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SENSITIVITY ERROR BOUNDS
FOR NON-EXPONENTIAL STOCHASTIC NETWORKS

Nico M. van Dijk

Stochastic service networks are studied with inaccuracies or perturbations in the distri-
butional forms of service and interarrival times. A condition is provided to conclude error
bounds for the effect of these data imprecisions on stationary measures such as through-
put. The verification of this condition involves a continuous-state Markov reward recursion
relation, which can be performed in an analytic manner. This will be illustrated in detail
for a tandem queueing network with imprecisions in a non-exponential input. An explicit
error bound on the effect of these imprecisions will be obtained.

INTRODUCTION

Background. Stochastic networks have gained a wide popularity over the last
decades in telecommunications, computer performance evaluation and flexible manu-
facturing. Most notably, explicit product form expressions and related insensitivity
properties have been intensively investigated (cf. [3, 4, 11, 14, 40]). Generally these
expressions rely upon assumptions such as Poissonian arrivals, exponential services,
special service disciplines (e. g. processor sharing) and reversible or state indepen-
dent routings. Such assumptions are typical not met in practice. Simulation, nu-
merical or approximation techniques must then be used. As these techniques can be
computationally expensive, robustness or sensitivity results with respect to system
input data are of interest.

Motivation. Particularly, the distributional forms of interarrival and service times
are the key-factor for both computational and sensitivity results. As these forms are
usually obtained by experimental data, inaccuracies are naturally involved. Error
bounds on the effect of distributional imprecisions are thus of natural interest. Con-
versely, for simulation or approximation purposes, robustness results may provide
one flexibility in choosing convenient distributional forms, for example Weibull (eas-
ily invertible) or Erlang (Markov chain analysis).

Literature. Perturbation or sensitivity analysis has recently enjoyed considerable
attention in connection with simulation (cf. [5, 6, 7, 8, 9, 10, 24, 25]). This analysis,
however, provides sensitivity bounds based on simulated sample path outcomes and
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does not secure a priori bounds. Moreover, only a number of system parameters and
not total distributional forms are studied. Analytic perturbation or related trun-
cation results that provide a priori error bounds for stationary characteristics have
also been obtained (e. g. [12, 13, 15, 16, 17, 18, 29, 35]). Without exception though,
these are all concerned with discrete state Markov chains, while no analogues have
been reported for continuous-state Markov chains as the present paper requires. Al-
ternatively, for particular examples, insensitivity bounds have been established by
modifying the original system in insensitive product form systems (cf. [28, 30, 31]).
This techniques, however, is limited to special systems and does not apply to inter-
arrival times. Moreover, these bounds are merely first quick indicators and do not
secure orders of accuracy for small data perturbations.

Result. This paper provides an analytical tool to conclude explicit a priori error
bounds for the amount of sensitivity due to imprecisions in distributional data for
interarrival and service times. The essential step to this end is the estimation of
so-called bias terms of an underlying reward structure. Such estimates have re-
cently been established for various discrete state queueing network applications (cf.
[31, 32, 35, 36]). The present application though, requires a continuous-state descrip-
tion. Bias terms estimates in that case do not seem to be available. The major part
of this paper therefore is concerned with an illustration of how this can be estab-
lished analytically in concrete multi-dimensional situations. To this end, a tandem
network with non-exponential renewal input is studied. An explicit error bound on
the effect of imprecisions or perturbations of this renewal distribution is derived.

1. GENERAL MODEL

For convenience, we first consider the closed case. The open case will be illustrated
by the Jacksonian application. Consider a closed stochastic network with a fixed
number of M jobs, numbered 1, . . . , M . At any moment the state of the system is
represented by

(L, T )

where {
L = (α1, . . . , αM )
T = (t1, . . . , tM )

}

denotes for each job i its current status αi ε S, with S some countable set, and
amount of service ti that it has received since its last service completion.

Example: (Queueing network). In a queueing network we can have: αi =
(r, j, p) denoting for job i its current type number r, the station j at which it is
present and a service number p, while ti is the amount of service that it has already
received at this station. Here we note that service numbers have the same function
as position numbers but are kept fixed (do not shift) during a service.
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Law of motion: The system dynamics are determined by the system character-
istics

F α(·) : distribution functions
si([L, T ]) : service rates (speeds)
pi(α′|[L, T ]) : transition probabilities

as follows: When a job changes its jobmark into ` it requires a random amount of
service with distribution function F `. When the system is in state [L, T ] the service
rate, i. e. the amount of service per unit of time provided to job i is si([L, T ]). When
the system is in state [L, T ] and job i completes its service, its jobmark is changed
into α′ with probability pi(α′|[L, T ]).

Remarks.

1. Note that the service rate for a particular job in a particular state can be
equal to zero. This naturally arises for instance in a queueing network with
FCFS-service stations, as will be illustrated in the example below.

2. Clearly, the above parametrization could have been combined in one service
completion rate function. However, the present more detailed formulation is
preferred as it corresponds more naturally to queueing network protocols.

Example: (Queueing network). Consider a closed queueing network with N
first-come first-served (FCFS)-single server stations and M numbered jobs. A job
requires a random amount of service at the various stations, say at station j according
to a distribution function Gj . When a job enters a station it is assigned a service
number p + 1 where p is the largest service number of jobs currently present at that
station. This service number remains unchanged until the job completes its service.
Under the FCFS-discipline only the job with the smallest service number (which
represents the head of the queue) is provided service. The service rate at station
j is bj(nj , tj) when nj jobs are present at this station while the job in service has
received already tj units of service. Upon service completion at station j a job routes
to station k with probability pjk(n, t) where n = (n1, . . . , nN ) and t = (t1, . . . , tN )
just prior to the completion.

Let α = (i, j, p) denote the job-number i of a job, the station number j at which
it is present and the service number p of the job at this station. In a given state, let
pj be the smallest service number of jobs present at station j which represents the
head of the queue. Also read 1{A} = 1 if even A is satisfied and 1{A} = 0 if not.
The above parametrization then applies with





F α = Gj

si([L, T ]) = bj(nj , tj)1(p = pj)
pi(α′|[L, T ]) = pjk(n, t)1(α′ = (i, k, p)).

The following assumptions are made in order to define a convenient transforma-
tion.
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Assumptions:

1. For all α, the function F α(t) is absolutely continuous for t ∈ (0,∞) with
density function fα(t). Hence, its failure rate, say hα(t), is well-defined by
hα(t) = fα(t)/[1− F α(t)] for all t ∈ (0,∞). We introduce the notation:

di([L, T ]) = si([L, T ]) fαi
(ti) / [1− F αi(ti)] (1)

2. For some constant B < ∞ and all [L, T ]:

d([L, T ]) =
∑

i

di([L, T ]) ≤ B. (2)

Uniformized model: Let Q be an arbitrary finite number with Q ≥ B. We now
define a related continuous-time Markov chain model as follows. At exponential
times with parameter Q the system will have a jump. For v > 0, let T + v denote
the vector (t1 + v, t2 + v, . . . , tM + v). If directly after the last jump the system was
in state [L, T ] while the next jump will take place after time v, by this next jump
with probability

P v([L, T ], [L′, T ′]) = di([L, T + v]) pi(α
′|[L, T + v]) /Q (3)

the system will change into state [L′, T ′] with α′j = αj and tj = tj + v for j 6= i but
α′j = α′ and t′i = 0, for all i = 1, . . . , M . With probability

1− d([L, T + v]) /Q (4)

only the ages are updated, i. e. the state will change into [L, T + v]. Without loss
of generality, assume that both the original and the above uniformized model have
a unique stationary density at one and the same irreducible set of states R which
we denote by π1(L, T ) and π2(L, T ) respectively. The following lemma is proven in
[33] and will enable us to restrict to a discrete step Markov chain analysis such as
to employ inductive arguments.

Lemma 1.1. π1(·) = π2(·).

2. SENSITIVITY BOUNDS

Consider a similar perturbed stochastic network with the characteristics

F α(·), si(·), pi(·|·)
replaced by

F α(·), si(·), pi(·|·)
and without loss of generality assume that (1) and (2) hold again with the same
value Q. Then by virtue of Lemma 1.1, its stationary distribution, denoted by π(·)
is also determined by the uniformized model with the above substitutions. From now
on, we will always denote an expression for this perturbed system with an upper bar
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symbol ‘ ’. Further, we only give definitions for the original system while those for
the perturbed system are analogues.

Let R(L, T ) be some reward function and define functions V n(·) and V n(·) for
n = 1, 2, . . . by: V 0 = V 0(·) = 0 and for n = 1, 2, . . .:

V n+1(L, T ) = R(L, T ) +
∫ ∞

0

Qe−vQ
∑

[L′,T ′]

P v([L, T ], [L′, T ′]) V n(L′, T ′) dv, (5)

where it is to be noted that the summation over [L′, T ′] for fixed value v actually
comes down to summation over all possible components i which determines which
component will change or, [L′, T ′] = [L, T +v]. In words that is, V n(L, T ) represents
the total expected rewards over n exponential periods with parameter Q under the
one-step transition structure P v(·, ·) and one-step rewards R(·, ·) and given the
initial state [L, T ] at time 0. Now assume that for some initial state [L0, T0]

G = lim
N→∞

Q

N
V N (L0, T0) (6)

exists and is well-defined. As R(·, ·) represents a one-step reward per period of
expected length Q−1, the values G then represent an expected reward per unit of
time when the system is in equilibrium. For example, for some given reward rate
function r(L, T ) we can have

R(L, T ) =
∫ ∞

0

Qe−vQr(L, T + v) dv (7)

as corresponding to a reward measurement just prior to jumps, or

R(L, T ) =
∫ ∞

0

Qe−vQ

[∫ v

0

r(L, T + s) ds

]
dv

as a reward rate measurement continuously in time. The following key-theorem
can now be formulated. Herein, let [P v − P v] ([·, ·], [·, ·′]) = P v([·, ·], [·, ·′]) −
P v([·, ·], [·, ·′]).

Theorem 2.1. Suppose that for some ∆1, ∆2 ≥ 0 and all [L, T ], and n ≥ 0:

∣∣∣∣∣∣
∑

[L′,T ′]

[
P v − P v

]
([L, T ], [L′, T ′]) [V n(L′, T ′)− V n(L, T )]

∣∣∣∣∣∣
≤ ∆1/Q (8)

∣∣R(L, T )−R(L, T )
∣∣ ≤ ∆2/Q. (9)

Then ∣∣G−G
∣∣ ≤ ∆1 + ∆2. (10)
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P r o o f . By virtue of (5):
(
V n+1 − V n+1

)
([L, T ]) =

[
R(L, T )−R(L, T )

]
(11)

+
∫ ∞

0

Qe−vQ





∑

[L′,T ′]

[
P v([L, T ], [L′, T ′])−P v([L, T ], [L′, T ′)

]
V n(L′, T ′)

+
∑

[L′,T ′]

P v([L, T ], [L′, T ′]) [V n(L′, T ′)− V n(L′, T ′)



 dv.

Noting that ∑

[L′,T ′]

P v ([L, T ], [L′, T ′]) = 1,

we have ∑

[L′,T ′]

[
P v([L, T ], [L′, T ′])− P v([L, T ], [L′, T ′])

]
V n(L′, T ′)

=
∑

[L′,T ′]

[
P v([L, T ], [L′, T ′]− P v([L, T ], [L′, T ′])

]
(12)

[V n(L′, T ′)− V n(L, T )] .

Substituting (12) in (11) and applying (8) and (9) yields for any [L, T ]:

γn+1 = sup
[L,T ]

∣∣V n+1(L, T )− V n+1(L, T )
∣∣

≤
∫ ∞

0

∆1e
−vQ dv+∆2 Q−1+ sup

[L′,T ′]

[
V n(L′, T ′)−V n(L′, T ′)

] ≤ γn+[∆1+∆2]Q−1.

Iterating this expression for n = N − 1, . . . , 0 and substituting V 0(·) = V 0(·) = 0
gives for any [L, T ]:∣∣V N (L, T )− V N (L, T )

∣∣ ≤ [N/Q] [∆1 + ∆2].

Inserting [L, T ] = [L0, T0] and applying (6) completes the proof. 2

Corollary 2.1. Let




R(·, ·) = R(·, ·)
si(·) = si(·) ≤ S

pi(·|·) = pi(·|·)
hα(t) = fα(·) / [1− F α(t)]

(13)

and assume that for some constant δ and C ≥ 0:
∣∣hα(t)− hα(t)

∣∣ ≤ δ (14)
|V n(L′, T ′)− V n(L, T )| ≤ C (15)

for all α and n, t ≥ 0 and [L′, T ′] with (α′j , t
′
j) = (αj , tj) for j 6= i while t′i = 0 for

some i ∈ {1, . . . ,M}. Then
|G−G| ≤ δ C S. (16)
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Remark 2.1 (Monotonicity results). The proof can almost be reread identi-
cally to conclude monotonicity results of the form

G ≤ G or G ≥ G

when (8) holds without absolute values and the right hand side replaced by ≤ 0
or ≥ 0. Monotonicity results for queueing networks have been extensively studied
over the last decade such as with respect to the number of servers or jobs (e. g.
[1, 2, 19, 20, 21, 22, 23, 26, 28, 36, 39]). Monotonicity results with respect to distribu-
tional forms though are limited to some results for simple Erlang type facilities (cf.
[22, 38]). As such, the above results in monotonicity form would be an extended
form of possible interest. The primary focus herein, however, are error bounds.

3. APPLICATION: A TANDEM NETWORK WITH NON-EXPONENTIAL
INPUT

To illustrate how the necessary condition (8) or (15) can be verified in concrete
situations, this section investigates a particular application: A finite tandem line. As
a non-exponential input is a realistic phenomenon but also known to be a key-factor
of the failure for an explicit product form results, we particularize this application
to a non-exponential input while for convenience of presentation service times are
assumed to be exponential.

The system under study is an open two station tandem line with a finite capacity
constraint of no more than N jobs. Jobs arrive at the system according to a renewal
input with interarrival (renewal) distribution F (·). When the system is saturated,
i. e. n = N where n is the number of jobs already present, an arriving job is rejected
and lost. Otherwise it enters station 1. After service completion at station 1, a
job instantly routes to station 2 and after service completion at station 2 it directly
leaves the system. When ni jobs are present at station i the rate at which jobs are
completed is µi(ni), where µi(ni) is assumed to be non-decreasing in ni, i = 1, 2,
where we assume services to be exponential.

The state of the system can be described by [n, t], where the vector n = (n1, n2)
denotes the numbers ni of jobs at stations i = 1, 2 and where t is the time after the
last arrival. The results of Section 2 do not apply directly as the number of jobs
is not fixed and external arrivals are involved. A way to include open models in
the description of Section 2 is to let arriving jobs be assigned an arrival number, to
be included in the status α of a job, and to use a special number 0 to describe an
external job which can enter the system of which is created when a job leaves the
system. However, for the special system under consideration, we prefer to give a
somewhat more direct version. More precisely, consider the system described above
but with the interarrival distribution modified in F (·) and let

{
h(t) = f(t) / [1− F (t)]

h(t) = f(t) / [1− F (t)]
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be the corresponding arrival failure rates for the original and modified system, which
are assumed to be well-defined for all t ∈ (0,∞. Now, with

r(n, t + v) = h(t + v)

and
Q ≥ sup

t
2h(t) + sup

n
[µ1(n1) + µ2(n2)] (17)

for z = 0, 1, 2, . . . define functions V z(n, t) as per (5) and (7). More precisely, define
V 0(·) = 0 and

V m+1(n, t)

=
∫ ∞

0

e−vQ
{
h(t + v)1{n<N} + h(T + v)1{n<N}V m(n + e1, 0)

+ [µ1(n1)V m(n− e1 + e1, t + v) + µ2(n2) V m(n− e2, t + n]

+
[
Q− h(t + v)1{n<N} − µ1(n1)− µ2(n2)

]
V m(n, t + v)

}
dv.

(18)

The value G as defined by

G = lim
z→∞

Q

z
V z(0, 0), (19)

where 0 = (0, 0), then represents the total system throughput, that is the mean
number of accepted jobs or system departures per unit of time, when the system is
in equilibrium. The functions r(n, t + v) and V z(n, t) and the value G are defined
similarly for the perturbed model. Now similarly to Theorem 2.1 and using the fact
that the systems differ in only their arrival failure rates, we can prove

Result 3.1.
|G−G| ≤ δ[1 + C] (20)

when for all n + e1 and m, t ≥ 0:

|h(t)− h(t)| ≤ δ, (21)
|V m(n + e1, 0)− V m(n, t)| ≤ C. (22)

As condition (21) is determined by the system data or modelling, the essential
condition to be verified is (22). The following result proves the concrete simple
estimate C = 1 when the arrival failure rate is monotone non-decreasing.

Result 3.2. Assume that h(t) is non-decreasing in t. Then for all n, t, s, i and z:

0 ≤ δs V s(n, t) = V z(n, t + s)− V z(n, t) ≤ 1, (23)
0 ≥ ∆s

1 V z(n, t) = V z(n + e1, t)− V z(n, t + s) ≥ −1, (24)
0 ≥ ∆s

2 V z(n, t) = V z(n + e2, t)− V z(n, t + s) ≥ −1, (25)
0 ≥ ∆s

3 V z(n, t) = V z(n + e1, t)− V z(n + e2, t + s) ≥ −1. (26)

P r o o f . This will be given by induction to z. Clearly (23) – (26) hold for z = 0
as V 0(·) = 0. Suppose that (23) – (26) hold for z = m. Below we will then express
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V m+1 in V m by means of (18). Before doing so it is noted in advance that in
the derivations that follow, some terms are artificially added and subtracted (e. g.
h(t + s + v)− h(t + v) in (27)) and µ1(n1 + 1)− µ1(n1) in (28)) or artificially split
(e. g. h(t + s + v) in h(t + v) + [h(t + s + v) − h(t + v)] in (27) and µi(ni + 1) =
µi(ni)+[µi(n1+1)−µi(ni)] in (28) in order to compare corresponding terms pairwise
with equal coefficients. Further, as the detailed technicalities are slightly different
but crucial, the derivations will be given in full detail for all inequalities to be proven.

δs V m+1(n, t) (27)

=
∫ ∞

0

e−vQ
{
h(t + s + v)1{n<N} + h(t + v)1{n<N}V m(n + e1, 0)

+[h(t + s + v)− h(t + v)]1{n<N}V m(n + e1, 0)
+µ1(n1) V m(n− e1 + e2, t + s + v) + µ2(n2)V m(n− e2, t + s + v)
+ [Q− h(t + s + v)1{n<N} − µ1(n1)− µ2(n2)] V m(n, t + s + v)

}
dv

−
∫ ∞

0

e−vQ
{
h(t + v)1{n<N} + h(t + v)1{n<N}V m(n + e1, 0)

+[h(t + s + v)− h(t + v)]1{n<N} V m(n, t + v)
+µ1(n1) V m(n− e1 + e2, t + v) + µ2(n2)V m(n− e2, t + v)
+ [Q− h(t + s + v)1{n<N} − µ1(n1)− µ2(n2)] V m(n, t + v)

}
dv

−
∫ ∞

0

e−vQ
{
[h(t + s + v)− h(t + v)]1{n<N}

+ [h(t + s + v)− h(t + v)]1{n<N}∆
[t+v]
1 V m(n, 0)

+µ1(n1) δs V m(n− e1 + e2, t + v) + µ2(n2) δs V m(n− e2, t + v)
+ [Q− h(t + s + v)1{n<N} − µ1(n1)− µ2(n2)] δs V m(n, t + v)

}
dv.

Now note that by induction hypothesis (24) for z = m, the second term between
braces {·} in the latter expression can be negative but is bounded from below by
−[h(t+s+v)−h(t+v)]1{n<N}. By combining this negative estimate with the first
positive term, which is exactly the same up to sign, applying the induction hypothesis
δs V m(·) ≥ 0 and recalling (23), one concludes: δs V m(·) ≥ 0. To estimate the latter
expression from above by 1, delete the second term which is non-positive by induction
assumption, apply the induction hypothesis δs V m(·) ≤ 1 and note that all terms
between braces {·} now sum up to 1 by virtue of (17). Inequality (23) is hereby
verified for z = m + 1.

To verify (24), again we will apply (18) where the remarks made above are re-
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called. We then obtain

∆s
1 V m+1(n, t) (28)

=
∫ ∞

0

e−vQ
{
h(t + v)1{n+1<N} + h(t + v)1{n+1<N}V m(n + e1 + e1, 0)

+[h(t + s + v)− h(t + v)]1{n+1<N}V m(n + e1, t + v)
+h(t + v)1{n+1=N}V m(n + e1, t + v)
+[h(t + s + v)− h(t + v)]1{n+1=N}V m(n + e1, t + v)
+[µ1(n1 + 1)− µ1(n1)] V m(n + e2, t + v)
+µ1(n1)V m(n + e2, t + v) + µ2(n2) V m(n + e1 − e2, t + v)
+ [Q− h(t + s + v)− µ1(n1 + 1)− µ2(n2)] V m(n + e1, t + v)}dv

−
∫ ∞

0

e−vQ
{
h(t + s + v)1{n+1<N} + h(t + s + v)1{n+1=N}

+h(t + v)1{n+1<N} V m(n + e1, 0) + h(t + v)1{n+1=N} V m(n + e1, 0)
+[h(t + s + v)− h(t + v)]1{n+1<N} V m(n + e1, 0)
+[h(t + s + v)− h(t + v)]1{n+1=N} V m(n + e1, 0)
+[µ1(n1 + 1)− µ1(n1)] V m(n, t + s + v)
+µ1(n1)V m(n− e1 + e2, t + s + v) + µ2(n2) V m(n− e2, t + s + v)
+ [Q− h(t + s + v)− µ1(n1 + 1)− µ2(n2)] V m(n, t + s + v)}dv

=
∫ ∞

0

e−vQ
{
[h(t + v)− h(t + s + v)]1{n+1<N} − h(t + s + v)1{n+1=N}

+h(t + v)1{n+1<N}∆0
1 V m(n + e1, 0)

+h(t + v)1{n+1=N}δ[t+v] V m(n + e1, 0)
+[h(t + s + v)− h(t + v)]1{n+1<N} δ[t+v] V m(n + e1, 0)
+[h(t + s + v)− h(t + v)]1{n+1=N} δ[t+v] V m(n + e1, 0
+[µ1(n1 + 1)− µ1(n1)]∆s

2 V m(n, t + v)
+µ1(n1)∆s

1 V m(n− e1 + e2, t + v)
+µ2(n2)∆s

1 V m(n− e2, t + v)
+[Q− h(t + s + v)− µ1(n1 + 1)− µ2(n2)]∆s

1 V m(n, t + v)}dv.

Here note all δ[t+v] V m(·) are non-negative by induction hypothesis (23) for z = m,
but estimated from above by 1. As a consequence, by substituting these upper
estimates, combining them with the first two negative terms, which are exactly equal
to their coefficients up to sign, applying the induction hypothesis ∆s

2 V m(·) ≤ 0 and
∆s

1 V m(·) ≤ 0 and recalling (17), we conclude: ∆s
1 V m+1(·) ≤ 0. To estimate the

latter expression from below by −1, delete all δ[t+v] V m(·)-terms, which are non-
negative by induction assumption, apply the induction hypotheses ∆s

2 V m(·) ≥ −1
and ∆s

1 V m(·) ≥ −1 and note that all terms between braces {·} now sum up to −1
by virtue of (17). Inequality (24) is hereby verified for z = m+1. To prove (25), we
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obtain similarly to (27):

∆s
2 V m+1(n, t) (29)

=
∫ ∞

0

e−vQ
{
h(t + v)1{n+1<N}

+h(t + v)1{n+1<N} V m(n + e1 + e2, 0)
+h(t + v)1{n+1=N} V m(n + e2, t + v)
+[h(t + s + v)− h(t + v)]1{n+1<N} V m(n + e2, t + v)
+[h(t + s + v)− h(t + v)]1{n+1=N} V m(n + e2, t + v)
+[µ2(n1 + 1)− µ2(n2)] V m(n, t + v)
+µ1(n1)V m(n− e1 + e2 + e2, t + v) + µ2(n2)V m(n, t + v)
+ [Q− h(t + s + v)− µ1(n1)− µ2(n2 + 1)] V m(n + e2, t + v)}dv

=
∫ ∞

0

e−vQ
{
h(t + s + v)]1{n+1<N} + h(t + s + v)1{n+1=N}

+h(t + v)1{n+1<N} V m(n + e1, 0) + h(t + v)1{n+1=N} V m(n + e1, 0)
+[h(t + s + v)− h(t + v)]1{n+1<N} V m(n + e1, 0)
+[h(t + s + v)− h(t + v)]1{n+1=N} V m(n + e1, 0)
+[µ2(n2 + 1)− µ2(n2)] V m(n, t + s + v)
+µ1(n1)V m(n− e1 + e2, t + s + v) + µ2(n2) V m(n− e2, t + s + v)
+ [Q− h(t + s + v)− µ1(n1)− µ2(n2 + 1)] V m(n, t + s + v)}dv

−
∫ ∞

0

e−vQ
{
[h(t + v)− h(t + s + v)]1{n+1<N}

−h(t + s + v)1{n+1=N}
+h(t + v)1{n+1<N}∆0

2 V m(n + e1, 0)

+h(t + v)1{n+1=N}
[
−∆[t+v]

3 V m(n, 0)
]

+[h(t + s + v)− h(t + v)]1{n+1<N}
[
−∆[t+v]

3 V m(n, 0)
]

+[µ2(n2 + 1)− µ2(n2)] [−δs V m(n, t + v)]
+µ1(n1)∆s

2 V m(n− e1 + e2, t + v) + µ2(n2)∆s
2 V m(n− e2, t + v)

+ [Q− h(t + s + v)− µ1(n1)− µ2(n2 + 1)]∆s
2 V m(n, t + v)}dv.

Now note that all −∆3 V m(·)-terms are non-negative as per induction hypothesis
(26) for z = m but estimated from above by 1. Hence, as in (27) by substituting
these upper estimates, combining them with the first two negative terms which are
exactly equal to their coefficients up to sign, applying the induction hypotheses
−δs V m(·) ≤ 0 and ∆s

2 V m(·) ≤ 0 and recalling (17) we conclude: ∆s
2 V m+1(·) ≤ 0.

Conversely, as before, by deleting the non-negative −∆s
3 V m(·) terms, applying

−δs V m(·) ≥ −1 and ∆s
2 V m(·) ≥ −1 as per hypotheses and noting that all terms

between braces then sum up to −1 by virtue of (17) we obtain ∆s
2 V m+1(·) ≥ −1.
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Inequality (25) is thus proven for z = m + 1. Finally, again as in (28) we conclude:

∆s
3 V m(n, t) = V m+1(n + e1, t)− V m+1(n + e2, t + s) (30)

=
∫ ∞

0

e−vQ
{
h(t + v)1{n+1<N}

+h(t + v)1{n+1<N} V m(n + e1 + e1, 0)
+[h(t + s + v)− h(t + v)]1{n+1<N} V m(n + e1, t + v)
+[µ1(n1 + 1)− µ1(n1)] V m(n + e1, t + v) + µ1(n1)V m(n + e2, t + v)
+[µ2(n2 + 1)−µ2(n2)] V m(n+e1, t+v)+µ2(n2) V m(n+e1−e2, t+v)
+[Q−h(t + s + v)1{n+1<N}−µ1(n1+1)−µ2(n2 + 1)] V m(n+e1, t+v)

}
dv

−
∫ ∞

0

e−vQ
{
h(t + s + v)1{n+1<N}

+h(t + v)1{n+1<N} V m(n + e1 + e2, 0)
+[h(t + s + v)− h(t + v)]1{n+1<N} V m(n + e1 + e2, 0)
+[µ1(n1+1)−µ1(n1)] V m(n+e2, t+s+v)+µ1(n1) V m(n−e1+e2+e2, t+s+v)
+[µ2(n2 + 1)− µ2(n2)] V m(n, t + s + v) + µ2(n2)V m(n, t + s + v)
+ [Q−h(t+s+v)1{n+1<N}−µ1(n1+1)−µ2(n2+1)] V m(n+e2, t+s+v)

}
dv

=
∫ ∞

0

e−vQ
{
[h(t + v)− h(t + s + v)]1{n+1<N}

+h(t + v)1{n+1<N}∆0
3 V m(n + e1, 0)

+[h(t + s + v)− h(t + v)]1{n+1<N}
[
−∆[t+v]

2 V m(n + e1, 0)
]

+[µ1(n1+1)−µ1(n1)] [−δs V m(n+e2, t+v)]+µ1(n1)∆s
3 V m(n−e1+e2, t+v)

+[µ2(n2 + 1)− µ2(n2))]∆s
1 V m(n, t + v) + µ2(n2)∆s

3 V m(n− e2, t + v)
+ [Q−h(t + s + v)1{n+1<N}−µ1(n1 + 1)−µ2(n2+1)]∆s

3 V m(n+t+v)
}

dv.

Here the −∆2 V m(·) term is non-negative but estimated from above by 1 as per
induction hypothesis (25) for z = m. Hence, as before, by substituting this upper
estimate, combining it with the first negative term which is exactly equal to its
coefficient up to sign, applying the hypotheses: ∆s

3 V m(·) ≤ 0, and −δs V m(·) ≤ 0
and recalling (17) we conclude: ∆s

3 V m+1(·) ≤ 0.
Conversely, by deleting the non-negative −∆s

2 V m(·) term, applying −δs V m(·) ≥
−1 and ∆s

3 V m(·) ≥ −1 as per hypotheses and noting that all terms between braces
{·} then sum up to −1 by virtue of (17), we obtain ∆3 V m+1(·) ≥ −1. Inequality
(26) is thus proven for z = m + 1. By induction the proof of the lemma is hereby
completed. 2

By Results 3.1 and 3.2 we thus conclude:

Corollary 3.3. Assuming that h(t) is nondecreasing in t we have under (21):

|G−G| ≤ 2δ. (31)

Remarks (Nondecreasing h(t)).
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(i) Note that only h(t) and not h(t) is required to be nondecreasing for Corol-
lary 3.3. For example, with h(t) = µ we can so investigate the effect of a small
deviation, as modeled by h(t), from an exponential input assumption.

(ii) The assumption of a nondecreasing failure rate h(t) is quite realistic. For
instance, one can think of an arrival as representing a broken down component
where the rate of a component to go down increases by its lifetime.

(iii) Extensions of Result 3.2 such that h(t) is not necessarily nondecreasing do
seem possible along the same lines, but will be technically more complex.
Particularly, a weighted mixture of decreasing and nondecreasing failure rates
does seem possible.

CONCLUSION

The sensitivity of system performance measures with respect to its underlying stoch-
astic assumptions is an important practical aspect as detailed data are often not
available. This paper provides a method by which the effect of impressions or per-
turbations in underlying distributional forms for arrivals and services in a stochastic
service network can be evaluated in analytical manner. This method requires a
technical verification for bounding so-called bias terms. To this end, an inductive
prooftechnique can be employed based on Markov reward structures. This technique
has so far only been applied for discrete-state description. In the present paper it
also appears executable for continuous state descriptions, as was illustrated for a
tandem queueing system with imprecisions in the arrival distribution.

Further exploration of this method is suggested for more complex networks, for
imprecisions in several distributions simultaneously and for situations with wildly
varying distributions.

(Received November 8, 1993.)
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