r o o f . If we put for x ∈ Rk and γ = (µ′, σ′)′ ∈ Ξ

T (x) =
(
x1, . . . , xk,−x

2
1

2
,−x1x2, . . . ,−x1xk,−x

2
2

2
,−x2x3, . . . ,−x2xk, . . . ,−x

2
k

2

)′

and analogously

e(γ) =
(
(V −1(σ)µ)′, V −1(σ)11, V −1(σ)12, . . . , . . . , V −1(σ)kk

)′
,

then
e(γ)′T (x) = −1

2
(x− µ)′ V (σ)−1(x− µ) +

1
2
µ′V (σ)−1µ , (2)
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f(x, γ) = exp[e(γ)′T (x)−D(γ)] and e, e−1 are continuous mappings of Ξ onto Ξ. If
the measure ν is on Bm defined by the formula ν(A) = µL(T−1A), where µL is the
Lebesque measure on (Rk,Bk), and if P e(γ) is the measure on Bm defined by means
of the density

f̃(y, e(γ)) = exp[e(γ) ′y − C(e(γ))]

with respect to ν, then for any normal distributions Pγ , Pγ∗ (with γ , γ∗ from (1))

K(Pγ , Pγ∗) = K
(
P e(γ), P e(γ∗)

)
,

Var

(
log

f̃(y, e(γ))
f̃(y, e(γ∗))

∣∣∣P e(γ)

)
=Var

(
(e(γ)−e(γ∗))′T (x)

∣∣∣P γ

)
=Var

(
log

f(x, γ)
f(x, γ∗)

∣∣∣P γ

)
.

Obviously {T−1(B); B ∈ Bm} = Bk, which implies that for every measurable func-
tion Mu : Rknu → R1 there exists a measurable function M̃u : Rmnu → R1 such
that Mu(x(u)) = M̃u(t(u)), with t(j)i = T (x(j)

i ) for j = 1, . . . , q, i = 1, . . . , n(u)
j . Thus

every test on parameters of the normal distribution can be identified with a test on
parameters of the exponential family with the density f̃ . Since according to Lemma
2.4 in [11] the measure ν is not supported on a flat and the natural set of parameters
(8) coincides with the set (1) which is open, Theorem 3.1 will follow from Lemma 1.1
and Theorem 1.1, if we prove that (C3) holds. One can prove this by referring to
Lemma 4.4 in [7]. Since this technical report may be not available to the reader, we
prefer to prove the following lemma, from which (C3) obviously follows.

Lemma 3.1. For γ = (µ′, σ′)′ ∈ Ξ let f(x, γ) denote density of the normal dis-
tribution N(µ, V (σ)). Let n(j)

u denote size of sample from the normal N(µj , V (σj))
population, the real number c > 0, and in the notation

n̂u = min {n(1)
u , . . . , n(q)

u } (3)
the inequality

k + c < n̂u (4)

holds. There exist numbers hu = h(n(1)
u , . . . , n

(q)
u , k, c) such that under validity of

(C1)
hu = O(log nu) (5)

and for every θ ∈ Ξq and t > 0 in the notation (21)

Pθ

[
log

L(x(u),Θ)
L(x(u), θ)

≥ t
]
≤ exp

[− t+Hu(t)
]
, (6)

where
Hu(t) =

k + c

n̂u
t+ hu . (7)

P r o o f . If γ = (µ′, σ′)′, γ∗ = (µ∗ ′, σ∗ ′)′ belong to (1), then the Kullback–Leibler
information quantity

K(γ, γ∗) =
1
2
(µ−µ∗)′V (σ∗)−1(µ−µ∗)+1

2
tr

[
V (σ)V (σ∗)−1

]
−1

2
log

|V (σ)|
|V (σ∗)|−

k

2
. (8)
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Hence if

Σ̂ =
1
n

n∑

i=1

(xi − x) (xi − x)′ , x =
n∑

i=1

xi , (9)

and An = {(x1, . . . , xn) ∈ (Rk)n; |Σ̂| > 0}, then one can easily verify that there
exists a function gn : An → R1 such that on An for each γ from (1)

log
n∏

i=1

f(xi, γ) = gn(x1, . . . , xn)− nK(θ̂n, γ) , (10)

where θ̂n is the parameter corresponding to the normal N(x, Σ̂) distribution. We
shall proceed similarly as in the proof of Theorem 2.1 in [5]. Since for γ = (µ′, σ′)′ ∈
Ξ and n ≥ k + 1 the equality Pγ(An) = 1 holds, and

L[K(θ̂n, γ)|P γ ] = L[K(θ̂n, ϑ
∗)|Pϑ∗ ]

where ϑ∗ is the parameter corresponding to the normal N(0, Ik) distribution, de-
noting ϑ = (ϑ∗, . . . , ϑ∗) ∈ Θ and utilizing the notations (14), (16) we see that for
n̂u ≥ k + 1 and any positive real number t̃

Pθ

[
log

L(x(u),Θ)
L(x(u), θ)

≥ t

]
= Pϑ[nuK(θ̂(u), ϑ, pu) ≥ t] ≤

≤ exp


−t̃t+

q∑

j=1

ϕ
n

(j)
u

(t̃n(j)
u )


 , (11)

where
ϕn(z) = log Eϑ∗

[
exp(zK(θ̂n, ϑ

∗))
]
.

Employing the Bartlett decomposition of the Wishart matrix, described in [8], p.
55, and performing all necessary integrations, we get that for z < n− k

ϕn(z) = −k
2

log
(
1− z

n

)
+
zk

2
log n+

[
k(k + 1)

4
− nk

2

]
log 2−

−
k∑

i=1

log Γ
(
n− i

2

)
+

k∑

i=1

z + i− n

2
log

(
1
2
− z

2n

)
+

+
k∑

i=1

log Γ
(
n− i− z

2

)
− (k − 1)k

4
log

(
1− z

n

)
− kz

2
, (12)

where Γ denotes the usual gamma function. According to the Stirling formula for
logarithm of the gamma function (cf. (12.5.3) in [4])

log Γ(x) =
(
x− 1

2

)
log x− x+

1
2

log(2π) + o(1) , (13)



200 F. RUBLÍK

where limx→∞ o(1) = 0. Combining (12) and (13) we obtain that for t̃ = 1 −
(n̂u)−1(k + c) under validity of (C1)

ϕ
n

(j)
u

(t̃n(j)
u ) = O(lognu) ,

which together with (11) means that the lemma is true. 2

In the following considerations we shall drop for γ = (µ′, σ′)′ ∈ Ξ the notation
V (σ), and covariance matrix of the normal distribution with the density f(x, γ) we
shall denote simply by V (γ).

Example 1. Testing the equality µ = µ0. Let µ0 ∈ Rk be a fixed vector and

Ω0 = {γ ∈ Ξ; E(x|P γ) = µ0 } . (14)

If γ ∈ Ξ and γ∗ ∈ Ω0, then

K(γ, γ∗) = K
[
N(0, A), N(0, V (γ∗))

]
+

1
2

log
(|A|/|V (γ)|)

where A = V (γ)+ (µ−µ0)(µ−µ0)′ . Thus K(γ, .) is on Ω0 minimized at the unique
parameter η corresponding to N(µ0, A). If

S =
n∑

i=1

(xi − x̄)(xi − x̄)′ = nΣ̂ (15)

and T 2
n = n(n−1)(x̄−µ0)′S−1(x̄−µ0) is the Hotelling statistic with (n−1) degrees

of freedom, then according to [12], p. 111

2 log
L(x1, . . . , xn,Ξ)
L(x1, . . . , xn,Ω0)

= n log
(

1 +
1

n− 1
T 2

n

)
. (16)

Since increasing transformations preserve the level attained, from Theorem 3.1 we

obtain that the Hotelling F-test based on
n(n− k)

k
(x̄−µ0)′S−1(x̄−µ0) is d-optimal

for testing the hypothesis µ = µ0.

Example 2. Testing sphericity of the covariance matrix. Let

Ω0 = { γ ∈ Ξ; there exist σ > 0 such that V (γ) = σ2Ik } (17)

where Ik is the identity matrix. If γ ∈ Ξ and γ∗ ∈ Ω0, then

K(γ, γ∗) = (2σ∗2)−1
[‖µ− µ∗‖2 + tr(V (γ))

]
+

1
2

log σ∗2k|V −1(γ)| − k

2
.

Thus K(γ, .) is on Ω0 minimized at the unique parameter η corresponding to the
N(µ, k−1tr(V (γ))Ik) distribution. From Theorem 3.1 we therefore obtain that the
statistics (cf. (15) )

Tn = 2 log
L(x1, . . . , xn,Ξ)
L(x1, . . . , xn,Ω0)

= n log
([

tr(k−1S)
]k

/|S|
)

(18)

are d-optimal for testing the sphericity hypothesis (17).
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Example 3. Testing independence of sets of variates. Let x′ = (x′1, . . . , x
′
r)

be a partitioning of the vector x ∈ Rk. Since x is supposed to be normally dis-
tributed, independence of these subvectors corresponds to the hypothesis

Ω0 = {γ ∈ Ξ; Vij(γ) = 0 for all i 6= j } (19)

where Vij(γ) = cov(xi, xj |P γ). If γ ∈ Ξ and γ∗ ∈ Ω0, then

K(γ, γ∗) =
r∑

i=1

K
[
N(µi, Vii(γ)), N(µ∗i , Vii(γ∗))

]
+

1
2

log
(
|V −1(γ)|

r∏

i=1

|Vii(γ)|
)
.

Thus K(γ, .) is on Ω0 minimized at the unique parameter corresponding to the
normal N(µ, V ∗) distribution, where V ∗ij = 0 if i 6= j and V ∗ii = Vii(γ). Hence
denoting the ith block of the matrix Σ̂ from (15) by Σ̂ii and taking into account
Theorem 3.1 we see that the statistics

Tn = 2 log
L(x1, . . . , xn,Ξ)
L(x1, . . . , xn,Ω0)

= n log
[( r∏

i=1

|Σ̂ii|
)/

|Σ̂|
]

(20)

are d-optimal for testing the hypothesis of independence (19).

In the following two examples we assume that q > 1 and Θ = Ξq .

Example 4. Testing equality of means. Let

Ω0 = { θ = (θ1, . . . , θq) ∈ Θ; E(x|θ1) = . . . = E(x|θq), V (θ1) = . . . = V (θq) } (21)

be the hypothesis that the means of the q normal populations are equal (and the
usual assumption of equality of the covariance matrices is imposed). Let us denote

Ω1 = { θ = (θ1, . . . , θq) ∈ Θ; V (θ1) = . . . = V (θq) } (22)

the alternative hypothesis which places no restriction on the means, but still assumes
the equality of the covariances.

If θ ∈ Ω1, θ∗ ∈ Ω0 and p ∈ P, then in the notation V = V (θj), V ∗ = V (θ∗j ),
µ∗ = E(x|θ∗j ) and A =

∑
j pj(µj − µ∗)(µj − µ∗)′ + V we get

K(θ, θ∗, p) = K
[
N(0, A), N(0, V ∗)

]
+

1
2

log
(
|A|/|V |

)
.

Thus K(θ, ., p) is on Ω0 minimized at the unique point η = (η1, . . . , ηq), where
η1 = . . . = ηq correspond to the N(µ̃,

∑
j pj(µj − µ̃)(µj − µ̃)′+V ) distribution, with

µ̃ =
∑

j pjµj , and Ω0 is Ω1 IR. If

x̄j , Σ̂j (23)
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denote the sample mean and the sample covariance matrix constructed from the
sample drawn from the jth population, then making use of (28) we get after some
computation that

Tu = 2 log
L(x(u),Ω1)
L(x(u),Ω0)

= 2nu

(
K(θ̂(u),Ω0, pu)−K(θ̂(u),Ω1, pu)

)

= −nu log Λ , Λ =
|A|

|A+B| (24)

where A =
∑

j n
(j)
u Σ̂j , B =

∑
j n

(j)
u (x̄j − µ̂)(x̄j − µ̂)′, µ̂ =

∑
j p

(j)
u x̄j . From The-

orem 3.1 we obtain that the statistics (24) are d-optimal for testing (21) against
(22) (this d-optimality of course applies also to the Wilks statistic Λ with the level
attained defined in this special case by the formula L(s) = P

[
Λ ≤ Λ(s)

]
).

Example 5. Testing equality of covariances. Let us denote

Ω0 = {θ = (θ1, . . . , θq) ∈ Θ; V (θ1) = . . . = V (θq)} (25)

the hypothesis that the covariance matrices of the q normal populations are equal. If
θ ∈ Θ, θ∗ ∈ Ω0 and p ∈ P, then in the notation V (θj) = Vj , V (θ∗1) = . . . = V (θ∗q ) =
V ∗, A =

∑
j pjVj

K(θ, θ∗, p) =

=
1
2

∑

j

pj(µj−µ∗j )′V ∗−1(µj−µ∗j )+K
[
N(0, A), N(0, V ∗)

]
+

1
2

∑

j

pj log
(
|A|/|Vj |

)
.

Thus the set Ω0 is Θ IR and

K(θ,Ω0, p) =
1
2

q∑

j=1

pj log
(
|A|/|Vj |

)
. (26)

In the notation (23) and Sj = n
(j)
u Σ̂j , S =

∑q
j=1 Sj

Tu = 2 log
L(x(u),Θ)
L(x(u),Ω0)

= log T̃u , T̃u =
∣∣∣∣

1
nu
S

∣∣∣∣
nu

/ q∏

j=1

∣∣∣∣
1

n
(j)
u

Sj

∣∣∣∣
n(j)

u

. (27)

As pointed out in [12], p.225, to obtain an unbiased test, instead of T̃u the modified
statistic

T ∗u =
∣∣∣∣

1
nu − q

S

∣∣∣∣
nu−q/ q∏

j=1

∣∣∣∣
1

n
(j)
u − 1

Sj

∣∣∣∣
n(j)

u −1

(28)

is used. We shall prove d-optimality of the statistic T ∗u .
Let (7) hold. There exist an index u0 and a positive constant c such that

Pθ

[
T̃u/T

∗
u ≥ c

]
= 1 for all u ≥ u0 and θ ∈ Θ. Thus if L∗u is the level attained

by T ∗u , then for u ≥ u0

L∗u(s) ≤ sup
{
Pθ∗

[
2 log

L(x(u),Θ)
L(x(u), θ∗)

≥ log T ∗u (s) + log c
]
; θ∗ ∈ Θ

}
.
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Let θ ∈ Θ−Ω0. From (26) and (28) we obtain that n−1
u log T ∗u −→ 2K(θ,Ω0, p) a. e.

Since the ratio T̃u/T
∗
u converges a. e. to a positive constant, and according to the

proof of Theorem 3.1 the condition (C3) is fulfilled,

n−1/2
u logL∗u(s) ≤ −(2n1/2

u )−1Tu(s) + oP (1) ,

where P = Pθ. This together with (27) and Lemma 1 yields d-optimality of T ∗u for
testing the hypothesis (25).

4. APPLICATION TO THE MULTINOMIAL DISTRIBUTION

Let X = {1, . . . , k} be a finite set,

Ξ =

{
(p1, . . . , pk−1)′ ∈ Rk−1; min

i
pi > 0,

k−1∑

i=1

pi < 1

}
(1)

and
f(x, p) = px , pk = 1−

k−1∑

j=1

pj (2)

denotes a density with respect to the counting measure µ on (X, 2X).

Theorem 4.1. Let us assume that Θ = Ξq, the set Ω0 from (3) satisfies (19) and
θ ∈ Ω1 − Ω0.

(I) The relations (7) imply (15).
(II) If Ω0 is Ω1 IR and if {Tu} are the statistics (26), then under validity of (7)

the convergence (27) and (20) occurs and the statistics (26) are d-optimal for testing
Ω0 against Ω1 − Ω0.

P r o o f . We shall proceed similarly as in proof of Theorem 3.1. After the iden-
tification

p −→
(

log
p1

pk
, . . . , log

pk−1

pk

)′
(3)

with the exponential family (9), where ν(A) = card
[
A ∩ {0, e1, . . . , ek−1 }

]
and

0 = (0, . . . , 0)′ , ej = (0, . . . , 0, 1, 0, . . . , 0)′ belong to Rk−1, we see that the set (8)
of natural parameters Ξ = Rk−1, and the axiom (C2) is fulfilled. Further, let nx

denote the number of occurrences of x in (x1, . . . , xn) ∈ Xn and

θ̂n = (p̂1, . . . , p̂k−1)′ , p̂x =
nx

n
. (4)

Making use of the first equality in (2), the relation (2.4) in [6] and proceeding as in
the proof of the inequality (2.10) in [6], we obtain that in the notation (14) and (4)
for each θ ∈ Θ and set A ⊂ Θ (where Θ denotes closure of Θ in the usual topology)

Pθ( θ̂(u) ∈ A ) ≤ exp(−nuK(A, θ, pu) +O(log nu) ) . (5)



204 F. RUBLÍK

Since (10) holds also in this case, in the notation Bu={θ∗∈Θ; nuK(θ∗, θ, pu)≥t}

Pθ

(
log

L(x(u),Θ)
L(x(u), θ)

≥ t

)
= Pθ(θ̂(u) ∈ Bu)

and (C3) follows from (5). Thus the assumptions of Lemma 1.1 and Theorem 1.1
are fulfilled, and the assertion is proved. 2

Example 6. Testing the simple hypothesis. Let p0 = (p(0)
1 , . . . , p

(0)
k−1)

′ be a
fixed point from (1). From Theorem 4.1 we obtain that in the notation (4) the
statistics

Tn = 2 log
L(x1, . . . , xn,Ξ)
L(x1, . . . , xn, p0)

= 2n
k∑

i=1

p̂i log
p̂i

p
(0)
i

(6)

where
0 log x = 0 (7)

are d-optimal for testing the hypothesis p = p0 against p 6= p0 .

Example 7. Testing independence in contingency tables. Let in accordance
with (1)

Ξ = {(p11, . . . , p1s, . . . , pr1, . . . , prs−1)′ ∈ Rrs−1; min
i,j

pi,j > 0,
∑

pij < 1 } (8)

be the parametric set of the r × s contingency tables. Let

pi. =
s∑

j=1

pij , p.j =
r∑

i=1

pij

where the number prs is defined analogously as in (2). Then

Ω0 = {p ∈ Ξ; pij = pi.p.j for all i, j } (9)

is the hypothesis, that the row and the column variables are stochastically indepen-
dent. If the parameter p ∈ Ξ is fixed, then making use of the Lagrange method of
multipliers we find out that the parameter from (9) with p̃ij = pi.p.j for all i, j, is
the unique parameter minimizing on Ω0 the Kullback–Leibler information quantity
K(p, .). Thus the set Ω0 is Ξ IR and according to Theorem 4.1 the likelihood ratio
statistics (cf. (4) and (7) )

Tn = 2 log
L(x1, . . . , xn,Ξ)
L(x1, . . . , xn,Ω0)

= 2n
r∑

i=1

s∑

j=1

p̂ij log
p̂ij

p̂i.p̂.j
(10)

are d-optimal for testing Ω0 against Ξ − Ω0 . We remark, that for s = r = 2 this
d-optimality is proved in [1], p. 17.
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Example 8. Testing equality of parameters of q multinomial populations.
Let an integer q > 1 and Θ = Ξq, where Ξ is the set (1). Let us denote

Ω0 = { θ = (θ1, . . . , θq) ∈ Θ; θ1 = . . . = θq } (11)

the hypothesis that the parameters of the q multinomial populations are the same.
If θ ∈ Θ and p ∈ P (cf. (11)) are fixed, then making use of the Lagrange method of
multipliers we find out that η = (γ, . . . , γ)′, where γ =

∑q
j=1 pjθj , is the unique point

from (11) minimizing on Ω0 the Kullback–Leibler information quantity K(θ, ., p).
Thus the set Ω0 is Θ IR, and if x(u) is the vector of samples (4) and oji denotes
the number of occurrences of the element i in the sample y(j, n(j)

u ) from the jth
population, then the likelihood ratio statistics

Tu(x(u)) = 2 log
L(x(u),Θ)
L(x(u),Ω0)

= 2
q∑

j=1

k∑

i=1

oji log
ojio..

oj.o.i
(12)

are according to Theorem 4.1 d-optimal for testing (11) against Θ− Ω0.

5. APPLICATION TO THE POISSON DISTRIBUTION

Let X = {0, 1, 2, . . .},
Ξ = (0,+∞) (1)

and
f(x, λ) =

e−λλx

x!
(2)

be density of the Poisson distribution Pλ with respect to the counting measure µ on
(X, 2X).

Theorem 5.1. Let us assume that Θ = Ξq, the set Ω0 from (3) satisfies (19) and
θ ∈ Ω1 − Ω0.

(I) The relations (7) imply (15).

(II) If Ω0 is Ω1 IR and {Tu} are the statistics (26), then under validity of (7) the
convergence (27) and (20) occurs and the statistics (26) are d-optimal for testing Ω0

against Ω1 − Ω0.

P r o o f . We shall proceed similarly as in proof of Theorem 3.1. After the identifi-
cation λ→ log λ with the exponential family (9), where ν(A) =

∑∞
j=0 χA(j)/j! with

χA denoting the indicator function of the set A, we see that the set (8) of natural
parameters Ξ = R1 and the axiom (C2) is fulfilled. Since validity of the condition
(C3) follows from Lemma 4.3 in [7], and can be verified also by means of the relation
(6.22) in [10], the assumptions of Lemma 1.1 and Theorem 1.1 are fulfilled, and the
assertion is proved. 2
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Example 9. Testing equality of means. Let an integer q > 1 and Θ = Ξq,
where Ξ is the set (1). Let us denote

Ω0 = { θ = (λ1, . . . , λq) ∈ Θ; λ1 = . . . = λq } (3)

the hypothesis that the parameters of the q Poisson populations are equal. If θ ∈ Θ
and p ∈ P are fixed, then η = (λ∗, . . . , λ∗), λ∗ =

∑
pjλj , is the unique point from

Ω0, minimizing K(θ, ., p) and Ω0 is Θ IR. Hence according to Theorem 5.1 the LR
test statistics

Tu = 2 log
L(x(u),Θ)
L(x(u),Ω0)

= 2
q∑

j=1

n(j)
u

[
λ∗ − λ̂j + λ̂j log

λ̂j

λ∗

]
, (4)

where

λ̂j = (n(j)
u )−1

n(j)
u∑

i=1

x
(j)
i , λ∗ =

q∑

j=1

p(j)
u λ̂j ,

are d-optimal for testing the hypothesis (5.3).

(Received February 23, 1993.)
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